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A Multiscale Community Blockmodel for Network
Exploration

Qirong HO, Ankur P. PARIKH, and Eric P. XING

Real-world networks exhibit a complex set of phenomena such as underlying hierarchical organization, multiscale interaction, and varying
topologies of communities. Most existing methods do not adequately capture the intrinsic interplay among such phenomena. We propose
a nonparametric multiscale community blockmodel (MSCB) to model the generation of hierarchies in social communities, selective
membership of actors to subsets of these communities, and the resultant networks due to within- and cross-community interactions. By
using the nested Chinese restaurant process, our model automatically infers the hierarchy structure from the data. We develop a collapsed
Gibbs sampling algorithm for posterior inference, conduct extensive validation using synthetic networks, and demonstrate the utility of our
model in real-world datasets, such as predator–prey networks and citation networks.

KEY WORDS: Bayesian nonparametrics; Gibbs sampler; Hierarchical network analysis; Latent space model.

1. INTRODUCTION

How do complex networks and their self-organization arise
from coordinated interactions and information sharing among
the actors? One way to tap into this question is to understand
the latent structures over actors, which lead to the formation and
organization of these networks. In particular, we are interested in
uncovering the functional/sociological communities of network
actors, and their influence on network connections. We consider
a community to be a group of actors that share a common
theme, such as a clique of football fans in a social network,
or an ecosystem of dependent organisms in a biological food
web. Our objective is to gain a deeper understanding of the
relationships within and among these communities, so as to
shed insight into the network topology.

More specifically, we seek to address three critical aspects of
network modeling and community discovery:

(1) Hierarchy—not all communities are equal: a community
can contain subcommunities, or be contained by super-
communities. This is a natural way to structure the latent
space of actors.

(2) Multiscale granularity—we must distinguish between
coarse or generic associations that may occur in a large
supercommunity, as opposed to fine-grained interactions
that occur within or among small, closely interconnected
subcommunities.

(3) Assortativity/disassortativity—some communities have
strong within-community interactions and weak cross-
community interactions (assortativity), yet others may
exhibit the reverse (disassortativity).

These aspects are not independent, but are strongly interre-
lated. As an example, consider an oceanic food web (Figure 1),
a directed network with species as actors and predator–prey
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relationships as edges. This network exhibits hierarchy: cold-
blooded animals and mammals are large supercommunities that
can be subdivided into smaller subcommunities, such as sharks
and squid, or toothed whales and pinnipeds. These subcommu-
nities can in turn be divided into even smaller communities (not
shown). The ideas of hierarchy and network should not be con-
fused with each other. The hierarchy is an organization of actors
in some latent space learned from the observed network.

Next, the predator–prey relationships in the ocean are multi-
scale. Consider a sperm whale: it occasionally eats fish, which
are common prey for many oceanic animals. Hence, this “sperm
whale and fish” interaction is generic. Moreover, sperm whales
usually eat giant squid, which are prey specific to them (mak-
ing this interaction fine-grained). It is important to differentiate
between such interactions of different scales.

Finally, the toothed whale subcommunity demonstrates both
assortative and disassortative behavior. Many toothed whales
feed on small fish and seals, which are cross-community inter-
actions. However, whales such as orcas feed on other whales,
which are within-community interactions.

We propose a nonparametric multiscale community block-
model (MSCB) that presents a unified approach to address these
three concerns. Using the nested Chinese restaurant process
(nCRP) (Blei, Griffiths, and Jordan 2010) as a nonparametric
structural prior, our model infers the appropriate hierarchy from
the data, without requiring the user to prespecify the branching
factor at each node. Moreover, by exploiting latent space ideas
from Blei, Ng, and Jordan (2003) and Airoldi et al. (2008), we
uncover the coarse-/fine-grained interactions that underlie the
network. Finally, our model builds upon the blockmodel con-
cept (Wang and Wong 1987; Airoldi et al. 2008) to integrate
assortativity and disassortativity into our hierarchy. To use our
model, we develop a Markov chain Monte Carlo (MCMC) al-
gorithm for posterior inference and hyperparameter estimation,
and study its performance on simulated and real datasets.

In particular, our qualitative studies are centered on two net-
works: a 75-species food web of grass-feeding wasps and their
parasites (Dawah, Hawkins, and Claridge 1995), and a subset of
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Figure 1. Illustration of an oceanic food web as a set of nested
communities (left), and the corresponding hierarchy of communities
(right). Vertices in the network represent individual species, and di-
rected edges represent predator–prey relationships (not all shown).
Solid edges are fine-grained, specific interactions, while dashed edges
are coarse-grained and generic to a large community.

the arXiv high-energy physics (theory) citation network (KDD
2010). The latter network originally contains 27,770 articles,
but due to algorithmic limitations, we focus on a 1000-article
subset published from January 2002 through May 2003.1 Using
our MCMC algorithm, we uncover hierarchies from both net-
works, and analyze these in the context of nodal attributes such
as species’ trophic levels (i.e., parasite, herbivore, or plant) and
journal article titles. On the food web, we recover a hierarchy
that, at a high level, follows intuitive trophic divisions: parasites
are grouped together, and similarly for herbivores or plants. This
is in contrast to the hierarchy-finding model of Clauset, Moore,
and Newman (2008), whose recovered hierarchy is centered
around highly connected species rather than trophic levels. On
the arXiv citation network, our recovered hierarchy splits the
articles into specific research topics, which corresponds to the
perception that most scientific research is conducted by highly
specialized communities of researchers. Finally, we support our
qualitative studies with simulations that reveal conditions under
which our algorithm outperforms other statistical and nonstatis-
tical network models.

1.1 Comparison With Existing Work

Existing methods for graph clustering and inferring commu-
nity structure may address one or two of the aspects we have
described, yet none capture all the three aspects simultaneously.
To begin with, methods, such as Girvan and Newman (2002),
Hoff, Raftery, and Handcock (2002), Handcock, Raftery, and
Tantrum (2007), Krause et al. (2003), and Guimera and Amaral
(2005), cannot discover disassortative communities character-
ized by weak within-community and strong cross-community
interactions. Furthermore, they do not explicitly model organi-
zational structure—and by extension, multiscale granularity of

1Due to the short window of time, this 1000-article subnetwork has a lower
citation density than the original network. We acknowledge that this subnetwork
is not ideal for hierarchy learning, since articles that share only older citations
will have no network paths between them. Nevertheless, this subnetwork retains
enough structure for our algorithm to recover a two-level hierarchy, which we
report in our experiments.

interactions. These methods do not meet any of our criteria, and
are, therefore, unsuited for our purposes.

A common strategy for learning hierarchies is divisive or top-
down: begin by learning first-level clusters using a nonhierarchi-
cal network clustering algorithm, and then recursively apply the
same algorithm to the subgraphs corresponding to each cluster.
Spectral methods (Chung 1997) are a popular choice for top-
down network clustering, not least because they approximate a
graph cut objective function, making them a natural fit for net-
works. However, the biggest issue with divisive strategies is that
deeper divisions cannot retroactively influence shallower ones,
leading to situations in which poor choices made early in the
algorithm doom the final outcome. In contrast, our hierarchical
model specifies a probability distribution over the space of all
possible K-level hierarchies, making it immune to such issues in
principle—though its effectiveness, in practice, will admittedly
depend on the particular inference algorithm used.

The counterpart to divisive clustering is agglomerative or
bottom-up clustering, in which network entities are repeatedly
merged to form larger and larger clusters. One popular version of
this strategy, as adopted in the software program Pajek (Batagelj
and Mrvar 1998), is to generate a dissimilarity matrix from
the network, such as the corrected Euclidean-like dissimilarity
of Batagelj, Ferligoj, and Doreian (1992), and then perform
agglomerative clustering using Ward’s criterion (Ward 1963).
As with top-down clustering, bottom-up clustering suffers from
an inability to retroactively apply information gleaned from
later merges, highlighting the need for probabilistic models that
consider all possible hierarchies at once. In our experiments, we
shall compare our method with the top-down spectral clustering
strategy, as well as the bottom-up Pajek strategy.

The mixed membership stochastic blockmodel (MMSB)
(Airoldi et al. 2008) is a “mixture of features” model, in that it
aims to discover the multiple latent “roles” played by each actor
in the network; additionally, it employs a blockmodel to accom-
modate both disassortative and assortative types of interactions.
While the multirole memberships discovered by MMSB are
similar to our notion of coarse-/fine-grained interactions, they
are not identical; furthermore, MMSB does not induce a hier-
archical structure over the actors. These considerations prevent
MMSB from modeling the organized network phenomena that
our model is designed to explore. Another “mixture of features”
latent space model is that of Miller, Griffiths, and Jordan (2009),
which allows each actor to take on multiple binary features in an
infinite-dimensional space. Similar to MMSB, this model does
not learn a structure over its latent space, and therefore, cannot
replicate our model’s ability to discover community hierarchies.

Finally, methods, such as Clauset, Newman, and Moore
(2004), Radicchi et al. (2004), and Kemp and Tenenbaum
(2008), explicitly model some form of organizational structure,
but do not permit actors to have multiple kinds of interactions,
which precludes them from learning the kind of multiscale in-
teractions we have described. Our MSCB model is perhaps most
closely related to the infinite relational model (IRM) (Kemp et al.
2006), which is a special case of MSCB. More specifically, the
IRM is equivalent to MSCB with a hierarchy depth of 1 (i.e., a
flat hierarchy with no multiscale membership)—an unsurpris-
ing fact, given that the IRM is a nonparametric generalization of
the stochastic blockmodel (Wang and Wong 1987), from which
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MSCB inherits some of its key attributes. Roy et al. (2007)
generalized the IRM in a different way for hierarchical group
discovery, and further extended their work to the nonparametric
setting with Mondrian processes (Teh and Roy 2009). However,
these two models are limited to binary hierarchies, and further-
more, they adopt a notion of multicommunity membership that
is not directly comparable with ours. In contrast, our model
assumes no limit on the hierarchy’s branching factor, which is
more realistic for certain networks.

2. MULTISCALE COMMUNITY BLOCKMODEL (MSCB)

We now describe aspects of our model, beginning with the
hierarchy and ending with network generation. Throughout, we
adopt an oceanic food web as a running example (Figure 1).

2.1 The Community Hierarchy

Our model organizes network actors into a depth K tree-
shaped hierarchy, where each node in the tree represents a com-
munity. The tree contains a single root node at level 0, followed
by K levels of nodes; parent nodes can have any number of
child nodes. Nodes closer to the root represent large super-
communities (e.g., the “cold-blooded animals” and “mammals”
in Figure 1), while nodes closer to the terminal leaves repre-
sent finer-grained subcommunities (e.g., “toothed whales” or
“sharks”).

The most important aspect of our hierarchy is that each actor is
associated with not just one community, but with an entire path
of supercommunities through subcommunities, starting from a
level 1 node and ending with a level K terminal leaf. In our
food web example, the sperm whale follows the path [mammal,
toothed whale]. More formally, we represent actor i’s path by a
random-valued, K-length path vector ci , where the kth element
of ci represents the branch choice taken at level k. Referring
to our oceanic food web in Figure 2, we observe that “mam-
mals” are the second branch from the root “sea creatures,” while
“toothed whales” are the first branch from “mammals”—hence,
the sperm whale has a path vector of c3 = [2, 1] in this hier-
archy. Henceforth, we shall use the term path to refer to path
vectors ci .

It is important to note that we never represent our hierarchy ex-
plicitly; it is implicit from the set of all actor paths {c1, . . . , cN }.
For example, given c1 = [1, 1], c2 = [1, 2], and c3 = [2, 1], we

Figure 2. Oceanic food web from Figure 1, annotated with three
species’ path vectors ci .

can recover a hierarchy with two level 1 nodes, carrying 2 and 1
child nodes, respectively, at level 2. This implicit representation
is convenient for probabilistic inference, as we shall demonstrate
later.

2.2 A Measure Over Hierarchies

Because the number of actor paths N is finite, the space of
meaningful hierarchies is also finite. Unfortunately, this space
is still very large, which makes model selection (i.e., hierarchy
selection) an inherently difficult task. To solve this problem, we
make use of a measure over sets of actor paths {c1, . . . , cN }
(recall that these paths implicitly define a depth K hierarchy),
the nCRP (Blei, Griffiths, and Jordan 2010). As its name sug-
gests, the nCRP is a recursive version of the Chinese restaurant
process (CRP) (Aldous 1985; Teh et al. 2006), the latter being
an exchangeable distribution over partitions of a finite set of
objects (i.e., ways to divide up the objects).

To clearly present the nCRP, a brief overview of the CRP
and the Dirichlet process (DP) (Ferguson 1973) is in order. In
Bayesian nonparametric mixture modeling, the DP is employed
as a prior over a countably infinite number of mixture compo-
nents (Escobar and West 1995; MacEachern and Müller 1998).
However, the DP can only model flat (i.e., without hierarchy)
nonparametric mixture models, which represent an extreme case
of our model when the hierarchy has onlyK = 1 level. One par-
ticularly useful view of the DP is given by the Pólya urn scheme
(Blackwell and MacQueen 1973), which provides a closed form
for the ith data point’s mixture component, given the mixture
components of the previous i − 1 data points. If we disregard
the locations of the mixture components and simply focus on
their identities, the Pólya urn scheme becomes the CRP. Recall
that the CRP is an exchangeable distribution over partitions of
objects: in the context of the DP, the objects are data points,
which are placed into parts (i.e., divisions of the partition) that
represent mixture components.

In essence, the CRP allows us to separate the identities of the
DP mixture components from their locations in the data domain
(as drawn from a base measure). By exploiting this separation,
Blei, Griffiths, and Jordan (2010) generalized the CRP to the
nCRP, transforming the flatly organized mixture components of
the former into the tree-shaped hierarchy of the latter.

2.2.1 Nested Chinese Restaurant Process. The nCRP, as
defined by Blei, Griffiths, and Jordan (2010), is a measure over
sets of tree paths {c1, . . . , cN } of infinite length, though for our
purposes, we shall restrict the nCRP to paths of length K. The
nCRP is most intuitive when described generatively: beginning
with actor 1, each actor chooses its tree path in turn, conditioned
on the existing paths chosen by previous actors. Consider the
ith actor: it begins at the root, and needs to choose which level
1 branch to take. With probability n(1)

x,i−1/(i − 1+ γ ), it selects
branch x already in the tree, or with probability γ /(i − 1+ γ ),
it starts a completely new branch. Here, n(1)

x,i−1 is the number
of actors before i that chose branch x at level 1, and γ is a
hyperparameter dictating the probability that an actor will start
a new branch.

Actor i continues this process as it descends the tree. When
picking a branch at level k, with probability n(k)

y,i−1/(n
(k−1)
i−1 + γ ),

it selects branch y, and with probability γ /(n(k−1)
i−1 + γ ), it
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starts a new branch. Here, n(k−1)
i−1 counts the number of actors

1, . . . , i − 1 having the same path as actor i up to (and includ-
ing) level k − 1. Out of these actors, n(k)

y,i−1 is the number that
picked branch y (at level k). This sequence of branch choices
defines the path ci of actor i, and as we have explained previ-
ously, the set of all actor paths implicitly defines the hierarchy.
Note that our model limits the hierarchy to a maximum depth
of K.

We now provide a more formal definition of the nCRP. To do
so, we must first introduce the (original) CRP, an exchangeable
distribution over partitions (of a set of objects) (Aldous 1985;
Teh et al. 2006). For concreteness, we shall represent an object’s
assigned part by a positive integer—as an example, suppose
there are three random variables X1, X2, and X3 corresponding
to a partition of three objects, thenX1 = 1, X2 = 1, and X3 = 2
represent a partition where objects 1 and 2 are in one part, and
object 3 is in another part. Note that this scheme allows every
partition to be represented by infinitely many assignments, for
example, X1 = 3, X2 = 3, and X3 = 2 represent the same par-
tition as the earlier assignment. Despite this nonidentifiability,
the positive integer representation turns out to be convenient
for describing and implementing our Gibbs sampling inference
procedure.

Let cik denote the kth element of the ith actor path, that is, the
branch taken at level k by actor i. In our model, the collection
of all actor path first-level branch choices, which we denote as
{ci1}, forms a partition distributed according to a CRP prior:

P
(
ci1 = x | c1:(i−1),1

)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∣∣{j < i | cj1 = x}
∣∣

i − 1+ γ , x ∈ {c1:(i−1),1},
γ

i − 1+ γ , x is the smallest positive

integer not in {c1:(i−1),1},

(1)

where γ > 0 is a “concentration” parameter that controls
the probability of drawing new integers, and c1:(i−1),1 =
(c11, . . . , c(i−1)1) denotes the set of first-level elements from
paths c1 through ci−1. Again, we stress that different assign-
ments to {ci1} can correspond to the same partition. High values
of γ imply that partitions with more parts are more likely.

The nCRP (Blei, Griffiths, and Jordan 2010) extends the CRP
to recursively nested partitions. The nCRP can be thought of
as a hierarchy of CRPs, beginning with a single CRP at the
top level. To each unique integer x observed at the top-level
prior, we associate a child CRP with |{i | ci1 = x}| observations,
resulting in a two-level tree of CRPs. We can repeat this process
ad infinitum on the newly created child CRPs, resulting in an
infinite-level tree of CRPs; however, we only use a K-level nCRP
(denoted as nCRPK ) as we have limited the maximum hierarchy
depth to K. In our model, all child CRPs of the nCRP share the
same concentration parameter γ , and high values of γ make
“branchier” trees more likely. We note that one could easily
have different γ ’s for different tree levels, but do not discuss
this modification.

Our model treats the collection of all actor paths {ci} as a
recursively nested partition (of depth K), distributed according
to an nCRPK (γ ) prior:

P
(
cik = x | c1:(i−1) , ci,1:(k−1)

)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣{j < i | cj,1:(k−1) = ci,1:(k−1) , cjk = x
}∣∣∣∣{j < i | cj,1:(k−1) = ci,1:(k−1)

}∣∣+ γ ,

x ∈ {cjk | (j < i) , cj,1:(k−1) = ci,1:(k−1)},
γ∣∣{j < i | cj,1:(k−1) = ci,1:(k−1)

}∣∣+ γ ,
x is the smallest positive integer not in the above set,

(2)

where in the first line, c1:(i−1) = {c1, . . . , ci−1} is the set of com-
plete paths c1 through ci−1, and ci,1:(k−1) = {ci,1, . . . , ci,k−1}
contains the first through (k − 1)th elements of path ci . Each
actor path ci is represented by a length K vector of positive inte-
gers, and the distribution above enables us to draw their elements
one at a time: c11, . . . , c1K, c21, . . . , c2K , and so on. As with the
original CRP, different assignments to {ci} can correspond to
the same set of (nested) partitions.

2.3 Multiscale Membership

In conjunction with the actor paths, MSCB’s notion of mul-
tiscale membership (MM) distinguishes it from other hierarchi-
cal clustering methods. Briefly, each actor i is endowed with a
probability distribution over the hierarchy nodes in its path. We
denote this distribution by an MM vector θi , a K-dimensional
multinomial that encodes an actor’s tendencies to interact as a
member of the different supercommunities and subcommunities
along its K-length path. Specifically, θik , the kth element of θi ,
is the probability that actor i will interact as a member of the
kth community along its path from the root. Through MM, our
model is able to accommodate multiscale granularity on inter-
actions, that is, the notion that some interactions are finer or
coarser than others.

To use our food web example (Figure 2), consider two species
of toothed whales: dolphins and sperm whales. Although both
share the same hierarchy path (mammal, toothed whale), they
behave quite dissimilarly. A dolphin’s diet consists mainly of
fish, which are common prey for many mammals. Thus, we
would say it typically interacts as a member of the mammal
supercommunity, although it occasionally chooses prey that are
more specific to its species. On the other hand, a sperm whale
barely eats fish, so it rarely interacts as a member of its su-
percommunity; instead, it prefers giant squid, a more specific
prey uncommon to most mammals. Thus, the sperm whale has
a higher probability of participating in fine-grained interactions
(say, θ = [0.1, 0.9]) unlike the dolphin, which is more likely to
pursue coarse-grained interactions (e.g., θ = [0.8, 0.2]).

At this juncture, it is worth comparing our MM with the
MMSB (Airoldi et al. 2008). The latter model endows each ac-
tor with a distribution over latent roles, just as our MM vector
provides each actor with a distribution over communities. There
is a key difference, however: MMSB’s mixed membership vec-
tors permit each actor to have a distribution over all latent roles,
whereas our model’s MM vectors constrain each actor to dis-
tributions only over supercommunities and subcommunities on
its path. This restriction is crucial: if actors were allowed to
have distributions over all hierarchy communities, the hierar-
chy could be rendered virtually meaningless—for instance, we
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could say that dolphins are simultaneously members of the shark
and toothed whale communities, which is plainly unrealistic.

Just as with the paths ci , we place a suitable prior on the MM
vectors θi , a truncated two-parameter stick-breaking2 process
(Blei, Griffiths, and Jordan 2010), denoted by StickK (m,π ),
where 0 < m < 1 and π > 0. This prior is conjugate to the K-
dimensional multinomial distribution, which will be important
when deriving our Gibbs sampler inference algorithm. Further-
more, unlike the Dirichlet distribution (which is also conju-
gate to the multinomial distribution), the stick-breaking process
makes it easy to bias the posterior of θi toward coarser interac-
tions (i.e., elements θik have more probability mass for k closer
to 1) or finer interactions (more mass for k closer to K). In con-
trast, a single-parameter Dirichlet prior cannot accommodate
coarse/fine biases, while a full K-parameter Dirichlet prior may
be too expressive—for instance, we do not anticipate needing a
bimodal prior on θik for our applications.

2.3.1 Truncated Two-Parameter Stick-Breaking Process.
As its name suggests, the StickK (m,π ) distribution gener-
ates multinomial parameters θi via the analogy of breaking
sticks into pieces. Beginning with a stick of length 1, draw
the first stick fraction Vi1 ∼ Beta(mπ, (1−m)π ) and let the
first stick length be θi1 = Vi1, leaving 1− θi1 as the remain-
der of the stick. To get the second stick length θi2, draw
Vi2 ∼ Beta(mπ, (1−m)π ) and break this fraction off from the
remainder, giving θi2 = Vi2(1− Vi1). We repeat this process un-
til we have K sticks, after which we discard the remainder and
renormalize the sticks to get θi .

Formally, let Vik be the kth fraction to break off from the
stick’s remainder, and let θik be the length of the kth stick.
To draw θi ∼ StickK (m,π ), we first draw Vik ∼ Beta(mπ, (1−
m)π ) for k ∈ {1, . . . , K} and define θik to be

θik ∝ Vik

k−1∏
u=1

(1− Viu), (3)

with normalization factor
∑K

k=1 θik . We note that Blei, Grif-
fiths, and Jordan (2010) called this distribution a “two-
parameter GEM distribution,” and letK →∞ to get an infinite-
dimensional prior.

Intuitively, the parameter 0 < m < 1 influences the posterior
mean of θi ; m→ 1 results in elements θik having more mass
for k closer to 1, while m→ 0 results in more mass for k closer
to K. The other parameter π > 0 indicates our confidence in
the stick-breaking prior; π →∞ indicates more confidence,
causing the posterior mean of θi to approach the prior mean and
the posterior variance of θi to approach zero.

2.4 Network Edge Generation

We now explain how the paths ci and MM vectors θi gen-
erate edges in the network. At this point, we must introduce
additional notation: let E be the N ×N adjacency matrix of
observed network edges, where element Eij corresponds to the

2Note that our use of the stick-breaking process is unrelated to the stick-breaking
construction for the DP. We use the stick-breaking process to produce a mixture
over the mixture components induced by the nCRP, not to define the mixture
components themselves.

Figure 3. Graphical model representation of our MSCB model. Di-
amonds represent model parameters, hollow circles represent hidden
random variables, and filled circles represent observed random vari-
ables. Variables inside a numbered rectangle are duplicated by that
number, for example, there are N variables θi , numbered from θ1

through θN . Arrows denote probabilistic dependencies, and these are
annotated with the probability distribution they represent: for instance,
θi ∼ StickK (m,π ), z→ij ∼ Multinomial(θi), etc.

directed edge or interaction/relationship from actor i to j. In the
context of our food web, the actors are sea creatures, such as dol-
phins and sperm whales, and the edges represent predator–prey
interactions. A value of Eij = 1 indicates that the interaction
is present, while Eij = 0 indicates absence, and we ignore
self-edges Eii . Because we are modeling a directed network,
E is not necessarily symmetric. If we need to model symmet-
ric relationships, such as friendship, we can let Eij = Eji for
all i, j .

To begin with, we shall introduce MSCB’s generative process
for network edges:

• For each actor i ∈ {1, . . . , N},
(1) sample i’s hierarchy path ci ∼ nCRPK (γ ),
(2) sample i’s MM vector θi ∼ StickK (m,π ); note that θi

and ci are drawn independently.

• To generate the network, for each possible directed edge
Eij ,

(1) sample donor level z→ij ∼ Multinomial(θi), and let
h = ci[z→ij ]; formally, h represents the community at
level z→ij on path ci , that is, the z→ij th element of ci ;

(2) sample receiver level z←ij ∼ Multinomial(θj ), and let
h′ = cj [z←ij ];

(3) sample the edge Eij ∼ Bernoulli(SB(h, h′)); we shall
define SB() later.

The basic idea is as follows: for every directed edge Eij , both
actor i (the donor) and actor j (the receiver) pick communities
h and h′ from their respective paths ci, cj , according to the
levels drawn from their MM vectors θi, θj . The communities
h, h′ are then used to select a community compatibility
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parameter via the function SB(h, h′), which in turn generates
Eij ∼ Bernoulli(SB(h, h′)). Note that the arrow in z→ij or z←ij
indicates whether the variable belongs to the donor actor (i for
z→ij ) or the receiver actor (j for z←ij ), with respect to the edge
Eij from i to j. The arrow does not indicate the edge direction
between i and j.

2.5 Community Compatibility Matrices B

We turn our discussion to the community compatibility pa-
rameters that define edge probabilities between communities,
as well as how the SB() function selects them during edge gen-
eration. Intuitively, the compatibility from community h to h′ is
high if actors from h often interact with actors from h′. Con-
versely, a low compatibility indicates that actors from h rarely
interact with actors from h′. Thus, it is natural that we define
compatibility to be a Bernoulli parameter in [0, 1], where 1 indi-
cates perfect compatibility. This notion of compatibility is what
allows our model to account for both assortative and disassorta-
tive behavior, in similar fashion to stochastic blockmodels Wang
and Wong (1987)—for example, strongly assortative networks
correspond to high compatibility parameters when h = h′, that
is, when the source and destination communities are the same.

There are many ways to associate compatibility parameters
with pairs of communities h, h′, and the challenge is to find
a scheme that tightly integrates compatibility parameters with
the hierarchy and multiscale interactions over communities. A
first attempt might be to ignore the hierarchy, and place a full
H ×H compatibility matrix over all community pairs h, h′

(where H is the total number of nodes in the hierarchy); this
is analogous to the role compatibility matrix used in MMSB
(Airoldi et al. 2008). However, this formulation fails to capture
the multiscale nature of interactions, because there is simply no
connection between the compatibility parameter for h, h′ and
those communities’ levels in the hierarchy.

To connect the community parameters with the hierarchy lev-
els, we must restrict them in some meaningful way. First, we
need to define the notion of a sibling group. Formally, a sib-
ling group is a largest possible set of communities such that
(1) all communities are at the same level, and (2) have the
same immediate parent community. To put it another way, ev-
ery parent (including the level 0 root) contains a sibling group
composed of its immediate children (but not grandchildren, or
great-grandchildren, etc.). Hence, if there are P parent nodes,
there are P sibling groups, and all sibling groups are disjoint
from one another. To give a concrete example, if we have
three paths, c1 = [1, 1], c2 = [1, 2], and c3 = [2, 1], then the
hierarchy contains three sibling groups: one at level 1 with
communities {[1], [2]}, and two at level 2 with communities
{[1, 1], [1, 2]}, and {[2, 1]}, respectively.

Each sibling group is associated with its own compatibil-
ity matrix B, which contains the compatibility parameters for
every pair of communities within that sibling group; refer to
Figure 4 for an example illustration. This scheme restricts the
community parameters—note that communities from different
sibling groups do not have explicit community parameters be-
tween them; we shall discuss how this affects edge generation

Figure 4. Four sibling groups in an example hierarchy, and the sizes
of their compatibility matrices B.

shortly. Also, since MSCB infers the number of hierarchy nodes
from the data by way of the nCRP prior, we cannot know a priori
the number and sizes of the sibling group compatibility matri-
ces. We will return to this issue when we discuss our inference
procedure.

Now that we have defined the sibling group compatibility ma-
trices, we can describe how network edges are generated from
them. Recall that the edge generative process picks two interact-
ing communities h, h′ according to paths ci, cj and MM vectors
θi, θj . When h, h′ are at the same level and share the same im-
mediate parent, we simply pick their community compatibility
parameter3 Bh,h′ from their associated sibling group matrix, and
draw the edge Eij ∼ Bernoulli(Bh,h′). However, if h, h′ do not
share the same parent, then we invoke the following coarsening
procedure:

(1) Recall that h = ci[z→ij ] and h′ = cj [z←ij ].
(2) Set zmin := min(z→ij , z←ij ), that is, the smaller interac-

tion level from h or h′.
(3) If the coarsened communities hcoarse = ci[zmin] and

h′coarse = cj [zmin] are in the same sibling group, then we
look up their compatibility matrix entry Bhcoarse,h′coarse

. We
then generate Eij ∼ Bernoulli(Bhcoarse,h′coarse

).
(4) Otherwise, set zmin := zmin − 1 and repeat step (3). This

effectively sets hcoarse to its immediate parent (and like-
wise for h′coarse).

To put it another way, the coarsening procedure finds the deep-
est common hierarchy node (which could be the root node)
shared by the paths ci and cj and whose level is strictly shal-
lower than min(z→ij , z←ij ). Supposing that this deepest com-
mon node has level zmin − 1, we then draw the compatibility
parameter Bci [zmin],cj [zmin] and generate Eij according to it. Note
that the hierarchy nodes ci[zmin], cj [zmin] are part of the same
sibling group by construction, thus the compatibility parameter
Bci [zmin],cj [zmin] always exists. Now, we can formally define our
SB() function from the previous section:

3A word on notation Bh,h′ is used as shorthand to (1) first select the community
compatibility matrix B associated with the parent of communities h, h′, and then
(2) select the element of that B corresponding to h interacting with h′. Because
our inference procedure integrates out the B matrices, a precise, long-form
notation for them is unnecessary.
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SB(h, h′) = Bhcoarse,h′coarse
, where h = ci[z→ij ],

h′ = cj [z←ij ], hcoarse = ci[zmin],

h′coarse = cj [zmin],

zmin = 1+ max
z: 0≤z<min(z→ij ,z←ij ), ci [z]=cj [z]

z, (4)

and where we adopt the convention ci[0] = cj [0] to represent
the fact that all paths implicitly share the root node. In future,
we shall employ the shorthand SijB := SB(h, h′) for brevity.

Finally, in keeping with our use of Bayesian inference, we
place a Beta(λ1, λ2) prior over every element Bx,y of every
sibling group compatibility matrix. This adds the following step
to our generative process:

• for each element x, y of each sibling group compatibility
matrix, sample Bx,y ∼ Beta(λ1, λ2).

This step comes after generating paths ci , but before generating
edges Eij . A graphical model representation of our full gener-
ative process can be found in Figure 3. In summary, our use of
sibling group compatibility matrices enforces the role of the hi-
erarchy during edge generation, thus distinguishing MSCB from
“flat” blockmodels such as Wang and Wong 1987 and Airoldi
et al. 2008.

3. A DISCUSSION ON MODEL IDENTIFIABILITY

In general, MSCB is not identifiable for hierarchy depthsK >

1; the lack of identifiability implies that, for a given observed
network Eij , there will be multiple hierarchies that produce the
same model likelihood. However, the degree to which MSCB
is nonidentifiable can be compared with two other models: the
IRM (Kemp et al. 2006) and the MMSB (Airoldi et al. 2008).

There are two ways in which MSCB is nonidentifiable, and
it is important to distinguish between them. First, observe that
the communities can be permuted without changing the model
likelihood. This issue is common to practically all clustering
models and algorithms; even the regular stochastic blockmodel
(Wang and Wong 1987) suffers from this. Nevertheless, this
type of nonidentifiability is rarely a problem: in most clustering
applications, the clusters are meant to be inspected by humans,
or else further criteria can be applied post hoc to select clusters of
interest. The second, and more critical form of nonidentifiability,
arises because the MM vectors θi are mixtures. We shall discuss
this further when we compare MSCB with the MMSB.

Observe that when K = 1 or m→ 1, the MM vectors θi are
reduced to point masses at the first element θi1, which elim-
inates the second nonidentifiability (mixture nonidentifiabil-
ity). In this form, MSCB reduces to a nonparametric stochastic
blockmodel (by nonparametric, we mean that the number of
roles/clusters is automatically selected), identical to the IRM,
and with only permutation nonidentifiability to worry about.
Although these limiting cases do not produce meaningful hier-
archies and are, thus, uninteresting from an application perspec-
tive, they remain useful as a kind of lower bound on MSCB’s
nonidentifiability.

For the general case in which the MM vectors θi are nonzero
in more than one dimension, we can gain insight by comparing
MSCB with the MMSB. The latter is essentially a stochastic
blockmodel with L communities/roles, but unlike the stochastic
blockmodel, network entities are not restricted to just one role.

Instead, each network entity i has a distribution φi over all L
roles, from which every edge-touching entity i draws its own
(possibly different) role assignment; this process is similar to
how our MSCB allows edges to draw different level assign-
ments. Because of the entity role mixtures φi , MMSB suffers
from mixture nonidentifiability, although it has been success-
fully applied to various datasets (Airoldi et al. 2008). Formally,
the MMSB marginal likelihood of Eij = 1 conditioned on the
role mixtures (but not the edge role assignments) is φ	i Bφj ,
where B is the block matrix. Observe that for any orthonormal
matrix U, we have φ	i (UU	)B(UU	)φj = φ	i Bφj . Assuming
a permutation-unbiased prior on the φi , this implies that the
MMSB model likelihood remains the same if we transform B to
U	BU and all φi to U	φi . In short, MMSB is nonidentifiable
up to orthonormal transformations.

To study how MSCB relates to MMSB, imagine that the
MSCB sibling group matrices are submatrices along the diag-
onal of some large H ×H block matrix B, where H is the
total number of hierarchy nodes. Elements of this block matrix
that do not correspond to some sibling group matrix repre-
sent community–community interaction parameters eliminated
by coarsening, and, thus, are absent from the model. In this
new representation, the MM vectors θi can be represented as
H-dimensional vectors ψi , but with support on at most K ele-
ments, where K is the hierarchy depth. If we disregard coarsen-
ing, the marginal likelihood of Eij = 1 is simply ψ	i Bψj , just
like MMSB. The difference is that the vectors ψi have support
on at mostK 
 H elements, making MSCB significantly more
constrained, and thus more identifiable, than an H-role MMSB.
Specifically, we can only transform B andψi using orthonormal
matrices U that preserve ψi having at most K elements of sup-
port, otherwise the resulting model no longer corresponds to a
K-level MSCB. As for coarsening, its effect is to force parame-
ter sharing—think of it as remapping the “eliminated” elements
of B onto elements corresponding to some sibling group ma-
trix. This further constrains MSCB, making it, in fact, more
identifiable than our comparison with MMSB implies.

In summary, the fixed-depth hierarchy and coarsening rules
make MSCB significantly more identifiable than the closely re-
lated MMSB. However, as we increase the maximum hierarchy
depth K, the degree of model nonidentifiability also increases.
We recommend using a maximum hierarchy depth of K = 2
or 3, noting that for a fixed depth K, MSCB can instead learn
wider, highly branched hierarchies without increasing the model
nonidentifiability.

4. COLLAPSED GIBBS SAMPLER INFERENCE

Given a directed network adjacency matrix E, our model’s
primary purpose is to estimate (1) a hierarchy over the network
actors (implicitly given by the paths c), and (2) the actors’ MM
vectors θ indicating their propensities to interact at different lev-
els of the hierarchy. As secondary goals, we might also estimate
(3) the sibling group compatibility matrices B so as to learn
the communities’ propensities to interact with one another, or
(4) the donor/receiver link interaction levels z to discover the
granularity of each interaction. To be precise, since our model
is Bayesian, we seek the posterior distributions of c, θ , B, and
z, given E.

D
ow

nl
oa

de
d 

by
 [

C
ar

ne
gi

e 
M

el
lo

n 
U

ni
ve

rs
ity

] 
at

 0
8:

54
 1

5 
M

ar
ch

 2
01

3 



Ho, Parikh, and Xing: MSCB for Network Exploration 923

Unfortunately, finding the exact posteriors is infeasible—the
number of possible assignments to the discrete random vari-
ables c and z is exponentially large, while analytic solutions to
the posteriors of the continuous random variables θ and B do
not even exist. We must, therefore, resort to approximating the
posteriors, via some approximate inference algorithm. Two gen-
eral strategies exist for approximate inference: MCMC methods
(Robert and Casella 2004) that take random samples from the
posterior, and variational approximations (Jordan et al. 1999;
Wainwright and Jordan 2008) that find the closest approxima-
tion to the posterior in some space of “simpler,” analytically
tractable distributions.

The literature contains many examples of variational approx-
imations being applied to variants of the stochastic blockmodel
(Airoldi et al. 2008; Nallapati et al. 2008; Xing, Fu, and Song
2010). Variational approximations tend to be computationally
faster than comparable MCMC methods, but lack guarantees on
the quality of their approximation. In addition, nonparametric
priors, such as the nCRP, can have an unbounded number of
parameters; hence, they pose special difficulties for variational
inference. This unbounded parameter issue can be solved by
truncating the variational distribution (Blei and Jordan 2004),
at the cost of introducing a new parameter that specifies the
degree of truncation. Wang and Blei (2009) developed a vari-
ational approximation specifically for the nCRP, in which spe-
cial techniques are introduced to handle truncation adaptively.
In general, however, variational inference in the nonparametric
case remains more difficult to derive and implement than in the
parametric case.

We have chosen an MCMC method for posterior inference
in our model: specifically, a collapsed Gibbs sampling scheme
(Liu 1994), in which the continuous random variables B and
θ are integrated out with the goal of simplifying the sampling
equations. Gibbs sampling on discrete random variables is guar-
anteed to converge to the true posterior, although there are no
general guarantees on how many samples are required for con-
vergence. Unlike nonparametric variational inference, the un-
bounded number of parameters is not an issue for collapsed
Gibbs samplers; hence, we need not worry about truncation is-
sues. In addition, the MCMC literature for nonparametric priors
is mature; Gibbs sampling schemes have been derived for a va-
riety of priors (Teh et al. 2006), including the nCRP itself (Blei,
Griffiths, and Jordan 2010).

4.1 Gibbs Sampling Equations

Approximate posterior inference in our model is conducted
via a collapsed Gibbs sampling scheme (Liu 1994), in which
some of the random variables are integrated out. Specifically,
we integrate out two types of random variables: the first type are
the community compatibility matrices B, which we integrate by
exploiting conjugacy between the beta and the Bernoulli distri-
butions. This adds conditional dependencies among interactions
Eij—specifically, all Eij that use the same compatibility pa-
rameter Bhcoarse,h′coarse

(by way of the levels z and paths c) become
dependent on each other when conditioned on z, c. However,
Eij that use different compatibility parameters remain condi-
tionally independent, given all other variables. The second type
of random variable that we integrate are the MM vectors θi ,
by exploiting conjugacy between the multinomial distribution

and the truncated stick-breaking process; note that this adds
dependence between levels z that share the same θi .

The point of integrating B, θ is that it may lead to a
faster convergence of the Gibbs sampler, and this technique
is widely used in the latent space modeling community (New-
man, Chemudugunta, and Smyth 2006; Mimno and McCallum
2007; Blei, Griffiths, and Jordan 2010). Moreover, the result-
ing sampler is easier to implement because the remaining latent
and observed variables z, c,E are all discrete. The reader might
ask why we do not integrate z, c; our answer is that there are no
known techniques for integrating these variables, and to the best
of our knowledge, there is no evidence suggesting that this will
have any benefit over integrating B, θ . Note that, given a sample
of the remaining hidden variables c, z, the posterior distributions
of B, θ are easily recovered using Bayes’ rule.

With B, θ integrated out, the only variables that need to be
explicitly sampled are the levels z and the paths c. We shall
derive their Gibbs sampling equations next.

4.1.1 Sampling Levels z. To get the collapsed-level sam-
pling equations, we begin with the joint distribution of z→ij ,B, θ
conditioned on all other variables, and then integrate out B, θ :∫ ∫

P
(
z→ij ,B, θ

∣∣c, z−(→ij ),E; γ,m, π, λ1, λ2
)
dBdθ

= P
(
z→ij

∣∣c, z−(→ij ),E; γ,m, π, λ1, λ2
)

(integration)

= P
(
Eij , z→ij

∣∣c, z−(→ij ),E−(ij ); γ,m, π, λ1, λ2
)

P (Eij
∣∣c, z−(→ij ),E−(ij ); γ,m, π, λ1, λ2

)
(conditional probability definition)

∝ P
(
Eij , z→ij

∣∣c, z−(→ij ),E−(ij ); γ,m, π, λ1, λ2
)

(denominator does not depend on z→ij )
= P

(
Eij

∣∣c, z,E−(ij ); γ,m, π, λ1, λ2
)

P
(
z→ij

∣∣c, z−(→ij ),

E−(ij ); γ,m, π, λ1, λ2
)

(chain rule)

= P
(
Eij

∣∣c, z,E−(ij ); λ1, λ2
)

P (z→ij | zi,(−j );m,π )

(conditional independence), (5)

where E−(ij ) is the set of all edges E except Eij , z−(→ij ) is the
set of all level indicators z except z→ij , and, finally, zi,(−j ) =
{z→i·, z←·i} \ z→ij is the set of all z’s that are drawn from θi
except z→ij .

Two aspects of Equation (5) are worth explaining. First, our
goal is to Gibbs sample from the conditional distribution of
z→ij (with B, θ integrated out), that is, line 2. Consequently,
we can discard proportionality factors that do not depend on
z→ij , such as the denominator P (Eij | . . .), from line 3 to 4.
Second, from line 5 to 6, we can change the second P () term’s
conditioning variables from z−(→ij ) to zi,(−j ) because (1) we are
not conditioning on Eij , and (2) we are conditioning on m,π .
Hence, z→ij is d-separated and thus conditionally independent
from all z’s not drawn from θi .

Moving on, let us now expand the first P () term:

P
(
Eij | c, z,E−(ij ); λ1, λ2

) = �(a + b + λ1 + λ2)

�(a + λ1)�(b + λ2)

× �(a + Eij + λ1)�(b + (1− Eij )+ λ2)

�(a + b + 1+ λ1 + λ2)
,

a = ∣∣{(x, y)
∣∣(x, y) �= (i, j ),SxyB = SijB , Exy = 1

}∣∣,
b = ∣∣{(x, y)

∣∣(x, y) �= (i, j ),SxyB = SijB , Exy = 0
}∣∣. (6)
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Equation (6) results from integrating the compatibility matrices
B via beta-Bernoulli conjugacy; note that it is a function of z→ij
through the condition SxyB = SijB within the subexpressions a, b.
Because we have integrated B, the random variable z→ij is now
dependent on all interactions Exy that, for the current sample
value of z, c, use the same compatibility parameter SijB as Eij
(by way of z, c and coarsening).

The second P () term can be computed using the law of
total expectation, conditioned on the stick-breaking lengths
V1, . . . , VK associated with z→ij :

P
(
z→ij = k | zi,(−j ),m, π

) = E
[
I(z→ij = k) | zi,(−j ),m, π

]
= E

[
E

[
I(z→ij = k) | Vi1, . . . , Vik

] ∣∣zi,(−j ),m, π
]

= E

[
Vik

k−1∏
u=1

(1− Viu)
∣∣zi,(−j ),m, π

]

= E
[
Vik | zi,(−j ),m, π

] k−1∏
u=1

E[(1− Viu)
∣∣zi,(−j ),m, π ]

∝ mπ + #
[
zi,(−j ) = k

]
π + #

[
zi,(−j ) ≥ k

]
×

k−1∏
u=1

(1−m)π + #
[
zi,(−j ) > u

]
π + #

[
zi,(−j ) ≥ u

] , (7)

where #[A = x] is the number of elements in set A equal to
x. The proportionality factor arises from truncating the stick-
breaking process at level K, and is equal to

∑K
k=1 P (z→ij = k |

zi,(−j ),m, π ). Overall, Equation (7) is a consequence of integrat-
ing out θi using multinomial-stick-breaking conjugacy, which
makes z→ij dependent on zi,(−j ).

For brevity, we omit the sampling equations for z←ij , as they
are derived in similar fashion. The computational complexity of
sampling a single zij is O(K), where K is the (fixed) depth of
our hierarchy. Hence, the total runtime required to sample all z
is O(N2K).

4.1.2 Sampling Paths c. As with the levels, we start with
the joint distribution of ci,B, θ conditioned on all other
variables:

∫ ∫
P (ci | c−i , z,E; γ,m, π, λ1, λ2) dBdθ

= P (ci | c−i , z,E; γ,m, π, λ1, λ2) (integration)

∝ P
(
ci,E(i·),(·i)

∣∣c−i , z,E−(i·),−(·i); γ,m, π, λ1, λ2
)

(conditional probability; discarding denominator)

= P
(
E(i,·),(·,i)

∣∣c, z,E−(i·),−(·i); γ,m, π, λ1, λ2
)

×P
(
ci | c−i , z,E−(i·),−(·i); γ,m, π, λ1, λ2

)
(chain rule)

= P
(
E(i·),(·i)

∣∣c, z,E−(i·),−(·i); λ1, λ2
)

P (ci
∣∣c−i ; γ )

(conditional independence), (8)

where E(i·),(·i) = {Exy | x= i or y= i} is the set of incoming and
outgoing edges from entity i, and E−(i·),−(·i) is its complement. In
line 2, we have implicitly discarded the denominator P (E(i·),(·i) |
. . .) as it does not depend on ci .

The first term P (E(i·),(·i) | c, z,E−(i·),−(·i); λ1, λ2), as a func-
tion of ci , is

First term =
∏

B∈B(i,·),(·,i)

�(gB + hB + λ1 + λ2)

�(gB + λ1)�(hB + λ2)

× �(gB + rB + λ1)�(hB + sB + λ2)

�(gB + hB + rB + sB + λ1 + λ2)
,

B(i·),(·i) =
{
Bh,h′

∣∣∃(i, j )
[
Eij ∈E(i·),(·i),SijB =Bh,h′

]}
,

gB =
∣∣{(x, y) | Exy ∈ E−(i·),−(·i), SxyB = B,Exy = 1

}∣∣ ,
hB =

∣∣{(x, y) | Exy ∈ E−(i·),−(·i), SxyB = B,Exy = 0
}∣∣ ,

rB =
∣∣{(x, y) | Exy ∈ E(i·),(·i), SxyB = B,Exy = 1

}∣∣ ,
sB =

∣∣{(x, y) | Exy ∈ E(i·),(·i), SxyB =B,Exy=0
}∣∣ . (9)

Similar to Equation (6), Equation (9) is a consequence of inte-
grating out B for all interactions E associated with actor i. In
brief, the set B(i·),(·i) contains all sibling group community com-
patibility matrix elements Bh,h′ that are associated with some
edge in E(i·),(·i); note that these elements may not necessarily
be from the same sibling group matrix. More precisely, B(i·),(·i)
is constructed as follows: (1) for each edge Exy ∈ E(i·),(·i), find
Exy’s corresponding sibling group matrix element Bh,h′ by ap-
plying the coarsening procedure to cx, cy, z→xy, z←xy , and then
(2) take the union over all matrix elements found this way. Be-
cause the sibling group matrices B have been integrated out, the
set B(i·),(·i) is only used to reference their sufficient statistics,
through the SB() function defined in Equation (4). In particular,
the four terms gB, hB, rB, sB are functions of B from the prod-
uct inside P (E(i·),(·i) | c, z,E−(i·),−(·i); λ1, λ2), and they represent
counts of 0/1 edges associated with each B ∈ B(i·),(·i).

As for the second term P (ci | c−i ; γ ), it can be directly com-
puted using the nCRP definition Equation (2). The computa-
tional complexity for a single ci is O(NH ), where H is the
number of hierarchy nodes—hence, the time to sample all c is
O(N2H ). Note that H = O(NK), so the complexity of sam-
pling all c is O(N3K).

4.2 Hyperparameter Selection Using
Metropolis–Hastings

The MSCB model contains six hyperparameters that need
to be set: the hierarchy depth K, and the five prior hyperpa-
rameters γ,m, π, λ1, λ2. We will not discuss selection of K,
expecting that the user knows how deep a hierarchy he or she
needs—bearing in mind that model nonidentifiability increases
with increasing hierarchy depth. On the other hand, selecting all
five prior hyperparameters is not a trivial affair and requires
some attention. One could perform a grid search using the
marginal likelihood of the network E as the objective function,
but the search would be over five dimensions and is thus im-
practical. Moreover, we would have to approximate the marginal
likelihood as no analytic formula exists for computing it.

Clearly, we need a different strategy for selecting prior hyper-
parameters γ,m, π, λ1, λ2, and we choose to place hyperpriors
on the hyperparameters, a common Bayesian technique for data-
driven hyperparameter selection:

γ ∼ Exponential(η1), m ∼ Beta(η2, η3),

π ∼ Exponential(η4), λ1, λ2 ∼ Exponential(η5).
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Ho, Parikh, and Xing: MSCB for Network Exploration 925

Although this introduces five new hyper-hyperparameters
η1, . . . , η5, models with hyperpriors are typically less sensitive
to the choice of hyper-hyperparameters than the original mod-
els were to the choice of hyperparameters (Bernardo, Smith,
and Berliner 2000). Thus, by setting the hyper-hyperparameters
to reasonable values—all our experiments use η1, . . . , η5 =
1—we allow the model to decide the best values for the hy-
perparameters.

All that remains is to derive an inference algorithm for
the model with hyperpriors. Because the hyperpriors are not
conjugate to the other distributions in the model, we can-
not derive Gibbs sampling equations for the hyperparameters
γ,m, π, λ1, λ2. We overcome this via a general MCMC strategy,
in which we alternate between sampling sweeps over all model
latent variables using our collapsed Gibbs sampling equations
from Section 4.1, and sampling each hyperparameter using in-
dependence chain Metropolis–Hastings with the hyperprior dis-
tributions as the proposals. This new inference algorithm is still
a valid Markov chain, although it may take longer to converge
than our original model’s Gibbs sampling equations (Robert and
Casella 2004). In particular, using the hyperpriors as proposal
distributions greatly simplifies the Metropolis–Hastings accep-
tance probabilities, reducing runtime complexity and making
the algorithm easier to implement. The simplified acceptance
probabilities are

Pa(γnew; γold) = P (c; γnew)

P (c; γold)
,

Pa(mnew, πnew;mold, πold) = P (z;mnew, πnew)

P (z;mold, πold)
,

Pa(λ1,new, λ2,new; λ1,old, λ2,old) = P (E | c, z; λ1,new, λ2,new)

P (E | c, z; λ1,old, λ2,old)
,

(10)

noting that we sample m jointly with π and sample λ1 jointly
with λ2, and where

P (c; γ ) =
N∏
i=1

K∏
k=1

P
(
cik | c1:(i−1), ci,1:(k−1); γ

)
, (11)

P (z;m,π ) =
N∏
i=1

N∏
j �=i

P (z→i,j | z→i,1:j−1;m,π )

×P (z←j,i | z→i,1:N, z←1:j−1,i ;m,π ), (12)

P (E | c, z; λ1, λ2) =
∏
B∈B

�(λ1 + λ2)

�(λ1)�(λ2)
· �(aB + λ1)�(bB + λ2)

�(aB + bB + λ1 + λ2)
,

aB =
∣∣{(x, y) | SxyB = B,Exy = 1

}∣∣ ,
bB =

∣∣{(x, y) | SxyB = B,Exy = 0
}∣∣ , (13)

with B being the set of all sibling group compatibility matrix
elements. Equation (13) is similar to Equation (9), except that
we now consider all network edges instead of just those incident
to some network entity i. As for Equations (11) and (12), they
result from applying the chain rule to exchangeable distribu-
tions; in the case of Equation (11), we have applied it to the
nCRP distribution over all paths c, whereas in Equation (12),
we have applied it to N compound-stick-breaking-multinomial
distributions—each corresponding to the set of level indicators
zi associated with some network entity i. The product terms in

Equation (11) are computed using the nCRP definition Equation
(2), while the terms in Equation (12) are

P (zi,x = k | zi,subset;m,π ) ∝ mπ + #[zi,subset = k]

π + #[zi,subset ≥ k]

×
k−1∏
u=1

(1−m)π + #[zi,subset > u]

π + #[zi,subset ≥ u]
,

where zi,x and zi,subset denote an element and a subset, respec-
tively, of zi = {z→i·, z←·i}, and where the normalization factor
is

∑K
k=1 P (zi,x = k | zi,subset;m,π ).

By adopting this MCMC algorithm for simultaneous hyper-
parameter selection and posterior inference, we have reduced
user input to just the hierarchy depth K. This not only makes
our model easier to use, but also provides a data-driven means
of choosing the hyperparameters γ,m, π, λ1, λ2. Finally, the
computational complexity of drawing all five hyperparameters
and testing their acceptance probabilities is O(N2K), which
is asymptotically less than a single O(N3K) Gibbs sampler
sweep over all latent variables. In other words, using our
Metropolis–Hastings strategy for hyperparameter selection does
not incur a significant computational cost over Gibbs sampling
the latent variables.

To initialize our MCMC algorithm, we first set the hyper-
parameters m,π, γ, λ1, λ2 to user-provided initial values, and
then randomly draw the latent variables c, z according to the
MSCB’s generative process (Section 2.4). Once done, we al-
ternate between sampling the latent variables and sampling the
hyperparameters, as described earlier.

5. SIMULATION

We now evaluate our inference algorithm’s ability to recover
hierarchies from data simulated from our model. Our goal is to
examine how MSCB’s ability to model both assortative (within-
community) interactions and disassortative (cross-community)
interactions differentiates it from standard hierarchical cluster-
ing algorithms.

For all simulations, the number of actors N was 300. ForK =
2, θ = (0.25, 0.75) for all actors, meaning that actors interact
at level 1, 25% of the time and at level 2, 75% of the time. For
K = 3, θ = (0.1, 0.3, 0.6) for all actors.

Our experiments explore the effect of different compatibil-
ity matrices B. We first explore networks generated from “on-
diagonal” B’s, where the diagonal elements are much larger
than the off-diagonal elements (strong assortative interactions).
We also investigate “off-diagonal” B’s, where the off-diagonal
elements are larger (strong disassortative interactions). “Low
noise” means the on-/off-diagonal element values are far apart,
while “high noise” means they are closer together. Specifically,
the types of B’s explored are

(1) K=2, on-diagonal, low noise: Bon-diagonal = (0.4, 0.8),
Boff-diagonal = (0.02, 0.02);

(2) K=2, off-diagonal, low noise: Bon-diagonal = (0.02, 0.02),
Boff-diagonal = (0.4, 0.8);

(3) K=2, on-diagonal, high noise: Bon-diagonal = (0.3, 0.6),
Boff-diagonal = (0.1, 0.2);

(4) K=2, off-diagonal, high noise: Bon-diagonal = (0.1, 0.2),
Boff-diagonal = (0.3, 0.6);
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926 Journal of the American Statistical Association, September 2012

Figure 5. Simulation results for on-/off-diagonal compatibility matrices in low/high noise settings for depth of 2 and 3. We compare our
method, MSCB (blue), against both hierarchical spectral clustering (red/pink, see text for details), and Ward’s method as implemented in Pajek
(green/black) (Batagelj and Mrvar 1998).

(5) K=3, on-diagonal, low noise: Bon-diagonal =
(0.5, 0.7, 0.9), Boff-diagonal = (0.02, 0.02, 0.02);

(6) K=3, off-diagonal, low noise: Bon-diagonal =
(0.02, 0.02, 0.02), Boff-diagonal = (0.5, 0.7, 0.9);

(7) K=3, on-diagonal, high noise: Bon-diagonal =
(0.4, 0.6, 0.8), Boff-diagonal = (0.1, 0.1, 0.2);

(8) K=3, off-diagonal, high noise: Bon-diagonal =
(0.1, 0.1, 0.2), Boff-diagonal = (0.4, 0.6, 0.8).

Bon-diagonal = (a, b) means that actors interacting in the same
level 1 community do so with probability a, while actors inter-
acting in the same level 2 community do so with probability b
(and analogously for Boff-diagonal).

We compare our approach with two baselines. The first is hi-
erarchical spectral clustering, an adaptation of spectral cluster-
ing (Chung 1997) to top-down hierarchical clustering. Because
spectral clustering does not specify how to select the number of
clusters at each hierarchy node, we shall explore two variants
that represent worst- and best-case scenarios, respectively. The
first variant, Spectral-Binary, does binary splits at every level.
For the second variant, Spectral-Oracle, we give it the number
of first-level branches as an advantage, and then perform binary
splits at deeper levels. We also compare with agglomerative
clustering using Ward’s criterion (1963), with the dissimilarity
measure used in Pajek (Batagelj, Ferligoj, and Doreian 1992;
Batagelj and Mrvar 1998). Similar to spectral clustering, we also
have two variants: Ward-Binary and Ward-Oracle. Ward-Binary
does binary splits at all levels, while Ward-Oracle is given the
true number of first-level clusters as an advantage, but does
binary splits for deeper levels.

For our approach, we initialize m = π = λ1 = λ2 = 0.5 and
γ = 0.1. We run our collapsed Gibbs sampler for 10,000 burn-

in iterations, and then draw 10 samples with 100 lag in-between.
We calculate the F1 score at each level k, F1k = 2∗Precision∗Recall

Recall+Precision

where Recall = T P
T P+FN , and Precision = T P

T P+FP . Here, T P is
the true positive count (actors that should be in the same cluster,
up to depth k), FP is the false positive count, TN is the true
negative count, and FN is the false negative count. The total
F1 score is computed by averaging the F1k scores for each
level. For our approach, we average the F1 score over all the
samples.

Figure 5 shows the F1 scores for all algorithms, as a function
of the number of size ≥ 10 branches at the true hierarchy’s first
level. To ensure a fair comparison, this was also the number of
first-level branches given to the Oracle variants of both base-
lines. From Figure 5(a), 5(c), 5(e), and 5(g), we observe that
when B is strongly on-diagonal, our method generally performs
better than or comparable with all other methods when there are
more than three first-level branches, (except Spectral-Oracle),
demonstrating its ability to determine the correct number of
clusters from the data. In these on-diagonal experiments, Ward’s
method tends to perform the worst while MSCB and Spectral
perform better.

However, once B is strongly off-diagonal (implying strong
cross-community interactions), Spectral performs poorly. This
is to be expected—by formulation, spectral clustering cannot
recover disassortative communities. On the other hand, our
method continues to yield good results [Figure 5(b), 5(d), 5(f),
and 5(h)] comparable with the on-diagonal B case. Ward’s
method can also recover disassortative communities, but for
K=2, we outperform the binary variant and perform compa-
rably to the Oracle variant. For the K=3 off-diagonal results
[Figure 5(f) and 5(h)], Ward’s method tends to perform a little
better until the number of branches gets very large. However,
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Ho, Parikh, and Xing: MSCB for Network Exploration 927

Figure 6. Average held-out marginal likelihoods P (Etest; 	̂) and standard deviations for our MSCB inference algorithm, with hierarchy depth
K = 1 (equivalent to IRM), 2, and 3, versus the MMSB variational inference algorithm for R ∈ {2, . . . , 20} roles.

Ward’s method does not perform as well on the assortative sim-
ulations.

As a result, our method performs consistently well in all
settings, and we note that for larger numbers of branches, it
outperforms the binary variants of both Ward and Spectral in
most scenarios. The Oracle variants sometimes perform better,
but these require a priori knowledge of the number of first-level
branches, which our method does not.

6. HELD-OUT EVALUATION

Previously, we evaluated our MCMC algorithm’s perfor-
mance against nonprobabilistic hierarchical clustering schemes.
One might then ask how our algorithm compares with proba-
bilistic network models that do not model hierarchical structure.
In particular, does MSCB’s hierarchy assumption permit a bet-
ter statistical fit to real-world networks, in terms of the network
marginal log-likelihood P (E)?

In this section, we compare our MSCB inference algorithm
with the inference algorithms of two other probabilistic mod-
els: the IRM (Kemp et al. 2006), essentially a nonparametric
version of the stochastic blockmodel (Wang and Wong 1987),
and the MMSB (Airoldi et al. 2008), a variant of the stochastic
blockmodel that permits network entities to come from multiple
communities (which Airoldi et al. call “roles”). Since the IRM is
a special case of MSCB whenK = 1, we reused our full MCMC
algorithm (Gibbs sampler plus Metropolis–Hastings) for poste-
rior inference and hyperparameter selection. As for MMSB, we
used the variational expectation-maximization (EM) algorithm
in Airoldi et al. (2008), which also performs both posterior
inference and hyperparameter selection. In Section 3, we dis-
cussed how MSCB relates to IRM and MMSB: recall that the
IRM is a special case of MSCB, with hierarchy depth K = 1,
while MSCB, in turn, is a highly constrained version of MMSB.
Particularly, we noted that MMSB is highly nonidentifiable,
and that MSCB, while also nonidentifiable, is much less so than
MMSB. On this point, we expect our MSCB inference/selection
algorithm to perform better than MMSBs.

Our experiments use two real-world datasets: a 75-species
food web of grass-feeding wasps (Dawah, Hawkins, and Clar-
idge 1995; Clauset, Moore, and Newman 2008), and the 62-

actor September 11, 2001, hijacker terrorist network (Krebs
2002; Clauset, Moore, and Newman 2008). These networks re-
flect common real-world modes of interaction: edges in the food
web denote predator–prey relationships, while edges in the ter-
rorist network reflect social cohesion. The food web could be
represented as a hierarchy where different branches reflect dif-
ferent trophic levels (e.g., parasite, predator, or prey), while the
terrorist network could be interpreted as an organization chart.

At a high level, we conducted our held-out evaluation as
follows: for each model, we (1) used the corresponding in-
ference/selection algorithm to estimate model hyperparameters
	̂ for a training network Etrain (ignoring the latent variable
posteriors), and then (2) estimated the test network marginal
log-likelihood P (Etest; 	̂), so as to evaluate how well each in-
ference/selection algorithm estimates parameters for its model.
More specifically, for both datasets, we generated five pairs of
training and test subgraphs; each pair was obtained by randomly
partitioning the actors into two equal sets and keeping only the
edges within each partition. Then, for each of the three mod-
els on each of the five training graphs, we selected the model
hyperparameters 	̂ using the appropriate inference/selection
algorithm.4 Finally, we estimated the corresponding test net-
work’s marginal log-likelihood P (Etest; 	̂) using 10,000 impor-
tance samples, and averaged the results over all five train–test
network pairs. The initial hyperparameter values for this exper-
iment were m,π = 0.5 and γ, λ1, λ2 = 1.

Figure 6 displays the results for this experiment. On both
datasets, observe that our MSCB algorithm achieves greater
held-out marginal log-likelihoods P (Etest; 	̂) than MMSB, re-
gardless of the MSCB hierarchy depth K or MMSB number
of roles R. We believe this is related to MSCB being signif-
icantly more constrained than MMSB, and thus more identi-
fiable. Moreover, MMSB’s likelihood peaks at R = 2 on both

4Algorithm details: for the IRM/MSCB MCMC algorithm, we took 10,000
samples as burn-in, and then estimated each hyperparameter, γ,m, π, λ1, λ2,
by its average over the next 1000 samples. This was repeated for hierarchy
depths K = 1 (i.e., IRM), 2, and 3. For the MMSB variational EM algorithm,
we ran 100 random restarts until convergence, and then took hyperparameter
estimates from the restart with the highest variational lower bound (with respect
to the true likelihood). Because MMSB requires the number of latent roles R to
be specified, we repeated this experiment for each 2 ≤ R ≤ 20.
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Table 1. Grass-feeding wasps network: final hyperparameter estimates under different initializations

Initial m 0.1 0.3 0.5 0.7 0.9

Final m 0.878± 0.126 0.833± 0.111 0.842± 0.130 0.832± 0.171 0.849± 0.0454

Initial π, γ, λ1, λ2 0.01 0.1 1 10 100

Final π 2.22± 2.08 2.11± 0.953 1.25± 0.927 9.75± 2.09 100± 0
Final γ 1.64± 0.395 1.66± 0.587 2.67± 0.950 3.08± 2.29 21.8± 43.8
Final λ1 0.0869± 0.0338 0.0641± 0.0172 0.0516± 0.0149 0.0645± 0.0366 0.0656± 0.0218
Final λ2 1.08± 0.394 1.26± 0.453 1.19± 0.465 0.840± 0.265 1.24± 0.532

NOTE: The bold values are initial hyperparameter values for a series of experiments.

datasets, suggesting that we should choose just two roles, too few
to provide anything but an extremely coarse network analysis.
In contrast, our MSCB inference algorithm uses model hyper-
parameters to automatically select a suitable size and shape for
its hierarchy—for example, the grass dataset training network
posteriors for K = 2 had an average of 10.0 hierarchy nodes, a
reasonable number considering that the training networks have
38 actors each. This illustrates one of the advantages of non-
parametric models, such as MSCB and IRM, over parametric
models, such as MMSB. Finally, we note that the differences in
held-out likelihoods betweenK = 1 (IRM), 2, and 3 for MSCB
are negligible and within error, suggesting that the increased
nonidentifiability from larger K has minimal negative impact on
model fit.

7. EFFECTS OF HYPERPARAMETER INITIALIZATION

Apart from latent variable inference for c, z, our
MCMC algorithm also performs hyperparameter selection for
γ,m, π, λ1, λ2. Given that the final hyperparameter estimates
may depend on their initial settings, it is only natural that
we study how the former changes with the latter. In this sec-
tion, we conducted experiments on the grass-feeding wasps
and terrorist networks, repeating our MCMC algorithm over
different initial hyperparameter values. We studied one out
of the five hyperparameters at a time, while initializing the
four remaining hyperparameters to the following default val-
ues: m = 0.5 and π, γ, λ1, λ2 = 1. The hierarchy depth was
fixed toK = 2 throughout. For the hyperparameter under study,
we ran our algorithm for five different initializations of that
hyperparameter: m ∈ {0.1, 0.3, 0.5, 0.7, 0.9} or π, γ, λ1, λ2 ∈
{0.01, 0.1, 1, 10, 100}. Thus, we studied 25 different hyperpa-
rameter settings in total: five for each of the five hyperparame-
ters. For each of these 25 settings, we took five repeat trials of

1000 samples, with 10,000 iterations of burn-in prior to taking
samples. In each trial, we estimated the hyperparameter under
study by its mean value over the 1000 samples, and we present
each estimate’s average and standard deviation over the five
trials in Tables 1 and 2.

For either dataset, our MCMC algorithm’s final estimates of
λ1, λ2 have low variance and are highly invariant to the choice
of initial values. Since λ1, λ2 influence the posterior of the com-
munity compatibility matrices B, this suggests that our MCMC
algorithm reliably estimates the posterior of B. The low values
of λ1 compared with λ2 reflect the fact that both networks have
more 0 edges than 1 edges.

The situation for m,π , is more nuanced. Recall that these
hyperparameters respectively control the posterior mean and
variance of the MM vectors θ . In Section 3, we argued that the
MM vectors lead to some nonidentifiability in the MSCB model,
and it is, therefore, not surprising thatm,π are more difficult to
estimate reliably. On either dataset, the estimates of m ∈ (0, 1)
generally have low variance and are reasonably constant across
initial values, implying that the posterior mean estimates of θ

are fairly reliable. We can even interpret these estimates: for
the grass dataset, the estimates of m ≈ 0.85 imply that the MM
vectors θ place almost all mass at the first level of the hierarchy,
whereas the terrorist dataset estimates of m ≈ 0.1 imply that
the MM vector mass is evenly distributed over the first and
second levels. On the other hand, the estimates of π tend to vary
with initialization (particularly when π = 100), and exhibit
high variance over trials with the same initial value. Despite
this, we note that π only controls the posterior variance of the
MM vectors θ . Hence, if we only desire good mean estimates
of θ , we may not necessarily need accurate estimates of π .

Lastly, we observe that γ ’s final estimate tends to increase
with its initial setting. This is a consequence of our MCMC
algorithm, which initializes the actor paths c using the MSCB’s

Table 2. Terrorist network: final hyperparameter estimates under different initializations

Initial m 0.1 0.3 0.5 0.7 0.9

Final m 0.0801± 0.0692 0.0982± 0.0518 0.144± 0.0708 0.0695± 0.0227 0.116± 0.126

Initial π, γ, λ1, λ2 0.01 0.1 1 10 100

Final π 0.406± 0.296 0.937± 0.545 1.64± 1.01 6.31± 5.06 100± 0
Final γ 2.15± 0.683 2.71± 1.97 2.63± 1.83 2.75± 0.678 3.49± 0.785
Final λ1 0.0656± 0.0140 0.0805± 0.0239 0.0776± 0.0381 0.0877± 0.0188 0.0921± 0.0143
Final λ2 0.252± 0.00766 0.221± 0.0931 0.292± 0.0602 0.287± 0.0843 0.248± 0.0348

NOTE: The bold values are initial hyperparameter values for a series of experiments.
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generative model. A high initial γ creates a starting tree with
many branches, and the MCMC algorithm is unable to merge5

all the superfluous branches within the 10,000 burn-in iteration
limit, causing the final estimate of γ to be higher than it would
have been otherwise. Thus, care should be taken when choosing
an initial value for γ , for high values will lead to more highly
branched hierarchies.

8. REAL-DATA QUALITATIVE ANALYSIS

In this section, we apply the MSCB inference/selection al-
gorithm to interpret two real-world networks: (1) a 75-species
food web of grass-feeding wasps and their parasitoids, and (2) a
citation network containing 1000 articles from the high-energy
physics (theory) portion of arXiv, an open-access archive of sci-
entific article preprints. Our objective is to study how the three
network aspects we seek—hierarchy, multiscale granularity, and
assortativity/disassortativity—manifest in real-world networks.

For both networks, we ran our algorithm with K = 2 lev-
els, and initialized the hyperparameters to m,π = 0.5 and
γ, λ1, λ2 = 1. We discarded 10,000 iterations as burn-in, and
then took 1000 samples to estimate the posterior distribution
over actor levels z and paths c. One issue we faced was the
lack of an obvious way to visualize the posterior hierarchy; the
posterior mean or mode of c does not represent intelligible hier-
archies because of permutation nonidentifiability.6 To represent
the posterior hierarchy meaningfully, we constructed a “consen-
sus” hierarchy from the samples: for each level 1 ≤ k ≤ K and
each pair of actors i, j , we computed the fraction of samples
Sijk in which i, j had the same level k hierarchy position. If
i, j shared the same level k position in at least τ of all sam-
ples, that is, Sijk ≥ τ , then we assigned them identical level k
positions in the consensus. Higher threshold values τ produce
wider, more detailed consensus hierarchies, whereas lower val-
ues give rise to simpler hierarchies. We use τ = 0.35 in our anal-
yses, as it provides a good middle ground between detail and
interpretability.7

As for interaction levels z, we represent each z→ij ’s or z←ij ’s
posterior by taking its K-bin histogram over all its samples
(recall that the z are discrete with K possibilities). Note that our
ultimate goal is really the MM vectors θ ; we obtain the posterior
mean of actor i’s MM θi by averaging the histograms of all z’s
that, according to the generative model, are drawn from θi (that
is to say, {z→i·, z←·i}).
8.1 Grass-Feeding Wasp Parasitoids Food Web

We first consider the N = 75 species grass-feeding wasps
food web. In this network, the actors are species in a food web,

5One could address this by a Metropolis–Hastings scheme that splits and merges
hierarchy branches, but the development of such a scheme is out of the scope of
this work.
6This issue is not unique to MSCB, but occurs when naively applying MCMC
methods to models with permutation nonidentifiability, such as stochastic block-
models or models meant for clustering. In many such models, permuting the
communities/clusters has no effect on the model likelihood, so the posterior
mean must be an average over all permutations—which is usually uninter-
pretable.
7A more thorough analysis would include consensus hierarchies over multiple
values of τ ∈ [0, 1], so as to present a fuller complete picture of hierarchy
posterior variation. Alternatively, one could analyze the “closeness” of pairs of
network actors by their number of shared path samples.

and the 113 directed edges represent predator–prey relation-
ships. Each species in the network is annotated with its position
or “trophic level” in the food web: grass, herbivore, parasitoid,
hyperparasitoid (parasites that prey on other parasites), or hyper-
hyperparasitoid. We stress that these trophic levels are not the
hierarchy levels in our model, but are nodal attributes of the
species.

The inference/selection algorithm took 9 min on a 2.83 GHz
Intel Core 2 processor, and the average hyperparameters
were γ = 1.49,m = 0.915, π = 2.30, λ1 = 0.0774, and λ2 =
1.50. The high value of m suggests that most interactions
were shallow (occurring at level 1), while the large ratio λ2/λ1

is expected since the number of edges is 
 N2. We report
the posterior “consensus” hierarchy and mean MM vectors in
Figure 7. In the same figure, we also show the original net-
work, where each interaction Eij = 1 has been colored accord-
ing to the second-level communities involved (missing links
Eij = 0 are not shown). The trophic-level annotations are shown
in the network by node shapes, and summarized as counts in the
hierarchy.

Generally speaking, the first-level supercommunities sepa-
rate the trophic levels. For instance, all grass species are found
in community 3, while community 2 contains all but one of the
herbivores, and community 1 contains most of the parasitoids.
Note that the trophic levels form a set of disassortative commu-
nities; for example, we observe that herbivores feed on grasses,
but not on other herbivores. We contrast our results with those
of Clauset, Moore, and Newman (2008), who did not recover
this structure because their method assumes that all commu-
nities are assortative. On the other hand, our model is able to
learn disassortative network structures by virtue of its stochastic
blockmodel assumption.

Let us analyze the subcommunities in detail. We begin with
supercommunity 4, which is separated from the rest of the net-
work by just one edge—from species 20 (Tetramesa petiolata)
to species 6 (Deschampsia cespitosa)—and therefore represents
an isolated subweb. Observe that species 20, a herbivore, is un-
expectedly found in subcommunity 4.2 rather than 2.1. We ex-
plain this by noting that species 20 is the only herbivore that the
parasitoids in subcommunities 4.1, 4.3, and 4.4 prey on. Ad-
ditionally, the subcommunities within supercommunity 4 are
topologically ordered, which reflects their food web trophic
levels. To be precise, the species in subcommunity 4.1 prey
on subcommunities 4.2–4, while subcommunity 4.4 preys only
on subcommunities 4.2–3, and subcommunity 4.3 preys only on
subcommunity 4.2. Next, consider supercommunities 1 and 5.
While the bulk of the parasitoids are in supercommunity 1, the
apex parasitoids that prey on them are all in supercommunity 5.
The distinction between apex parasitoids in subcommunities 5.1
and 5.2 appears to be driven by the number of parasitoids they
prey upon: species 67 (Macroneura vesicularis) from subcom-
munity 5.2 preys on more parasitoids (specifically, 8), whereas
species 65 (Eupelmus atropurpureus) and 75 (Mesopolopus
graminum) from subcommunity 5.1 prey on fewer (four and
five parasitoids, respectively).

Finally, we inspect the posterior mean of the MM vectors θ ,
shown in Figure 7. Intuitively, the MM vector θi shows how
often species i interacts at the generic supercommunity level,
versus the more specific subcommunity level. In this network,
all species interact primarily at the supercommunity level, with
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Figure 7. Grass-feeding wasps network: Top left: inferred hierarchy of communities, with community trophic-level counts at the bottom. Top
right: MM vectors. Columns correspond to actor MM vectors θi , while rows correspond to hierarchy positions. Note that each MM vector θi
can be nonzero only at the K = 2 hierarchy positions along its corresponding actor path ci . Cell intensities reflect the value of θi at a particular
hierarchy position—black and white correspond to 1 and 0, respectively, while shades of blue correspond to values between 0 and 1. Bottom:
original network. Each edge is drawn with two colors, representing its second-level donor/receiver communities as inferred by our algorithm.
Node shapes represent annotated trophic levels (see legend in bottom right).

occasional interaction at the subcommunity level. This suggests
that the network structure is mostly explained by the hierar-
chy’s first level, while the second level is responsible for local
structural details. Most second-level interactions are found in
supercommunities 1–3, corresponding to the majority of par-
asitoids, herbivores, and grass species, respectively. Because
second-level interactions are used by the MSCB model to ac-
count for atypical behavior within supercommunities, species
with many such interactions are likely to have specialized roles
in the food web, and thus make good targets for further investi-
gation.

8.2 High-Energy Physics Citation Network

For our final experiment, we consider an N = 1000-article
subgraph of the arXiv high-energy physics citation network,
taken from the 2003 KDD Cup (2010). This subgraph was
constructed by subsampling articles involved in citations from
January 2002 through May 2003. The average hyperparame-
ters from the inference/selection algorithm were γ = 7.76,m =
0.851, π = 0.492, λ1 = 0.0169, and λ2 = 0.976, and the algo-
rithm took 12.4 days to run on a 2.83 GHz Intel Core 2 pro-
cessor. This high runtime is a consequence of two things: the

O(N3K) runtime complexity per Gibbs sampler sweep, and the
large value of γ , which reflects a high branching factor in the
posterior hierarchy.

Figure 8 shows a part of the posterior consensus hierarchy,
where each displayed community has been annotated with the
number of articles associated with it, as well as the most frequent
title words from those articles.8 We stress that the hierarchy
is learned only from the citation network adjacency matrix,
without knowledge of the article texts. In addition, we reveal
the network community structure in Figure 9, by permuting
the original adjacency matrix to match the order of inferred
communities. The same figure also shows the posterior mean of
the MM vectors, as a histogram over second-level elements θi,2.

The consensus hierarchy reflects strong assortative organiza-
tion, and we expect most communities to correspond to specific
areas of study. The giant community 1 contains 725 articles,
and is clearly visible as the sparse diagonal block converging

8We note that this output is reminiscent of text models from natural language
processing, particularly the latent Dirichlet allocation (Blei, Ng, and Jordan
2003). However, we stress that MSCB is not a text model; the title words are
determined post hoc, after hierarchy inference.
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Figure 8. HEP network: inferred community hierarchy. Each hierarchy node is annotated with its number of associated articles, and the most
common title words from those articles. Due to space constraints, we only show the largest 8 first-level communities, as well as the largest 8
second-level subcommunities under first-level community 1. Regarding the other first-level communities, all their subcommunities contain only
one document; thus, they are uninteresting and have been hidden to save space.

indices 1–725 in the adjacency matrix of Figure 9. Its top title
words are general physics terms such as “theory,” “quantum,”
and “field,” implying that, as a whole, this community does not
represent any specific subfield of theoretical physics. This ob-
servation is further supported by the fact that articles in commu-
nity 1 have few citations among themselves or to the rest of the
network.

The remaining first-level communities exhibit denser within-
community citations than community 1. We hypothesize that
they are associated with small groups of researchers who work
on specific subfields, and who are highly likely to cite each
others’ work. For instance, community 2 (26 articles) corre-
sponds to the dense diagonal block between indices 726 and
751 in Figure 9, and its top title keywords suggest that it is
predominantly about research in supergravity and string the-
ory. In similar fashion, observe that community 3 (23 articles)
corresponds to indices 752 through 774, and is focused on pp-

waves and Penrose limits. The remaining 45 first-level com-
munities contain <20 articles each, but still feature the dense
within-community citations and specific jargon characteristic of
specialized research.

At the second level, the consensus hierarchy contains mostly
singleton (one-member) subcommunities. This indicates that,
past the first hierarchy level, our MCMC algorithm found
little evidence to further group the articles. There are only
10 subcommunities with size >1, all of which are found in
supercommunity 1. The largest eight are shown in Figure 8, and
correspond to the diagonal block from index 1 through 39 in the
adjacency matrix of Figure 9. These subcommunities contain
either fewer or more within-/between-community citations
than is average for supercommunity 1; hence, they are justified
under a blockmodel assumption. For example, subcommunity
1.3 contains seven citations between five articles, while four
of these articles contain the word “radion” (a hypothetical

Figure 9. HEP network: Left: adjacency matrix, permuted to match the order of communities in Figure 8. The blue dots represent citations
from row i to column j. Right: histogram of MM vectors. The x-axis represents the value of θi,2, that is, the second-level component of the MM
vectors.
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Figure 10. Autocorrelation function of the complete log-likelihood from the 1000 posterior samples, for both the grass-feeding wasp
parasitoids food web (left) and the high-energy physics citation network (right). The online version of this figure is in color.

particle) in their titles. This suggests a tightly knit community
of researchers focused on a specific object.

Finally, the MM distribution (Figure 9) tells a similar story to
the grass-feeding wasps network: most interactions occur at the
first level; over 75% of the MM vectors θi have less than 0.05 of
their mass at the second level. This observation, coupled with
the small number of meaningful second-level subcommunities,
suggests that the first hierarchy level suffices to explain most
of the network. Because of this, the few nonsingleton second-
level subcommunities are in fact significant, and merit further
investigation.

8.3 Posterior Sample Analysis for Both Datasets

To complete our analysis, we need to inspect the quality
of the posterior samples returned by our MSCB algorithm. It
is well known that adjacent samples in an MCMC sequence
tend to be highly correlated, which inflates the variance of the
samples by decreasing the effective sample size. Consequently,
any estimator will require more samples to achieve the same
level of precision, compared with an uncorrelated sequence of
samples.

We quantify the degree of sample correlation in MSCB via
the autocorrelation function RX(k). For a particular random
variable X, this is defined as

RX(k) =
∑n−k

t=1

(
Xt − X̄

) (
Xt+k − X̄

)
∑n−k

t=1

(
Xt − X̄

)2 ,

where n is the total number of samples, Xt is the tth sample
of X, and X̄ is the sample mean of X. The question, then, is
which random variable to inspect. Recall that the MSCB al-
gorithm samples the discrete random variables c (paths) and z
(level indicators); however, the autocorrelation function is not
well defined for discrete domains. As a proxy, we shall instead
consider � = log (P (E, c, z)), the complete log-likelihood of a
particular sample of c, z (after integrating out B, θ ). We ex-
pect the autocorrelation R�(k) of � to provide a good picture of
sample correlation in c, z.

Figure 10 shows the log-likelihood autocorrelation R�(k) for
the grass-feeding wasps and high-energy physics networks, as
computed for the 1000 posterior samples. Using first-order au-
toregressive process theory, we can compute the posterior’s
sample size inflation factor or SSIFs = (1+ ρ)/(1− ρ), where
ρ = R�(1) is the first-order autocorrelation. Intuitively, if we
have n samples, then the effective sample size is given by n/s,
because the autocorrelation ρ increases the standard error of the
mean of � by a factor of

√
s. For the grass-feeding wasps net-

work, ρ = 0.985 with SSIFs = 135, while for the high-energy
physics network, ρ = 0.991 with SSIFs = 210. This implies
an effective posterior sample size of 7.4 and 4.8 for the grass-
feeding wasps and high-energy physics networks, respectively.

Regarding the grass-feeding wasps network, we note that the
MSCB algorithm took only 9 min to perform burn-in (10,000
samples) and to take 1000 samples from the posterior, for a
total of 11,000 samples. Hence, it is computationally feasible
to increase the effective sample size by taking 10,000 or even
100,000 samples from the posterior, and keeping only every 10th
or 100th sample to save memory. However, the same cannot be
said of the high-energy physics network, in which the MSCB
algorithm took nearly 2 weeks to obtain the same number of
samples (11,000 including burn-in). This dramatic increase in
runtime directly results from MSCB’s O(N3K) computational
complexity, which makes it impractical to take many samples
from larger networks.

An alternative to taking more samples is to supplement the
MSCB Gibbs sampling algorithm with Metropolis–Hastings
moves, so as to decrease the autocorrelation between adjacent
samples. Our inspection reveals that the MSCB Gibbs sampler
has difficulty when trying to change many actor paths c quickly.
To illustrate this problem, suppose the sampler is initialized
with 100 actors in the same path, but the true posterior requires
these actors to be split 50–50 in two different paths. The Gibbs
sampler must first split off a single actor to form a new path,
and then move the remaining 49 actors to the new path. How-
ever, because of the nCRP prior’s “rich-get-richer” property,
the latter events tend to have low Gibbs sampler probabilities,
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and it may take many samples before the true 50–50 split is
established. One solution to this problem is a split–merge strat-
egy, similar to that used by Jain and Neal (2004) for the vanilla
CRP. Briefly, a split–merge strategy for the nCRP will involve
Metropolis–Hastings proposal moves that (1) split actors in a
single path into two paths, and (2) merge actors from two paths
into a single path. By interleaving these moves with the regular
Gibbs sampler, we can make large jumps in the state space of
c, and thus reduce autocorrelation. We expect this split–merge
strategy to be a fairly simple extension of Jain and Neal (2004),
although its implementation and derivation are out of the scope
of this article.

9. CONCLUSION

We have developed a nonparametric MSCB that models net-
works in terms of hierarchical community memberships, which
actors selectively undertake during interactions. To apply our
model, we derived an MCMC algorithm that combines col-
lapsed Gibbs sampling for latent variable posterior inference,
and Metropolis–Hastings proposals for hyperparameter learn-
ing. Our algorithm automatically infers the structure of the hier-
archy while simultaneously recovering the MMs of every actor,
setting it apart from hierarchy-discovering methods that are re-
stricted to binary hierarchies and/or single-community member-
ships for actors. Moreover, because MSCB integrates aspects of
stochastic blockmodels, it is expressive enough to account for
both assortative (within-community) and disassortative (cross-
community) interactions, as our simulation and real-data ex-
periments have demonstrated. These aspects of MSCB allow
us to explore hierarchical network phenomena in a principled,
statistical manner.

[Received November 2010. Revised January 2012.]
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