
Chapter 4

One-Parameter Processes,
Usually Functions of Time

Section 4.1 defines one-parameter processes, and their variations
(discrete or continuous parameter, one- or two- sided parameter),
including many examples.

Section 4.2 shows how to represent one-parameter processes in
terms of “shift” operators.

We’ve been doing a lot of pretty abstract stuff, but the point of this is to
establish a common set of tools we can use across many different concrete situa-
tions, rather than having to build very similar, specialized tools for each distinct
case. Today we’re going to go over some examples of the kind of situation our
tools are supposed to let us handle, and begin to see how they let us do so. In
particular, the two classic areas of application for stochastic processes are dy-
namics (systems changing over time) and inference (conclusions changing as we
acquire more and more data). Both of these can be treated as “one-parameter”
processes, where the parameter is time in the first case and sample size in the
second.

4.1 One-Parameter Processes

The index set T isn’t, usually, an amorphous abstract set, but generally some-
thing with some kind of topological or geometrical structure. The number of
(topological) dimensions of this structure is the number of parameters of the
process.

Definition 34 (One-Parameter Process) A process whose index set T has
one dimension is a one-parameter process. A process whose index set has more
than one dimension is a multi-parameter process. A one-parameter process is
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discrete or continuous depending on whether its index set is countable or un-
countable. A one-parameter process where the index set has a minimal element
it is one-sided, otherwise it is two-sided.

N is a one-sided discrete index set, Z a two-sided discrete index set, R+ (in-
cluding zero!) is a one-sided continuous index set, and R a two-sided continuous
index set.

Most of this course will be concerned with one-parameter processes, which
are intensely important in applications. This is because the one-dimensional
parameter is usually either time (when we’re doing dynamics) or sample size
(when we’re doing inference), or both at once. There are also some important
cases where the single parameter is space.

Example 35 (Bernoulli process) You all know this one: a one-sided infinite
sequence of independent, identically-distributed binary variables, where, for all
t, Xt = 1 with probability p.

Example 36 (Markov models) Markov chains are discrete-parameter stochas-
tic processes. They may be either one-sided or two-sided. So are Markov models
of order k, and hidden Markov models. Continuous-time Markov processes are,
naturally enough, continuous-parameter stochastic processes, and again may be
either one-sided or two-sided.

Instances of physical processes that may be represented by Markov models
include: the positions and velocities of the planets; the positions and velocities
of molecules in a gas; the pressure, temperature and volume of the gas (Keizer,
1987); the position and velocity of a tracer particle in a turbulent fluid flow; the
three-dimensional velocity field of a turbulent fluid (Frisch, 1995); the gene pool
of an evolving population (Fisher, 1958; Haldane, 1932; Gillespie, 1998). In-
stances of physical processes that may be represented by hidden Markov models
include: the spike trains of neurons (Tuckwell, 1989); the sonic wave-forms of
human speech (Rabiner, 1989); many economic and social time-series (Durbin
and Koopman, 2001); etc.

Example 37 (“White Noise” (Not Really)) For each t ∈ R+, let Xt ∼
N (0, 1), all mutually independent of one another. This is a process with a one-
sided continuous parameter.

It would be character building, at this point, to convince yourself that the
process just described exists. (You will need the Kolmogorov Extension Theo-
rem, 29).

Example 38 (Wiener Process) Here T = R+ and Ξ = R. The Wiener
process is the continuous-parameter random process where

1. W (0) = 0,
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2. for any three times, t1 < t2 < t3, W (t2)−W (t1) and W (t3)−W (t2) are
independent (the “independent increments” property),

3. W (t2)−W (t1) ∼ N (0, t2 − t1) and

4. W (t, ω) is a continuous function of t for almost all ω.

We will spend a lot of time with the Wiener process, because it turns out to
play a role in the theory of stochastic processes analogous to that played by
the Gaussian distribution in elementary probability — the easily-manipulated,
formally-nice distribution delivered by limit theorems.

When we examine the Wiener process in more detail, we will see that it
almost never has a derivative. Nonetheless, in a sense which will be made
clearer when we come to stochastic calculus, the Wiener process can be regarded
as the integral over time of something very like white noise, as described in the
preceding example.

Example 39 (Logistic Map) Let T = N, Ξ = [0, 1], X(0) ∼ U(0, 1), and
X(t + 1) = aX(t)(1 −X(t)), a ∈ [0, 4]. This is called the logistic map. Notice
that all the randomness is in the initial value X(0); given the initial condition,
all later values X(t) are fixed. Nonetheless, this is a Markov process, and we will
see that, at least for certain values of a, it satisfies versions of the laws of large
numbers and the central limit theorem. In fact, large classes of deterministic
dynamical systems have such stochastic properties.

Example 40 (Symbolic Dynamics of the Logistic Map) Let X(t) be the
logistic map, as in the previous example, and let S(t) = 0 if X(t) ∈ [0, 0.5) and
S(t) = 1 if X(t) = [0.5, 1]. That is, we partition the state space of the logistic
map, and record which cell of the partition the original process finds itself in.
X(t) is a Markov process, but these “symbolic” dynamics are not necessarily
Markovian. We will want to know when functions of Markov processes are
themselves Markov. We will also see that there is a sense in which, Markovian
or not, this partition is exactly as informative as the original, continuous state
— that it is generating. Finally, when a = 4 in the logistic map, the symbol
sequence is actually a Bernoulli process, so that a deterministic function of a
completely deterministic dynamical system provides a model of IID randomness.

Here are some examples where the parameter is sample size.

Example 41 (IID Samples) Let Xi, i ∈ N be samples from an IID distribu-
tion, and Zn = 1

n

∑n
i=1 Xi be the sample mean. Then Zn is a one-parameter

stochastic process. The point of the ordinary law of large numbers is to reassure
us that Zn → E [Xn] a.s. The point of the central limit theorem is to reassure us
that

√
n(Zn−E [X]) has constant average size, so that the sampling fluctuation

Zn −E [X] must be shrinking as
√

n grows.
If Xi is the indicator of a set, this convergence means that the relative fre-

quency with which the set is occupied will converge on its true probability.
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Example 42 (Non-IID Samples) Let Xi be a non-IID one-sided discrete-
parameter process, say a Markov chain, and again let Zn be its sample mean,
now often called its “time average”. The usual machinery of the law of large
numbers and the central limit theorem are now inapplicable, and someone who
has just taken 36-752 has, strictly speaking, no idea as to whether or not their
time averages will converge on expectations. Under the heading of ergodic theory,
we will see when this will happen. Since this is the situation with all interesting
time series, the application of statistical methods to situations where we cannot
contrive to randomize depends crucially on ergodic considerations.

Example 43 (Estimating Distributions) Recall Example 10, where we looked
at the sequence of empirical distributions P̂n for samples from an IID data-
source. We would like to be able to say that P̂n converges on P . The usual way
to do this, if our samples are of a real-valued random variable, is to consider the
empirical cumulative distribution function, Fn. For each n, this may be regarded
as a one-parameter random process (T = R, Ξ = [0, 1]), and the difficulty is to
show that this sequence of random processes converges to F . The usual way is to
show that En ≡

√
n(Fn−F ), the empirical process, converges to a fixed process,

related to the Wiener process, depending only on the true distribution F . (See
Figure 4.1.) Since the magnitude of the limiting process is constant, and

√
n

grows, it follows that Fn − F must shrink. So theorizing even this elementary
bit of statistical inference really requires two doses of stochastic process theory,
one to get a grip on Fn at each n, and the other to get a grip on what happens
to Fn as n grows.

Example 44 (Doob’s Martingale) Let X be a random variable, and Fi,
i ∈ N, a sequence of increasing σ-algebras (i.e. a filtration). Then Yi = E [X|Fi]
is a one-sided discrete-parameter stochastic process, and in fact a martingale.
Martingales in general are one-parameter stochastic processes. Note that poste-
rior mean parameter estimates, in Bayesian inference, are instances of Doob’s
martingale.

Here are some examples where the one-dimensional parameter is neither time
nor sample size.

Example 45 (The One-Dimensional Ising Model) This system serves as
a toy model of magnetism in theoretical physics. Atoms sit evenly spaced on the
points of a regular, infinite, one-dimensional crystalline lattice. Each atom has
a magnetic moment, which is either pointing north (+1) or south (−1). Atoms
are more likely to point north if their neighbors point north, and vice-versa. The
natural index here is Z, so the parameter is discrete and two-sided.

Example 46 (Text) Text (at least in most writing systems!) can be repre-
sented by a sequence of discrete values at discrete, ordered locations. Since texts
can be arbitrarily long, but they all start somewhere, they are discrete-parameter,
one-sided processes. Or, more exactly, once we specify a distribution over se-
quences from the appropriate alphabet, we will have such a process.
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Example 47 (Polymer Sequences) Similarly, DNA, RNA and proteins are
all heteropolymers — compounds in which distinct constituent chemicals (the
monomers) are joined in a sequence. Position along the sequence (chromosome,
protein) provides the index, and the nature of the monomer at that position the
value.

Linguists believe that no Markovian model (with finitely many states) can
capture human language (Chomsky, 1957; Pullum, 1991). Whether this is true
of DNA sequences is not known. In both cases, hidden Markov models are used
extensively Baldi and Brunak (2001); Charniak (1993), even if they can only be
approximately true of language.

4.2 Operator Representations of One-Parameter
Processes

Consider our favorite discrete-parameter process, say Xt. If we try to relate Xt

to its history, i.e., to the preceding values from the process, we will often get a
horribly complicated probabilistic expression. There is however an alternative,
which represents the dynamical part of any process as a remarkably simple
semi-group of operators.

Definition 48 (Shift Operators) Consider ΞT , T = N, = Z, = R+ or = R.
The shift-by-τ operator Στ , τ ≥ 0, maps ΞT into itself by shifting forward in
time: (Στ )x(t) = x(t + τ). The collection of all shift operators is the shift
semi-group or time-evolution semi-group.

(A semi-group does not need to have an identity element, and one which
does is technically called a “monoid”. No one talks about the shift monoid or
time-evolution monoid, however.)

Before we had a Ξ-valued stochastic process X on T , i.e., our process was
a random function from T to Ξ. To extract individual random variables, we
used the projection operators πt, which took X to Xt. With the shift operators,
we simply have πt = π0 ◦ Σt. To represent the passage of time, then, we just
apply elements of this semi-group to the function space. Rather than having
complicated dynamics which gets us from one value to the next, by working with
shifts on function space, all of the complexity is shifted to the initial distribution.
This will prove to be extremely useful when we consider stationary processes in
the next lecture, and even more useful when, later on, we want to extend the
limit theorems from IID sequences to dependent processes.

4.3 Exercises

Exercise 4.1 (Existence of proto-Wiener processes) Use Theorem 29 and
the properties of Gaussian distributions to show that processes exist which satisfy
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points (1)–(3) of Example 38 (but not necessarily continuity). You will want to
begin by finding a way to write down the FDDs recursively.

Exercise 4.2 (Time-Evolution Semi-Group) These are all very easy, but
worth the practice.

1. Verify that the time-evolution semi-group, as described, is a monoid, i.e.,
that it is closed under composition, that composition is associative, and
that there is an identity element. What, in fact, is the identity?

2. Can a one-sided process have a shift group, rather than just a semi-group?

3. Verify that πτ = π0 ◦ Στ .

4. Verify that, for a discrete-parameter process, Σt = (Σ1)
t, and so Σ1 gen-

erates the semi-group. (For this reason it is often abbreviated to Σ.)
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Figure 4.1: Empirical process for successively larger samples from a log-normal
distribution, mean of the log = 0.66, standard deviation of the log = 0.66. The
samples were formed by taking the first n variates from an over-all sample of
1,000,000 variates. The bottom right figure magnifies a small part of E106 to
show how spiky the paths are.


