
Chapter 9

Markov Processes

This chapter begins our study of Markov processes.
Section 9.1 is mainly “ideological”: it formally defines the Markov

property for one-parameter processes, and explains why it is a nat-
ural generalization of both complete determinism and complete sta-
tistical independence.

Section 9.2 introduces the description of Markov processes in
terms of their transition probabilities and proves the existence of
such processes.

Section 9.3 deals with the question of when being Markovian
relative to one filtration implies being Markov relative to another.

9.1 The Correct Line on the Markov Property

The Markov property is the independence of the future from the past, given the
present. Let us be more formal.

Definition 102 (Markov Property) A one-parameter process X is a Markov
process with respect to a filtration {F}t when Xt is adapted to the filtration, and,
for any s > t, Xs is independent of Ft given Xt, Xs |= Ft|Xt. If no filtration is
mentioned, it may be assumed to be the natural one generated by X. If X is also
conditionally stationary, then it is a time-homogeneous (or just homogeneous)
Markov process.

Lemma 103 (The Markov Property Extends to the Whole Future) Let
X+

t stand for the collection of Xu, u > t. If X is Markov, then X+
t |= Ft|Xt.

Proof: See Exercise 9.1. !
There are two routes to the Markov property. One is the path followed by

Markov himself, of desiring to weaken the assumption of strict statistical inde-
pendence between variables to mere conditional independence. In fact, Markov
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specifically wanted to show that independence was not a necessary condition for
the law of large numbers to hold, because his arch-enemy claimed that it was,
and used that as grounds for believing in free will and Christianity.1 It turns
out that all the key limit theorems of probability — the weak and strong laws of
large numbers, the central limit theorem, etc. — work perfectly well for Markov
processes, as well as for IID variables.

The other route to the Markov property begins with completely deterministic
systems in physics and dynamics. The state of a deterministic dynamical system
is some variable which fixes the value of all present and future observables.
As a consequence, the present state determines the state at all future times.
However, strictly deterministic systems are rather thin on the ground, so a
natural generalization is to say that the present state determines the distribution
of future states. This is precisely the Markov property.

Remarkably enough, it is possible to represent any one-parameter stochastic
process X as a noisy function of a Markov process Z. The shift operators give
a trivial way of doing this, where the Z process is not just homogeneous but
actually fully deterministic. An equally trivial, but slightly more probabilistic,
approach is to set Zt = X−

t , the complete past up to and including time t. (This
is not necessarily homogeneous.) It turns out that, subject to mild topological
conditions on the space X lives in, there is a unique non-trivial representation
where Zt = ε(X−

t ) for some function ε, Zt is a homogeneous Markov process,
and Xu |= σ({Xt, t ≤ u})|Zt. (See Knight (1975, 1992); Shalizi and Crutchfield
(2001).) We may explore such predictive Markovian representations at the end
of the course, if time permits.

9.2 Transition Probability Kernels

The most obvious way to specify a Markov process is to say what its transition
probabilities are. That is, we want to know P (Xs ∈ B|Xt = x) for every s > t,
x ∈ Ξ, and B ∈ X . Probability kernels (Definition 30) were invented to let us
do just this. We have already seen how to compose such kernels; we also need
to know how to take their product.

Definition 104 (Product of Probability Kernels) Let µ and ν be two prob-
ability kernels from Ξ to Ξ. Then their product µν is a kernel from Ξ to Ξ,
defined by

(µν)(x,B) ≡
∫

µ(x, dy)ν(y, B) (9.1)

= (µ⊗ ν)(x, Ξ×B) (9.2)

1I am not making this up. See Basharin et al. (2004) for a nice discussion of the origin of
Markov chains and of Markov’s original, highly elegant, work on them. There is a translation
of Markov’s original paper in an appendix to Howard (1971), and I dare say other places as
well.
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Intuitively, all the product does is say that the probability of starting at
the point x and landing in the set B is equal the probability of first going to
y and then ending in B, integrated over all intermediate points y. (Strictly
speaking, there is an abuse of notation in Eq. 9.2, since the second kernel in a
composition ⊗ should be defined over a product space, here Ξ× Ξ. So suppose
we have such a kernel ν′, only ν′((x, y), B) = ν(y, B).) Finally, observe that if
µ(x, ·) = δx, the delta function at x, then (µν)(x, B) = ν(x, B), and similarly
that (νµ)(x, B) = ν(x, B).

Definition 105 (Transition Semi-Group) For every (t, s) ∈ T × T , s ≥ t,
let µt,s be a probability kernel from Ξ to Ξ. These probability kernels form a
transition semi-group when

1. For all t, µt,t(x, ·) = δx.

2. For any t ≤ s ≤ u ∈ T , µt,u = µt,sµs,u.

A transition semi-group for which ∀t ≤ s ∈ T , µt,s = µ0,s−t ≡ µs−t is homoge-
neous.

As with the shift semi-group, this is really a monoid (because µt,t acts as
the identity).

The major theorem is the existence of Markov processes with specified tran-
sition kernels.

Theorem 106 (Existence of Markov Process with Given Transition
Kernels) Let µt,s be a transition semi-group and νt a collection of distributions
on a Borel space Ξ. If

νs = νtµt,s (9.3)

then there exists a Markov process X such that ∀t,

L (Xt) = νt (9.4)

and ∀t1 ≤ t2 ≤ . . . ≤ tn,

L (Xt1 , Xt2 . . . Xtn) = νt1 ⊗ µt1,t2 ⊗ . . .⊗ µtn−1,tn (9.5)

Conversely, if X is a Markov process with values in Ξ, then there exist distri-
butions νt and a transition kernel semi-group µt,s such that Equations 9.4 and
9.3 hold, and

P (Xs ∈ B|Ft) = µt,s a.s. (9.6)

Proof: (From transition kernels to a Markov process.) For any finite set of
times J = {t1, . . . tn} (in ascending order), define a distribution on ΞJ as

νJ ≡ νt1 ⊗ µt1,t2 ⊗ . . .⊗ µtn−1,tn (9.7)
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It is easily checked, using point (2) in the definition of a transition kernel semi-
group (Definition 105), that the νJ form a projective family of distributions.
Thus, by the Kolmogorov Extension Theorem (Theorem 29), there exists a
stochastic process whose finite-dimensional distributions are the νJ . Now pick
a J of size n, and two sets, B ∈ Xn−1 and C ∈ X .

P (XJ ∈ B × C) = νJ(B × C) (9.8)
= E [1B×C(XJ)] (9.9)
= E

[
1B(XJ\tn

)µtn−1,tn(Xtn−1 , C)
]

(9.10)

Set {F}t to be the natural filtration, σ({Xu, u ≤ s}). If A ∈ Fs for some s ≤ t,
then by the usual generating class arguments we have

P
(
Xt ∈ C,X−

s ∈ A
)

= E [1Aµs,t(Xs, C)] (9.11)
P (Xt ∈ C|Fs) = µs,t(Xs, C) (9.12)

i.e., Xt |= Fs|Xs, as was to be shown.
(From the Markov property to the transition kernels.) From the Markov

property, for any measurable set C ∈ X , P (Xt ∈ C|Fs) is a function of Xs

alone. So define the kernel µs,t by µs,t(x,C) = P (Xt ∈ C|Xs = x), with a pos-
sible measure-0 exceptional set from (ultimately) the Radon-Nikodym theorem.
(The fact that Ξ is Borel guarantees the existence of a regular version of this
conditional probability.) We get the semi-group property for these kernels thus:
pick any three times t ≤ s ≤ u, and a measurable set C ⊆ Ξ. Then

µt,u(Xt, C) = P (Xu ∈ C|Ft) (9.13)
= P (Xu ∈ C,Xs ∈ Ξ|Ft) (9.14)
= (µt,s ⊗ µs,u)(Xt,Ξ× C) (9.15)
= (µt,sµs,u)(Xt, C) (9.16)

The argument to get Eq. 9.3 is similar. !
Note: For one-sided discrete-parameter processes, we could use the Ionescu-

Tulcea Extension Theorem 33 to go from a transition kernel semi-group to a
Markov process, even if Ξ is not a Borel space.

Definition 107 (Invariant Distribution) Let X be a homogeneous Markov
process with transition kernels µt. A distribution ν on Ξ is invariant when, ∀t,
ν = νµt, i.e.,

(νµt)(B) ≡
∫

ν(dx)µt(x,B) (9.17)

= ν(B) (9.18)

ν is also called an equilibrium distribution.
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The term “equilibrium” comes from statistical physics, where however its
meaning is a bit more strict, in that “detailed balance” must also be satisified:
for any two sets A,B ∈ X ,

∫
ν(dx)1Aµt(x, B) =

∫
ν(dx)1Bµt(x,A) (9.19)

i.e., the flow of probability from A to B must equal the flow in the opposite
direction. Much confusion has resulted from neglecting the distinction between
equilibrium in the strict sense of detailed balance and equilibrium in the weaker
sense of invariance.

Theorem 108 (Stationarity and Invariance for Homogeneous Markov
Processes) Suppose X is homogeneous, and L (Xt) = ν, where ν is an invari-
ant distribution. Then the process X+

t is stationary.

Proof: Exercise 9.4. !

9.3 The Markov Property Under Multiple Fil-
trations

Definition 102 specifies what it is for a process to be Markovian relative to a
given filtration {F}t. The question arises of when knowing that X Markov with
respect to one filtration {F}t will allow us to deduce that it is Markov with
respect to another, say {G}t.

To begin with, let’s introduce a little notation.

Definition 109 (Natural Filtration) The natural filtration for a stochastic
process X is

{
FX

}
t
≡ σ({Xu, u ≤ t}). Every process X is adapted to its

natural filtration.

Definition 110 (Comparison of Filtrations) A filtration {G}t is finer than
or more refined than or a refinement of {F}t, {F}t ≺ {G}t, if, for all t, Ft ⊆ Gt,
and at least sometimes the inequality is strict. {F}t is coarser or less fine than
{G}t. If {F}t ≺ {G}t or {F}t = {G}t, we write {F}t * {G}t.

Lemma 111 (The Natural Filtration Is the Coarsest One to Which a
Process Is Adapted) If X is adapted to {G}t, then

{
FX

}
t
* {G}t.

Proof: For each t, Xt is Gt measurable. But FX
t is, by construction,

the smallest σ-algebra with respect to which Xt is measurable, so, for every t,
FX

t ⊆ Gt, and the result follows. !

Theorem 112 (Markovianity Is Preserved Under Coarsening) If X is
Markovian with respect to {G}t, then it is Markovian with respect to any coarser
filtration to which it is adapted, and in particular with respect to its natural
filtration.
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Proof: Use the smoothing property of conditional expectations: For any
two σ-fields H ⊂ K and random variable Y , E [Y |H] = E [E [Y |K] |H] a.s. So,
if {F}t is coarser than {G}t, and X is Markovian with respect to the latter, for
any function f ∈ L1 and time s > t,

E [f(Xs)|Ft] = E [E [f(Xs)|Gt] |Ft] a.s. (9.20)
= E [E [f(Xs)|Xt] |Ft] (9.21)
= E [f(Xs)|Xt] (9.22)

The next-to-last line uses the fact that Xs |= Gt|Xt, because X is Markovian
with respect to {G}t, and this in turn implies that conditioning Xs, or any
function thereof, on Gt is equivalent to conditioning on Xt alone. (Recall that
Xt is Gt-measurable.) The last line uses the facts that (i) E [f(Xs)|Xt] is a
function Xt, (ii) X is adapted to {F}t, so Xt is Ft-measurable, and (iii) if Y
is F-measurable, then E [Y |F ] = Y . Since this holds for all f ∈ L1, it holds
in particular for 1A, where A is any measurable set, and this established the
conditional independence which constitutes the Markov property. Since (Lemma
111) the natural filtration is the coarsest filtration to which X is adapted, the
remainder of the theorem follows. !

The converse is false, as the following example shows.

Example 113 (The Logistic Map Shows That Markovianity Is Not
Preserved Under Refinement) We revert to the symbolic dynamics of the
logistic map, Examples 39 and 40. Let S1 be distributed on the unit inter-
val with density 1/π

√
s(1− s), and let Sn = 4Sn−1(1 − Sn−1). Finally, let

Xn = 1[0.5,1.0](Sn). It can be shown that the Xn are a Markov process with
respect to their natural filtration; in fact, with respect to that filtration, they are
independent and identically distributed Bernoulli variables with probability of
success 1/2. However, P

(
Xn+1|FS

n , Xn

)
-= P (Xn+1|Xn), since Xn+1 is a deter-

ministic function of Sn. But, clearly, FX
n ⊂ FS

n for each n, so
{
FX

}
t
≺

{
FS

}
t
.

The issue can be illustrated with graphical models (Spirtes et al., 2001; Pearl,
1988). A discrete-time Markov process looks like Figure 9.1a. Xn blocks all the
pasts from the past to the future (in the diagram, from left to right), so it
produces the desired conditional independence. Now let’s add another variable
which actually drives the Xn (Figure 9.1b). If we can’t measure the Sn variables,
just the Xn ones, then it can still be the case that we’ve got the conditional
independence among what we can see. But if we can see Xn as well as Sn —
which is what refining the filtration amounts to — then simply conditioning on
Xn does not block all the paths from the past of X to its future, and, generally
speaking, we will lose the Markov property. Note that knowing Sn does block all
paths from past to future — so this remains a hidden Markov model. Markovian
representation theory is about finding conditions under which we can get things
to look like Figure 9.1b, even if we can’t get them to look like Figure 9.1a.
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a

X1 X2 X3 ...

b

S1

X1

S2

X2

S3

X3

...

...

Figure 9.1: (a) Graphical model for a Markov chain. (b) Refining the filtration,
say by conditioning on an additional random variable, can lead to a failure of
the Markov property.

9.4 Exercises

Exercise 9.1 (Extension of the Markov Property to the Whole Fu-
ture) Prove Lemma 103.

Exercise 9.2 (Futures of Markov Processes Are One-Sided Markov
Processes) Show that if X is a Markov process, then, for any t ∈ T , X+

t is a
one-sided Markov process.

Exercise 9.3 (Discrete-Time Sampling of Continuous-Time Markov
Processes) Let X be a continuous-parameter Markov process, and tn a count-
able set of strictly increasing indices. Set Yn = Xtn . Is Yn a Markov process?
If X is homogeneous, is Y also homogeneous? Does either answer change if
tn = nt for some constant interval t > 0?

Exercise 9.4 (Stationarity and Invariance for Homogeneous Markov
Processes) Prove Theorem 108.

Exercise 9.5 (Rudiments of Likelihood-Based Inference for Markov
Chains) (This exercise presumes some knowledge of sufficient statistics and
exponential families from theoretical statistics.)

Assume T = N, Ξ is a finite set, and X a homogeneous Markov Ξ-valued
Markov chain. Further assume that X1 is constant, = x1, with probability 1.
(This last is not an essential restriction.) Let pij = P (Xt+1 = j|Xt = i).

1. Show that pij fixes the transition kernel, and vice versa.

2. Write the probability of a sequence X1 = x1, X2 = x2, . . . Xn = xn, for
short Xn

1 = xn
1 , as a function of pij.

3. Write the log-likelihood & as a function of pij and xn
1 .
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4. Define nij to be the number of times t such that xt = i and xt+1 = j.
Similarly define ni as the number of times t such that xt = i. Write the
log-likelihood as a function of pij and nij.

5. Show that the nij are sufficient statistics for the parameters pij.

6. Show that the distribution has the form of a canonical exponential family,
with sufficient statistics nij, by finding the natural parameters. (Hint: the
natural parameters are transformations of the pij.) Is the family of full
rank?

7. Find the maximum likelihood estimators, for either the pij parameters or
for the natural parameters. (Hint: Use Lagrange multipliers to enforce the
constraint

∑
j nij = ni.)

The classic book by Billingsley (1961) remains an excellent source on statistical
inference for Markov chains and related processes.

Exercise 9.6 (Implementing the MLE for a Simple Markov Chain)
(This exercise continues the previous one.)

Set Ξ = {0, 1}, x1 = 0, and

p0 =
[

0.75 0.25
0.25 0.75

]

1. Write a program to simulate sample paths from this Markov chain.

2. Write a program to calculate the maximum likelihood estimate p̂ of the
transition matrix from a sample path.

3. Calculate 2(&(p̂) − &(p0)) for many independent sample paths of length
n. What happens to the distribution as n → ∞? (Hint: see Billingsley
(1961), Theorem 2.2.)

Exercise 9.7 (The Markov Property and Conditional Independence
from the Immediate Past) Let X be a Ξ-valued discrete-parameter random
process. Suppose that, for all t, Xt−1 |= Xt+1|Xt. Either prove that X is a
Markov process, or provide a counter-example. You may assume that Ξ is a
Borel space if you find that helpful.

Exercise 9.8 (Higher-Order Markov Processes) A discrete-time process
X is a kth order Markov process with respect to a filtration {F}t when

Xt+1 |= Ft|σ(Xt, Xt−1, . . . Xt−k+1) (9.23)

for some finite integer k. For any Ξ-valued discrete-time process X, define the k-
block process Y (k) as the Ξk-valued process where Y (k)

t = (Xt, Xt+1, . . . Xt+k−1).
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1. Prove that if X is Markovian to order k, it is Markovian to any order
l > k. (For this reason, saying that X is a kth order Markov process
conventionally means that k is the smallest order at which Eq. 9.23 holds.)

2. Prove that X is kth-order Markovian if and only if Y (k) is Markovian.

The second result shows that studying on the theory of first-order Markov pro-
cesses involves no essential loss of generality. For a test of the hypothesis that
X is Markovian of order k against the alternative that is Markovian of order
l > k, see Billingsley (1961). For recent work on estimating the order of a
Markov process, assuming it is Markovian to some finite order, see the elegant
paper by Peres and Shields (2005).

Exercise 9.9 (AR(1) Models) A first-order autoregressive model, or AR(1)
model, is a real-valued discrete-time process defined by an evolution equation of
the form

X(t) = a0 + a1X(t− 1) + ε(t)

where the innovations ε(t) are independent and identically distributed, and in-
dependent of X(0). A pth-order autoregressive model, or AR(p) model, is cor-
respondingly defined by

X(t) = a0 +
p∑

i=1

aiX(t− i) + ε(t)

Finally an AR(p) model in state-space form is an Rp-valued process defined by

'Y (t) = a0'e1 +





a1 a2 . . . ap−1 ap

1 0 . . . 0 0
0 1 . . . 0 0
...

...
...

...
...

0 0 . . . 1 0




'Y (t− 1) + ε(t)'e1

where 'e1 is the unit vector along the first coordinate axis.

1. Prove that AR(1) models are Markov for all choices of a0 and a1, and all
distributions of X(0) and ε.

2. Give an explicit form for the transition kernel of an AR(1) in terms of
the distribution of ε.

3. Are AR(p) models Markovian when p > 1? Prove or give a counter-
example.

4. Prove that 'Y is a Markov process, without using Exercise 9.8. (Hint:
What is the relationship between Yi(t) and X(t− i + 1)?)


