
Chapter 19

Stochastic Integrals and
Stochastic Differential
Equations

Section 19.1 gives a rigorous construction for the Itô integral of
a function with respect to a Wiener process.

Section 19.2 gives two easy examples of Itô integrals. The second
one shows that there’s something funny about change of variables,
or if you like about the chain rule.

Section 19.3 explains how to do change of variables in a stochastic
integral, also known as “Itô’s formula”.

Section 19.4 defines stochastic differential equations.
Section 19.5 sets up a more realistic model of Brownian motion,

leading to an SDE called the Langevin equation, and solves it to get
Ornstein-Uhlenbeck processes.

19.1 Integrals with Respect to the Wiener Pro-
cess

The drill by now should be familiar: first we define integrals of step functions,
then we approximate more general classes of functions by these elementary
functions. We need some preliminary technicalities.

Definition 225 (Progressive Process) A continuous-parameter stochastic
process X adapted to a filtration {Gt} is progressively measurable or progressive
when X(s,ω), 0 ≤ s ≤ t, is always measurable with respect to Bt×Gt, where Bt

is the Borel σ-field on [0, t].

If X has continuous sample paths, for instance, then it is progressive.
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Definition 226 (Non-anticipating filtrations, processes) Let W be a stan-
dard Wiener process, {Ft} the right-continuous completion of the natural filtra-
tion of W , and G any σ-field independent of {Ft}. Then the non-anticipating
filtrations are the ones of the form σ(Ft ∪ G), 0 ≤ t < ∞. A stochastic process
X is non-anticipating if it is adapted to some non-anticipating filtration.

The idea of the definition is that if X is non-anticipating, we allow it to
depend on the history of W , and possibly some extra, independent random
stuff, but none of that extra information is of any use in predicting the future
development of W , since it’s independent.

Definition 227 (Elementary process) A progressive, non-anticipating pro-
cess X is elementary if there exist an increasing sequence of times ti, starting
at zero and tending to infinity, such that X(t) = X(tn) if t ∈ [tn, tn+1), i.e., if
X is a step-function of time.

Remark: It is sometimes convenient to allow the break-points of the elemen-
tary process to be optional random times. We won’t need this for our purposes,
however.

Definition 228 (Mean square integrable) A random process X is mean-
square-integrable from a to b if E

[∫ b
a X2(t)dt

]
is finite. The class of all such

processes will be written S2[a, b].

Notice that if X is bounded on [a, b], in the sense that |X(t)| ≤ M with
probability 1 for all a ≤ t ≤ b, then X is square-integrable from a to b.

Definition 229 (S2 norm) The norm of a process X ∈ S2[a, b] is its root-
mean-square time integral:

‖X‖S2
≡

∣∣∣∣∣E
[∫ b

a
X2(t)dt

]∣∣∣∣∣

1/2

(19.1)

Proposition 230 (‖·‖S2
is a norm) ‖·‖S2

is a semi-norm on S2[a, b]; it is a
full norm if processes such that X(t)− Y (t) = 0 a.s., for Lebesgue-almost-all t,
are identified. Like any norm, it induces a metric on S2[a, b], and by “a limit
in S2” we will mean a limit with respect to this metric. As a normed space, it
is complete, i.e. every Cauchy-convergent sequence has a limit in the S2 sense.

Proof: Recall that a semi-norm is a function from a vector space to the real
numbers such that, for any vector X and any scalar a, ‖aX‖ = |a|‖X‖, and,
for any two vectors X and Y , ‖X + Y ‖ ≤ ‖X‖ + ‖Y ‖. The root-mean-square
time integral ‖X‖S2

clearly has both properties. To be a norm and not just a
semi-norm, we need in addition that ‖X‖ = 0 if and only if X = 0. This is not
true for random processes, because the process which is zero at irrational times
t ∈ [a, b] but 1 at rational times in the interval also has semi-norm 0. However,
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by identifying two processes X and Y if X(t) − Y (t) = 0 a.s. for almost all t,
we get a norm. This is exactly analogous to the way the L2 norm for random
variables is really only a norm on equivalence classes of variables which are equal
almost always. The proof that the space with this norm is complete is exactly
analogous to the proof that the L2 space of random variables is complete, see
e.g. Lemma 1.31 in Kallenberg (2002, p. 15). !

Definition 231 (Itô integral of an elementary process) If X is an el-
ementary, progressive, non-anticipative process, square-integrable from a to b,
then its Itô integral from a to b is

∫ b

a
X(t)dW ≡

∑

i≥0

X(ti) (W (ti+1)−W (ti)) (19.2)

where the ti are as in Definition 227, truncated below by a and above by b.

Notice that this is basically a Riemann-Stieltjes integral. It’s a random
variable, but we don’t have to worry about the existence of a limit. Now we set
about approximating more general sorts of processes by elementary processes.

Lemma 232 (Approximation of Bounded, Continuous Processes by
Elementary Processes) Suppose X is progressive, non-anticipative, bounded
on [a, b], and has continuous sample paths. Then there exist bounded elementary
processes Xn, Itô-integrable on [a, b], such that X is the S2[a, b] limit of Xn, i.e.,

lim
n→∞

‖X −Xn‖S2
= 0 (19.3)

lim
n→∞

E

[∫ b

a
(X −Xn)2dt

]
= 0 (19.4)

Proof: Set

Xn(t) ≡
∞∑

i=0

X(i2−n)1[i/2n,(i+1)/2n)(t) (19.5)

This is clearly elementary, bounded and square-integrable on [a, b]. Moreover,
for fixed ω,

∫ b
a (X(t, ω)−Xn(t, ω))2dt → 0, since X(t, ω) is continuous. So the

expectation of the time-integral goes to zero by bounded convergence. !
Remark: There is nothing special about using intervals of length 2−n. Any

division of [a, b] into sub-intervals would do, provided the width of the largest
sub-interval shrinks to zero.

Lemma 233 (Approximation by of Bounded Processes by Bounded,
Continuous Processes) Suppose X is progressive, non-anticipative, and bounded
on [a, b]. Then there exist progressive, non-anticipative processes Xn which are
bounded and continuous on [a, b], and have X as their S2 limit,

lim
n→∞

‖X −Xn‖S2
= 0 (19.6)
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Proof: Let M be the bound on the absolute value of X. For each n,
pick a probability density fn(t) on R whose support is confined to the interval
(−1/n, 0). Set

Xn(t) ≡
∫ t

0
fn(s− t)X(s)ds (19.7)

Xn(t) is then a sort of moving average of X, over the interval (t−1/n, t). Clearly,
it’s continuous, bounded, progressively measurable, and non-anticipative. More-
over, for each ω,

lim
n→∞

∫ b

a
(Xn(t,ω)−X(t, ω))2dt = 0 (19.8)

because of the way we’ve set up fn and Xn. By bounded convergence, this
implies

lim
n→∞

E

[∫ b

a
(X −Xn)2dt

]
= 0 (19.9)

which is equivalent to Eq. 19.6. !

Lemma 234 (Approximation of Square-Integrable Processes by Bounded
Processes) Suppose X is progressive, non-anticipative, and square-integrable
on [a, b]. Then there exist a sequence of random processes Xn which are pro-
gressive, non-anticipative and bounded on [a, b], which have X as their limit in
S2.

Proof: Set Xn(t) = (−n ∨X(t)) ∧ n. This has the desired properties, and
the result follows from dominated (not bounded!) convergence. !

Lemma 235 (Approximation of Square-Integrable Processes by Ele-
mentary Processes) Suppose X is progressive, non-anticipative, and square-
integrable on [a, b]. Then there exist a sequence of bounded elementary processes
Xn with X as their limit in S2.

Proof: Combine Lemmas 232, 233 and 234. !
This lemma gets its force from the following result.

Lemma 236 (Itô Isometry for Elementary Processes) Suppose X is as
in Definition 231, and in addition bounded on [a, b]. Then

E




(∫ b

a
X(t)dW

)2


 = E

[∫ b

a
X2(t)dt

]
= ‖X‖2S2

(19.10)

Proof: Set ∆Wi = W (ti+1) −W (ti). Notice that ∆Wj is independent of
X(ti)X(tj)∆Wi if i < j, because of the non-anticipation properties of X. On
the other hand, E

[
(∆Wi)

2
]

= ti+1− ti, by the linear variance of the increments
of W . So

E [X(ti)X(tj)∆Wj∆Wi] = E
[
X2(ti)

]
(ti+1 − ti)δij (19.11)
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Substituting Eq. 19.2 into the left-hand side of Eq. 19.10,

E




(∫ b

a
X(t)dW

)2


 = E




∑

i,j

X(ti)X(tj)∆Wj∆Wi



 (19.12)

=
∑

i,j

E [X(ti)X(tj)∆Wj∆Wi] (19.13)

=
∑

i

E
[
X2(ti)

]
(ti+1 − ti) (19.14)

= E

[
∑

i

X2(ti)(ti+1 − ti)

]
(19.15)

= E

[∫ b

a
X2(t)dt

]
(19.16)

where the last step uses the fact that X2 must also be elementary. !

Theorem 237 (Itô Integrals of Approximating Elementary Processes
Converge) Let X and Xn be as in Lemma 235. Then the sequence In(X) ≡

∫ b

a
Xn(t)dW (19.17)

has a limit in L2. Moreover, this limit is the same for any such approximating
sequence Xn.

Proof: For each Xn, In(X(ω)) is an S2 function of ω, by the fact that Xn

is square-integrable and Lemma 236. Now, the Xn are converging on X, in the
sense that

‖X −Xn‖S2
→ 0 (19.18)

Since (Proposition 230) the space S2[a, b] is complete, every convergent sequence
is also Cauchy, and so, for every ε > 0, there exists an n such that

‖Xn+k −Xn‖S2
< ε (19.19)

for every positive k. Since Xn and Xn+k are both elementary processes, their
difference is also elementary, and we can apply Lemma 236 to it. That is, for
every ε > 0, there is an n such that

E




(∫ b

a
(Xn+k(t)−Xn(t))dW

)2


 < ε (19.20)

for all k. (Chose the ε in Eq. 19.19 to be the square root of the ε in Eq. 19.20.)
But this is to say that In(X) is a Cauchy sequence in L2, therefore it has a
limit, which is also in L2 (because L2 is complete). If Yn is another sequence
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of approximations of X by elementary processes, parallel arguments show that
the Itô integrals of Yn are a Cauchy sequence, and that for every ε > 0, there
exist m and n such that ‖Xn+k − Ym+l‖S2

≤ ε, hence the integrals of Yn must
be converging on the same limit as the integrals of Xn. !

Definition 238 (Itô integral) Let X be progressive, non-anticipative and square-
integrable on [a, b]. Then its Itô integral is

∫ b

a
X(t)dW ≡ lim

n

∫ b

a
Xn(t)dW (19.21)

taking the limit in L2, with Xn as in Lemma 235. We will say that X is Itô-
integrable on [a, b].

Corollary 239 (The Itô isometry) Eq. 19.10 holds for all Itô-integrable X.

Proof: Obvious from the approximation by elementary processes and Lemma
236.

This would be a good time to do Exercises 19.1, 19.2 and 19.3.

19.2 Some Easy Stochastic Integrals, with a Moral

19.2.1
∫

dW

Let’s start with the easiest possible stochastic integral:
∫ b

a
dW (19.22)

i.e., the Itô integral of the function which is always 1, 1R+(t). If this is any
kind of integral at all, it should be W — more exactly, because this is a definite
integral, we want

∫ b
a dW = W (b) −W (a). Mercifully, this works. Pick any set

of time-points ti we like, and treat 1 as an elementary function with those times
as its break-points. Then, using our definition of the Itô integral for elementary
functions,

∫ b

a
dW =

∑

ti

W (ti+1)−W (ti) (19.23)

= W (b)−W (a) (19.24)

as required. (This would be a good time to convince yourself that adding extra
break-points to an elementary function doesn’t change its integral (Exercise
19.5.)
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19.2.2
∫

WdW

Tradition dictates that the next example be
∫

WdW . First, we should con-
vince ourselves that W (t) is Itô-integrable: it’s clearly measurable and non-
anticipative, but is it square-integrable? Yes; by Fubini’s theorem,

E
[∫ t

0
W 2(s)ds

]
=

∫ t

0
E

[
W 2(s)

]
ds (19.25)

=
∫ t

0
sds (19.26)

which is clearly finite on finite intervals [0, t]. So, this integral should exist.
Now, if the ordinary rules for change of variables held — equivalent, if the
chain-rule worked the usual way — we could say that WdW = 1

2d(W 2), so∫
WdW = 1

2

∫
dW 2, and we’d expect

∫ t
0 WdW = 1

2W 2(t). But, alas, this can’t
be right. To see why, take the expectation: it’d be 1

2 t. But we know that it has
to be zero, and it has to be a martingale in t, and this is neither. A bone-head
would try to fix this by subtracting off the non-martingale part, i.e., a bone-
head would guess that

∫ t
0 WdW = 1

2W 2(t) − t/2. Annoyingly, in this case the
bone-head is correct. The demonstration is fundamentally straightforward, if
somewhat long-winded.

To begin, we need to approximate W by elementary functions. For each n,
let ti = i t

2n , 0 ≤ i ≤ 2n− 1. Set φn(t) =
∑2n−1

i=0 W (ti)1[ti,ti+1). Let’s check that
this converges to W (t) as n →∞:

E
[∫ t

0
(φn(s)−W (s))2ds

]
= E

[
2n−1∑

i=0

∫ ti+1

ti

(W (ti)−W (s))2ds

]
(19.27)

=
2n−1∑

i=0

E
[∫ ti+1

ti

(W (ti)−W (s))2ds

]
(19.28)

=
2n−1∑

i=0

∫ ti+1

ti

E
[
(W (ti)−W (s))2

]
ds(19.29)

=
2n−1∑

i=0

∫ ti+1

ti

(s− ti)ds (19.30)

=
2n−1∑

i=0

∫ 2−n

0
sds (19.31)

=
2n−1∑

i=0

[
t2

2

]2−n

0

(19.32)

=
2n−1∑

i=0

2−2n−1 (19.33)

= 2−n−1 (19.34)
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which → 0 as n →∞. Hence
∫ t

0
W (s)dW = lim

n

∫ t

0
φn(s)dW (19.35)

= lim
n

2n−1∑

i=0

W (ti)(W (ti+1)−W (ti)) (19.36)

= lim
n

2n−1∑

i=0

W (ti)∆W (ti) (19.37)

where ∆W (ti) ≡ W (ti+1) − W (ti), because I’m getting tired of writing both
subscripts. Define ∆W 2(ti) similarly. Since W (0) = 0 = W 2(0), we have that

W (t) =
∑

i

∆W (ti) (19.38)

W 2(t) =
∑

i

∆W 2(ti) (19.39)

Now let’s re-write ∆W 2 in such a way that we get a W∆W term, which is what
we want to evaluate our integral.

∆W 2(ti) = W 2(ti+1)−W 2(ti) (19.40)

= (∆W (ti) + W (ti))
2 −W 2(ti) (19.41)

= (∆W (ti))
2 + 2W (ti)∆W (ti) + W 2(ti)−W 2(ti) (19.42)

= (∆W (ti))
2 + 2W (ti)∆W (ti) (19.43)

This looks promising, because it’s got W∆W in it. Plugging in to Eq. 19.39,

W 2(t) =
∑

i

(∆W (ti))
2 + 2W (ti)∆W (ti) (19.44)

∑

i

W (ti)∆W (ti) =
1
2
W 2(t)− 1

2

∑

i

(∆W (ti))
2 (19.45)

Now, it is possible to show (Exercise 19.4) that

lim
n

2n−1∑

i=0

(∆W (ti))
2 = t (19.46)

in L2, so we have that
∫ t

0
W (s)dW = lim

n

2n−1∑

i=0

W (ti)∆W (ti) (19.47)

=
1
2
W 2(t)− lim

n

2n−1∑

i=0

(∆W (ti))
2 (19.48)

=
1
2
W 2(t)− t

2
(19.49)
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as required.
Clearly, something weird is going on here, and it would be good to get to the

bottom of this. At the very least, we’d like to be able to use change of variables,
so that we can find functions of stochastic integrals.

19.3 Itô’s Formula

Integrating
∫

WdW has taught us two things: first, we want to avoid evaluating
Itô integrals directly from the definition; and, second, there’s something funny
about change of variables in Itô integrals. A central result of stochastic calculus,
known as Itô’s formula, gets us around both difficulties, by showing how to write
functions of stochastic integrals as, themselves, stochastic integrals.

Definition 240 (Itô Process) If A is a non-anticipating measurable process,
B is Itô-integrable, and X0 is an L2 random variable independent of W , then
X(t) = X0 +

∫ t
0 A(s)ds +

∫ t
0 B(s)dW is an Itô process. This is equivalently

written dX = Adt + BdW .

Lemma 241 (Itô processes are non-anticipating) Every Itô process is
non-anticipating.

Proof: Clearly, the non-anticipating processes are closed under linear oper-
ations, so it’s enough to show that the three components of any Itô process are
non-anticipating. But a process which is always equal to X0 |= W (t) is clearly
non-anticipating. Similarly, since A(t) is non-anticipating,

∫
A(s)ds is too: its

natural filtration is smaller than that of A, so it cannot provide more infor-
mation about W (t), and A is, by assumption, non-anticipating. Finally, Itô
integrals are always non-anticipating, so

∫
B(s)dW is non-anticipating. !

Theorem 242 (Itô’s Formula in One Dimension) Suppose X is an Itô
process with dX = Adt + BdW . Let f(t, x) : R+ × R ,→ R be a function
with continuous partial time derivative ∂f

∂t , and continuous second partial space
derivative, ∂2f

∂x2 . Then F (t) = f(t, X(t)) is an Itô process, and

dF =
∂f

∂t
(t, X(t))dt +

∂f

∂x
(t, X(t))dX +

1
2
B2(t)

∂2f

dx2
(t,X(t))dt (19.50)

That is,

F (t)− F (0) = (19.51)
∫ t

0

[
∂f

∂t
(s,X(s)) + A(s)

∂f

∂x
(s,X(s)) +

1
2
B2(s)

∂2f

∂x2
(s,X(s))

]
dt +

∫ t

0
B(s)

∂f

∂x
(s,X(s))dW

Proof: I will suppose first of all that f , and its partial derivatives appear-
ing in Eq. 19.50, are all bounded. (You can show that the general case of C2
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functions can be uniformly approximated by functions with bounded deriva-
tives.) I will further suppose that A and B are elementary processes, since in
the last chapter we saw how to use them to approximate general Itô-integrable
functions. (If you are worried about the interaction of all these approximations
and simplifications, I commend your caution, and suggest you step through the
proof in the general case.)

For each n, let ti = i t
2n , as in the last section. Define ∆ti ≡ ti+1 − ti,

∆X(ti) = X(ti+1)−X(ti), etc. Thus

F (t) = f(t,X(t)) = f(0, X(0)) +
2n−1∑

i=0

∆f(ti, X(ti)) (19.52)

Now we’ll approximate the increments of F by a Taylor expansion:

F (t) = f(0, X(0)) +
2n−1∑

i=0

∂f

∂t
∆ti (19.53)

+
2n−1∑

i=0

∂f

∂x
∆X(ti)

+
1
2

2n−1∑

i=0

∂2f

∂t2
(∆ti)

2

+
2n−1∑

i=0

∂2f

∂t∂x
∆ti∆X(ti)

+
1
2

2n−1∑

i=0

∂2f

∂x2
(∆X(ti))

2

+
2n−1∑

i=0

Ri

Because the derivatives are bounded, all the remainder terms Ri are of third
order,

Ri = O
(
(∆ti)

3 + ∆X(ti)(∆ti)
2 + (∆X(ti))

2∆ti + (∆X(ti))
3
)

(19.54)

We will come back to showing that the remainders are harmless, but for now
let’s concentrate on the leading-order components of the Taylor expansion.

First, as n →∞,
2n−1∑

i=0

∂f

∂t
∆ti →

∫ t

0

∂f

∂t
ds (19.55)

2n−1∑

i=0

∂f

∂x
∆X(ti) →

∫ t

0

∂f

∂x
dX (19.56)

≡
∫ t

0

∂f

∂x
A(s)dt +

∫ t

0

∂f

∂x
B(s)dW (19.57)
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[You can use the definition in the last line to build up a theory of stochastic
integrals with respect to arbitrary Itô processes, not just Wiener processes.]

2n−1∑

i=0

∂2f

∂t2
(∆ti)

2 → 0
∫ t

0

∂2f

∂t2
ds = 0 (19.58)

Next, since A and B are (by assumption) elementary,

2n−1∑

i=0

∂2f

∂x2
(∆X(ti))

2 =
2n−1∑

i=0

∂2f

∂x2
A2(ti) (∆ti)

2 (19.59)

+2
2n−1∑

i=0

∂2f

∂x2
A(ti)B(ti)∆ti∆W (ti)

+
2n−1∑

i=0

∂2f

∂x2
B2(ti)(∆W (ti))

2

The first term on the right-hand side, in (∆t)2, goes to zero as n increases.
Since A is square-integrable and ∂2f

∂x2 is bounded,
∑ ∂2f

∂x2 A2(ti)∆ti converges to
a finite value as ∆t → 0, so multiplying by another factor ∆t, as n →∞, gives
zero. (This is the same argument as the one for Eq. 19.58.) Similarly for the
second term, in ∆t∆X:

lim
n

2n−1∑

i=0

∂2f

∂x2
A(ti)B(ti)∆ti∆W (ti) = lim

n

t

2n

∫ t

0

∂2f

∂x2
A(s)B(s)dW (19.60)

because A and B are elementary and the partial derivative is bounded. Now
apply the Itô isometry:

E

[(
t

2n

∫ t

0

∂2f

∂x2
A(s)B(s)dW

)2
]

=
t2

22n
E

[∫ t

0

(
∂2f

∂x2

)2

A2(s)B2(s)ds

]

The time-integral on the right-hand side is finite, since A and B are square-
integrable and the partial derivative is bounded, and so, as n grows, both sides
go to zero. But this means that, in L2,

2n−1∑

i=0

∂2f

∂x2
A(ti)B(ti)∆ti∆W (ti) → 0 (19.61)

The third term, in (∆X)2, does not vanish, but rather converges in L2 to a time
integral:

2n−1∑

i=0

∂2f

∂x2
B2(ti)(∆W (ti))

2 →
∫ t

0

∂2f

∂x2
B2(s)ds (19.62)
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You will prove this in Exercise 19.4.
The mixed partial derivative term has no counterpart in Itô’s formula, so it

needs to go away.

2n−1∑

i=0

∂2f

∂t∂x
∆ti∆X(ti) =

2n−1∑

i=0

∂2f

∂t∂x

[
A(ti)(∆ti)

2 + B(ti)∆ti∆W (ti)
]

(19.63)

2n−1∑

i=0

∂2f

∂t∂x
A(ti)(∆ti)

2 → 0 (19.64)

2n−1∑

i=0

∂2f

∂t∂x
B(ti)∆ti∆W (ti) → 0 (19.65)

where the argument for Eq. 19.65 is the same as that for Eq. 19.58, while that
for Eq. 19.65 follows the pattern of Eq. 19.61.

Let us, as promised, dispose of the remainder terms, given by Eq. 19.54,
re-stated here for convenience:

Ri = O
(
(∆t)3 + ∆X(∆t)2 + (∆X)2∆t + (∆X)3

)
(19.66)

Taking ∆X = A∆t + B∆W , expanding the powers of ∆X, and using the fact
that everything is inside a big O to let us group together terms with the same
powers of ∆t and ∆W , we get

Ri = O
(
(∆t)3 + ∆W (∆t)2 + (∆W )2∆t + (∆W )3

)
(19.67)

From our previous uses of Exercise 19.4, it’s clear that in the limit (∆W )2 terms
will behave like ∆t terms, so

Ri = O
(
(∆t)3 + ∆W (∆t)2 + (∆t)2 + ∆W∆t

)
(19.68)

Now, by our previous arguments, the sum of terms which are O((∆t)2) → 0, so
the first three terms all go to zero; similarly we have seen that a sum of terms
which are O(∆W∆T ) → 0. We may conclude that the sum of the remainder
terms goes to 0, in L2, as n increases.

Putting everything together, we have that

F (t)− F (0) =
∫ t

0

[
∂f

∂t
+

∂f

∂x
A +

1
2
B2 ∂2f

∂x2

]
dt +

∫ t

0

∂f

∂x
BdW (19.69)

exactly as required. This completes the proof, under the stated restrictions on
f , A and B; approximation arguments extend the result to the general case. !

Remark 1. Our manipulations in the course of the proof are often summa-
rized in the following multiplication rules for differentials: dtdt = 0, dWdt = 0,
dtdW = 0, and, most important of all,

dWdW = dt
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This last is of course related to the linear growth of the variance of the increments
of the Wiener process. If we used a different driving noise term, it would be
replaced by the corresponding rule for the growth of that noise’s variance.

Remark 2. Re-arranging Itô’s formula a little yields

dF =
∂f

∂t
dt +

∂f

∂x
dX +

1
2
B2 ∂2f

∂x2
dt (19.70)

The first two terms are what we expect from the ordinary rules of calculus; it’s
the third term which is new and strange. Notice that it disappears if ∂2f

∂x2 = 0.
When we come to stochastic differential equations, this will correspond to state-
independent noise.

Remark 3. One implication of Itô’s formula is that Itô processes are closed
under the application of C2 mappings.

Example 243 (Section 19.2.2 summarized) The integral
∫

WdW is now
trivial. Let X(t) = W (t) (by setting A = 0, B = 1 in the definition of an Itô
process), and f(t, x) = x2/2. Applying Itô’s formula,

dF =
∂f

∂t
dt +

∂f

∂x
dW +

1
2

∂2f

∂x2
dt (19.71)

1
2
dW 2 = WdW +

1
2
dt (19.72)

1
2

∫
dW 2 =

∫
WdW +

1
2

∫
dt (19.73)

∫ t

0
W (s)dW =

1
2
W 2(t)− t

2
(19.74)

All of this extends naturally to higher dimensions.

Definition 244 (Multidimensional Itô Process) Let A by an n-dimensional
vector of non-anticipating processes, B an n ×m matrix of Itô-integrable pro-
cesses, and W an m-dimensional Wiener process. Then

X(t) = X(0) +
∫ t

0
A(s)ds +

∫ t

0
B(s)dW (19.75)

dX = A(t)dt + B(t)dW (19.76)

is an n-dimensional Itô process.

Theorem 245 (Itô’s Formula in Multiple Dimensions) Let X(t) be an
n-dimensional Itô process, and let f(t, x) : R+ × Rn ,→ Rm have a continuous
partial time derivative and continuous second partial space derivatives. Then
F (t) = f(t, X(t)) is an m-dimensional Itô process, whose kth component Fk is
given by

dFk =
∂gk

∂t
dt +

∂gk

∂xi
dXi +

1
2

∂2gk

∂Xi∂Xj
dXidXj (19.77)
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summing over repeated indices, with the understanding that dWidWj = δijdt,
dWidt = dtdWi = dtdt = 0.

Proof: Entirely parallel to the one-dimensional case, only with even more
algebra. !

It is also possible to define Wiener processes and stochastic integrals on
arbitrary curved manifolds, but this would take us way, way too far afield.

19.3.1 Stratonovich Integrals

It is possible to make the extra term in Eq. 19.70 go away, and have stochastic
differentials which work just like the ordinary ones. This corresponds to making
stochastic integrals limits of sums of the form

∑

i

X

(
ti+1 + ti

2

)
∆W (ti)

rather than the Itô sums we are using,
∑

i

X(ti)∆W (ti)

That is, we could evade the Itô formula if we evaluated our test function in
the middle of intervals, rather than at their beginnning. This leads to what are
called Stratonovich integrals. However, while Stratonovich integrals give simpler
change-of-variable formulas, they have many other inconveniences: they are not
martingales, for instance, and the nice connections between the form of an SDE
and its generator, which we will see and use in the next chapter, go away.
Fortunately, every Stratonovich SDE can be converted into an Itô SDE, and
vice versa, by adding or subtracting the appropriate noise term.

19.3.2 Martingale Representation

One property of the Itô integral is that it is always a continuous square-integrable
martingale. Remarkably enough, the converse is also true. In the interest of
time, I omit the proof of the following theorem; there is one using only tools
we’ve seen so far in Øksendal (1995, ch. 4), but it builds up from some auxiliary
results.

Theorem 246 (Representation of Martingales as Stochastic Integrals
(Martingale Representation Theorem)) Let M(t) be a continuous martin-
gale, with E

[
M2(t)

]
< ∞ for all t ≥ 0. Then there exists a unique process

M ′(t), Itô-integrable for all finite positive t, such that

M(t) = E [M(0)] +
∫ t

0
M ′(t)dW a.s. (19.78)
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A direct consequence of this and Itô’s formula is the promised martingale
characterization of the Wiener process.

Theorem 247 (Martingale Characterization of the Wiener Process)
If M is continuous martingale, and M2 − t is also a martingale, then M is a
Wiener process.

Proof: Since M is a continuous martingale, by Theorem 246 there is a
unique process M ′ such that dM = M ′dw. That is, M is an Itô process with
A = 0, B = M ′. Now define f(t, x) = x2 − t. Clearly, M2(t) − t = f(t,M) ≡
Y (t). Since f is smooth, we can apply Itô’s formula (Theorem 242):

dY =
∂f

∂t
dt +

∂f

∂x
dM +

1
2
B2 ∂2f

∂x2
dt (19.79)

= −dt + 2MM ′dW + (M ′)2dt (19.80)

Since Y is itself a martingale, dY = Y ′dW , and this is the unique representation
as an Itô process, hence the dt terms must cancel. Therefore

0 = −1 + (M ′(t))2 (19.81)
±1 = M ′(t) (19.82)

Since −W is also a Wiener process, it follows that M
d= W (plus a possible

additive). !

19.4 Stochastic Differential Equations

Definition 248 (Stochastic Differential Equation, Solutions) Let a(x) :
Rn ,→ Rn and b(x) : Rn ,→ Rnm be measurable functions (vector and matrix val-
ued, respectively), W an m-dimensional Wiener process, and X0 an L2 random
variable in Rn, independent of W . Then an Rn-valued stochastic process X on
R+ is a solution to the autonomous stochastic differential equation

dX = a(X)dt + b(X)dW, X(0) = X0 (19.83)

when, with probability 1, it is equal to the corresponding Itô process,

X(t) = X0 +
∫ t

0
a(X(s))ds +

∫ s

0
b(X(s))dW a.s. (19.84)

The a term is called the drift, and the b term the diffusion.

Remark 1: A given process X can fail to be a solution either because it
happens not to agree with Eq. 19.84, or, perhaps more seriously, because the
integrals on the right-hand side don’t even exist. This can, in particular, hap-
pen if b(X(t)) is anticipating. For a fixed choice of Wiener process, there are
circumstances where otherwise reasonable SDEs have no solution, for basically
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this reason — the Wiener process is constructed in such a way that the class of
Itô processes is impoverished. This leads to the idea of a weak solution to Eq.
19.83, which is a pair X, W such that W is a Wiener process, with respect to
the appropriate filtration, and X then is given by Eq. 19.84. I will avoid weak
solutions in what follows.

Remark 2: In a non-autonomous SDE, the coefficients would be explicit
functions of time, a(t, X)dt + b(t, X)dW . The usual trick for dealing with
non-autonomous n-dimensional ODEs is turn them into autonomous n + 1-
dimensional ODEs, making xn+1 = t by decreeing that xn+1(t0) = t0, x′n+1 = 1
(Arnol’d, 1973). This works for SDEs, too: add time as an extra variable with
constant drift 1 and constant diffusion 0. Without loss of generality, therefore,
I’ll only consider autonomous SDEs.

Let’s now prove the existence of unique solutions to SDEs. First, recall how
we do this for ordinary differential equations. There are several approaches,
most of which carry over to SDEs, but one of the most elegant is the “method
of successive approximations”, or “Picard’s method” (Arnol’d, 1973, SS30–31)).
To construct a solution to dx/dt = f(x), x(0) = x0, this approach uses functions
xn(t), with xn+1(t) = x0+

∫ t
0 f(xn(s)ds, starting with x0(t) = x0. That is, there

is an operator P such that xn+1 = Pxn, and x solves the ODE iff it is a fixed
point of the operator. Step 1 is to show that the sequence xn is Cauchy on finite
intervals [0, T ]. Step 2 uses the fact that the space of continuous functions is
complete, with the topology of uniform convergence of compact sets — which,
for R+, is the same as uniform convergence on finite intervals. So, xn has a
limit. Step 3 is to show that the limit point must be a fixed point of P , that
is, a solution. Uniqueness is proved by showing that there cannot be more than
one fixed point.

Before plunging in to the proof, we need some lemmas: an algebraic triviality,
a maximal inequality for martingales, a consequent maximal inequality for Itô
processes, and an inequality from real analysis about integral equations.

Lemma 249 (A Quadratic Inequality) For any real numbers a and b, (a + b)2 ≤
2a2 + 2b2.

Proof: No matter what a and b are, a2, b2, and (a− b)2 are non-negative,
so

(a− b)2 ≥ 0 (19.85)
a2 + b2 − 2ab ≥ 0 (19.86)

a2 + b2 ≥ 2ab (19.87)

2a2 + 2b2 ≥ a2 + 2ab + b2 = (a + b)2 (19.88)

!

Definition 250 (Maximum Process) Given a stochastic process X(t), we
define its maximum process X∗(t) as sup0≤s≤t |X(s)|.

Remark: Example 79 was of course designed with malice aforethought.
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Definition 251 (The Space QM(T )) Let QM(T ), T > 0, be the space of all
non-anticipating processes, square-integrable on [0, T ], with norm ‖X‖QM(T ) ≡
‖X∗(T )‖2.

Technically, this is only a norm on equivalence classes of processes, where
the equivalence relation is “is a version of”. You may make that amendment
mentally as you read what follows.

Lemma 252 (Completeness of QM(T )) QM(T ) is a complete normed space
for each T .

Proof: Identical to the usual proof that Lp spaces are complete, see, e.g.,
Lemma 1.31 of Kallenberg (2002, p. 15). !
Proposition 253 (Doob’s Martingale Inequalities) If M(t) is a continu-
ous martingale, then, for all p ≥ 1, t ≥ 0 and ε > 0,

P (M∗(t) ≥ ε) ≤ E [|M(t)|p]
εp

(19.89)

‖M∗(t)‖p ≤ q‖M(t)‖p (19.90)

where q−1 + p−1 = 1. In particular, for p = q = 2,

E
[
(M∗(t))2

]
≤ 4E

[
M2(t)

]

Proof: See Propositions 7.15 and 7.16 in Kallenberg (pp. 128 and 129). !
These can be thought of as versions of the Markov inequality, only for mar-

tingales. They accordingly get used all the time.

Lemma 254 (A Maximal Inequality for Itô Processes) Let X(t) be an
Itô process, X(t) = X0 +

∫ t
0 A(s)ds +

∫ t
0 B(s)dW . Then there exists a constant

C, depending only on T , such that, for all t ∈ [0, T ],

‖X‖2QM(t) ≤ C

(
E

[
X2

0

]
+ E

[∫ t

0
A2(s) + B2(s)ds

])
(19.91)

Proof: Clearly,

X∗(t) ≤ |X0|+
∫ t

0
|A(s)|ds + sup

0≤s≤t

∣∣∣∣
∫ s

0
B(s)dW

∣∣∣∣ (19.92)

(X∗(t))2 ≤ 2X2
0 + 2

(∫ t

0
|A(s)|ds

)2

+ 2
(

sup
0≤s≤t

∣∣∣∣
∫ s

0
B(s′)dW

∣∣∣∣

)2

(19.93)

by Lemma 249. By Jensen’s inequality1,
(∫ t

0
|A(s)|ds

)2

≤ t

∫ t

0
A2(s)ds (19.94)

1Remember that Lebesgue measure isn’t a probability measure on [0, t], but 1
t ds is a

probability measure, so we can apply Jensen’s inequality to that. This is where the t on the
right-hand side will come from.
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Writing I(t) for
∫ t
0 B(s)dW , and noticing that it is a martingale, we have, from

Doob’s inequality (Proposition 253), E
[
(I∗(t))2

]
≤ 4E

[
I2(t)

]
. But, from Itô’s

isometry (Corollary 239), E
[
I2(t)

]
= E

[∫ t
0 B2(s)ds

]
. Putting all the parts

together, then,

E
[
(X∗(t))2

]
≤ 2E

[
X2

0

]
+ 2E

[
t

∫ t

0
A2(s)ds +

∫ t

0
B2(s)ds

]
(19.95)

and the conclusion follows, since t ≤ T . !
Remark: The lemma also holds for multidimensional Itô processes, and for

powers greater than two (though then the Doob inequality needs to be replaced
by a different one: see Rogers and Williams (2000, Ch. V, Lemma 11.5, p. 129)).

Definition 255 (Picard operator) Given an SDE dX = a(X)dt + b(X)dW
with initial condition X0, the corresponding integral operator PX0,a,b is defined
for all Itô processes Y as

PX0,a,bY (t) = X0 +
∫ t

0
a(Y (s))ds +

∫ t

0
b(Y (s))dW (19.96)

Lemma 256 (Solutions are fixed points of the Picard operator) Y is a
solution of dX = a(X)dt + b(X)dW , X(0) = X0, if and only if PX0,a,bY = Y
a.s.

Proof: Obvious from the definitions. !

Lemma 257 (A maximal inequality for Picard iterates) If a and b are
uniformly Lipschitz continuous, with constants Ka and KB, then, for some
positive D depending only on T , Ka and Kb,

‖PX0,a,bX − PX0,a,bY ‖2QM(t) ≤ D

∫ t

0
‖X − Y ‖2QM(s)ds (19.97)

Proof: Since the SDE is understood to be fixed, abbreviate PX0,a,b by P .
Let X and Y be any two Itô processes. We want to find the QM(t) norm of
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PX − PY .

|PX(t)− PY (t)| (19.98)

=
∣∣∣∣
∫ t

0
a(X(s))− a(Y (s))dt +

∫ t

0
b(X(s))− b(Y (s))dW

∣∣∣∣

≤
∫ t

0
|a(X(s))− a(Y (s))| ds +

∫ t

0
|b(X(s))− b(Y (s))| dW (19.99)

≤
∫ t

0
Ka |X(s)− Y (s)| ds +

∫ t

0
Kb |X(s)− Y (s)| dW (19.100)

‖PX − PY ‖2QM(t) (19.101)

≤ C(K2
a + K2

b )E
[∫ t

0
|X(s)− Y (s)|2ds

]

≤ C(K2
a + K2

b )t
∫ t

0
‖X − Y ‖2QM(s)ds (19.102)

which, as t ≤ T , completes the proof. !

Lemma 258 (Gronwall’s Inequality) If f is continuous function on [0, T ]
such that f(t) ≤ c1 + c2

∫ t
0 f(s)ds, then f(t) ≤ c1ec2t.

Proof: See Kallenberg, Lemma 21.4, p. 415. !

Theorem 259 (Existence and Uniquness of Solutions to SDEs in One
Dimension) Let X0, a, b and W be as in Definition 248, and let a and b
be uniformly Lipschitz continuous. Then there exists a square-integrable, non-
anticipating X(t) which solves dX = a(X)dt + b(X)dW with initial condition
X0, and this solution is unique (almost surely).

Proof: I’ll first prove existence, along with square-integrability, and then
uniqueness. That X is non-anticipating follows from the fact that it is an Itô
process (Lemma 241). For concision, abbreviate PX0,a,b by P .

As with ODEs, iteratively construct approximate solutions. Fix a T > 0,
and, for t ∈ [0, T ], set

X0(t) = X0 (19.103)
Xn+1(t) = PXn(t) (19.104)

The first step is showing that Xn is Cauchy in QM(T ). Define φn(t) ≡
‖Xn+1 −Xn‖2QM(t). Notice that φn(t) = ‖PXn − PXn−1‖2QM(t), and that,
for each n, φn(t) is non-decreasing in t (because of the supremum embedded in
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its definition). So, using Lemma 257,

φn(t) ≤ D

∫ t

0
‖Xn −Xn−1‖2QM(s)ds (19.105)

≤ D

∫ t

0
φn−1(s)ds (19.106)

≤ D

∫ t

0
φn−1(t)ds (19.107)

= Dtφn−1(0) (19.108)

≤ Dntn

n!
φ0(t) (19.109)

≤ Dntn

n!
φ0(T ) (19.110)

Since, for any constant c, cn/n! → 0, to get the successive approximations to be
Cauchy, we just need to show that φ0(T ) is finite, using Lemma 254.

φ0(T ) = ‖PX0,a,b,X0 −X0‖2QM(T ) (19.111)

=
∥∥∥∥
∫ t

0
a(X0)ds +

∫ t

0
b(X0)dW

∥∥∥∥
2

QM(T )

(19.112)

≤ CE

[∫ T

0
a2(X0) + b2(X0)ds

]
(19.113)

≤ CTE
[
a2(X0) + b2(X0)

]
(19.114)

Because a and b are Lipschitz, this will be finite if X0 has a finite second moment,
which, by assumption, it does. So Xn is a Cauchy sequence in QM(T ), which
is a complete space, so Xn has a limit in QM(T ), call it X:

lim
n→∞

‖X −Xn‖QM(T ) = 0 (19.115)

The next step is to show that X is a fixed point of the operator P . This is
true because PX is also a limit of the sequence Xn.

‖PX −Xn+1‖2QM(T ) = ‖PX − PXn‖2QM(T ) (19.116)

≤ DT‖X −Xn‖2QM(T ) (19.117)

which→ 0 as n →∞ (by Eq. 19.115). So PX is the limit of Xn+1, which means
it is the limit of Xn, and, since X is also a limit of Xn and limits are unique,
PX = X. Thus, by Lemma 256, X is a solution.

To prove uniqueness, suppose that there were another solution, Y . By
Lemma 256, PY = Y as well. So, with Lemma 257,

‖X − Y ‖2QM(t) = ‖PX − PY ‖2QM(t) (19.118)

≤ D

∫ t

0
‖X − Y ‖2QM(s)ds (19.119)
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So, from Gronwall’s inequality (Lemma 258), we have that ‖X − Y ‖QM(t) ≤ 0
for all t, implying that X(t) = Y (t) a.s. !

Remark: For an alternative approach, based on Euler’s method (rather than
Picard’s), see Fristedt and Gray (1997, §33.4). It has a certain appeal, but it
also involves some uglier calculations. For a side-by-side comparison of the two
methods, see Lasota and Mackey (1994).

Theorem 260 (Existence and Uniqueness for Multidimensional SDEs)
Theorem 259 also holds for multi-dimensional stochastic differential equations,
provided a and b are uniformly Lipschitz in the appropriate Euclidean norms.

Proof: Entirely parallel to the one-dimensional case, only with more alge-
bra. !

The conditions on the coefficients can be reduced to something like “locally
Lipschitz up to a stopping time”, but it does not seem profitable to pursue this
here. See Rogers and Williams (2000, Ch. V, Sec. 12).

19.5 Brownian Motion, the Langevin Equation,
and Ornstein-Uhlenbeck Processes

The Wiener process is not a realistic model of Brownian motion, because it
implies that Brownian particles do not have well-defined velocities, which is
absurd. Setting up a more realistic model will eliminate this absurdity, and
illustrate how SDEs can be used as models.2 I will first need to summarize
classical mechanics in one paragraph.

Classical mechanics starts with Newton’s laws of motion. The zeroth law,
implicit in everything, is that the laws of nature are differential equations in
position variables with respect to time. The first law says that they are not
first-order differential equations. The second law says that they are second-order
differential equations. The usual trick for higher-order differential equations is
to introduce supplementary variables, so that we have a higher-dimensional
system of first-order differential equations. The supplementary variable here is
momentum. Thus, for particle i, with mass mi,

d'xi

dt
=

'pi

mi
(19.120)

d'pi

dt
=

F (x,p, t)
mi

(19.121)

constitute the laws of motion. All the physical content comes from specifying
the force function F (x,p, t). We will consider only autonomous systems, so we
do not need to deal with forces which are explicit functions of time. Newton’s

2See Selmeczi et al. (2006) for an account of the physicalm theory of Brownian motion,
including some of its history and some fascinating biophysical applications. Wax (1954)
collects classic papers on this and related subjects, still very much worth reading.
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third law says that total momentum is conserved, when all bodies are taken into
account.

Consider a large particle of (without loss of generality) mass 1, such as a
pollen grain, sitting in a still fluid at thermal equilibrium. What forces act on
it? One is drag. At a molecular level, this is due to the particle colliding with
the molecules (mass m) of the fluid, whose average momentum is zero. This
typically results in momentum being transferred from the pollen to the fluid
molecules, and the amount of momentum lost by the pollen is proportional to
what it had, i.e., one term in d'p/dt is −γ'p. In addition, however, there will be
fluctuations, which will be due to the fact that the fluid molecules are not all at
rest. In fact, because the fluid is at equilibrium, the momenta of the molecules
will follow a Maxwell-Boltzmann distribution,

f('pmolec) = (2πmkBT )−3/2e−
1
2

p2
molec

mkBT

where which is a zero-mean Gaussian with variance mkBT . Tracing this through,
we expect that, over short time intervals in which the pollen grain nonetheless
collides with a large number of molecules, there will be a random impulse (i.e.,
random change in momentum) which is Gaussian, but uncorrelated over shorter
sub-intervals (by the functional CLT). That is, we would like to write

d'p = −γ'pdt + DIdW (19.122)

where D is the diffusion constant, I is the 3 × 3 identity matrix, and W of
course is the standard three-dimensional Wiener process. This is known as the
Langevin equation in the physics literature, as this model was introduced by
Langevin in 1907 as a correction to Einstein’s 1905 model of Brownian motion.
(Of course, Langevin didn’t use Wiener processes and Itô integrals, which came
much later, but the spirit was the same.) If you like time-series models, you
might recognize this as a continuous-time version of an mean-reverting AR(1)
model, which explains why it also shows up as an interest rate model in financial
theory.

We can consider each component of the Langevin equation separately, be-
cause they decouple, and solve them easily with Itô’s formula:

d(eγtp) = DeγtdW (19.123)

eγtp(t) = p0 + D

∫ t

0
eγsdW (19.124)

p(t) = p0e
−γt + D

∫ t

0
e−γ(t−s)dW (19.125)

We will see in the next chapter a general method of proving that solutions of
equations like 19.122 are Markov processes; for now, you can either take that
on faith, or try to prove it yourself.

Assuming p0 is itself Gaussian, with mean 0 and variance σ2, then (using
Exercise 19.6), 'p always has mean zero, and the covariance is

cov ('p(t), 'p(s)) = σ2e−γ(s+t) +
D2

2γ

(
e−γ|s−t| − e−γ(s+t)

)
(19.126)
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If σ2 = D2/2γ, then the covariance is a function of |s − t| alone, and the pro-
cess is weakly stationary. Such a solution of Eq. 19.122 is known as a stationary
Ornstein-Uhlenbeck process. (Ornstein and Uhlenbeck provided the Wiener pro-
cesses and Itô integrals.)

Weak stationarity, and the fact that the Ornstein-Uhlenbeck process is Marko-
vian, allow us to say that the distribution N (0, D2/2γ) is invariant. Now, if
the Brownian particle began in equilibrium, we expect its energy to have a
Maxwell-Boltzmann distribution, which means that its momentum has a Gaus-
sian distribution, and the variance is (as with the fluid molecules) kBT . Thus,
kBT = D2/2γ, or D2 = 2γkbT . This is an example of what the physics literature
calls a fluctuation-dissipation relation, since one side of the equation involves
the magnitude of fluctuations (the diffusion coefficient D) and the other the re-
sponse to fluctuations (the frictional damping coefficient γ). Such relationships
turn out to hold quite generally at or near equilibrium, and are often summa-
rized by the saying that “systems respond to forcing just like fluctuations”. (Cf.
19.125.)

Oh, and that story I told you before about Brownian particles following
Wiener processes? It’s something of a lie told to children, or at least to proba-
bility theorists, but see Exercise 19.9.

For more on the physical picture of Brownian motion, fluctuation-dissipation
relations, and connections to more general thermodynamic processes in and out
of equilibrium, see Keizer (1987).3

19.6 Exercises

Exercise 19.1 (Basic Properties of the Itô Integral) Prove the following,
first for elementary Itô-integrable processes, and then in general.

1. ∫ c

a
X(t)dW =

∫ b

a
X(t)dW +

∫ c

b
X(t)dW (19.127)

almost surely.

2. If c is any real constant, then, almost surely,
∫ b

a
(cX(t) + Y (t))dW = c

∫ b

a
XdW +

∫ b

a
Y (t)dW (19.128)

Exercise 19.2 (Martingale Properties of the Itô Integral) Suppose X is
Itô-integrable on [a, b]. Show that

Ix(t) ≡
∫ t

a
X(s)dW (19.129)

a ≤ t ≤ b, is a martingale. What is E[Ix(t)]?
3Be warned that he perversely writes the probability of event A conditional on event B as

P (B|A), not P (A|B).
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Exercise 19.3 (Continuity of the Itô Integral) Show that Ix(t) has (a
modification with) continuous sample paths.

Exercise 19.4 (“The square of dW”) Use the notation of Section 19.2 here.

1. Show that
∑

i (∆W (ti))
2 converges on t (in L2) as n grows. Hint: Show

that the terms in the sum are IID, and that their variance shrinks suffi-
ciently fast as n grows. (You will need the fourth moment of a Gaussian
distribution.)

2. If X(t) is measurable and non-anticipating, show that

lim
n

2n−1∑

i=0

X(ti)(∆W (ti))
2 =

∫ t

0
X(s)ds (19.130)

in L2.

Exercise 19.5 (Itô integrals of elementary processes do not depend
on the break-points) Let X and Y be two elementary processes which are
versions of each other. Show that

∫ b
a XdW =

∫ b
a Y dW a.s.

Exercise 19.6 (Itô integrals are Gaussian processes) For any fixed, non-
random cadlag function f on R+, let If (t) =

∫ t
0 f(s)dW .

1. Show that E [If (t)] = 0 for all t.

2. Show cov (If (t), If (s)) =
∫ t∧s
0 f2(u)du.

3. Show that If (t) is a Gaussian process.

Exercise 19.7 (A Solvable SDE) Consider

dX =
1
2
Xdt +

√
1 + X2dW (19.131)

1. Show that there is a unique solution for every initial value X(0) = x0.

2. It happens (you do not have to show this) that, for fixed x0, the the solution
has the form X(t) = φ(W (t)), where φ is a C2 function. Use Itô’s formula
to find the first two derivatives of φ, and then solve the resulting second-
order ODE to get φ.

3. Verify that, with the φ you found in the previous part, φ(W (t)) solves Eq.
19.131 with initial condition X(0) = x0.
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Exercise 19.8 (Building Martingales from SDEs) Let X be an Itô process
given by dX = Adt + BdW , and f any C2 function. Use Itô’s formula to prove
that

f(X(t))− f(X(0))−
∫ t

0

[
A

∂f

∂x
+

1
2
B2 ∂2f

∂x2

]
dt

is a martingale.

Exercise 19.9 (Brownian Motion and the Ornstein-Uhlenbeck Pro-
cess) Consider a Brownian particle whose momentum follows a stationary Ornstein-
Uhlenbeck process, in one spatial dimension (for simplicity). Assume that its
initial position x(0) is fixed at the origin, and then x(t) =

∫ t
0 p(t)dt. Show that

as D → ∞ and D/γ → 1, the distribution of x(t) converges to a standard
Wiener process. Explain why this limit is a physically reasonable one.

Exercise 19.10 (Again with the martingale characterization of the
Wiener process) Try to prove Theorem 247, starting from the integral repre-
sentation of M2 − t and using Itô’s lemma to get the integral representation of
M .


