
Chapter 22

Spectral Analysis and L2
Ergodicity

Section 22.1 makes sense of the idea of white noise. This forms
the bridge from the ideas of Wiener integrals, in the previous lec-
tures, and spectral and ergodic theory, which we will pursue here.

Section 22.2 introduces the spectral representation of weakly sta-
tionary processes, and the central Wiener-Khinchin theorem con-
necting autocovariance to the power spectrum. Subsection 22.2.1
explains why white noise is “white”.

Section 22.3 gives our first classical ergodic result, the “mean
square” (L2) ergodic theorem for weakly stationary processes. Sub-
section 22.3.1 gives an easy proof of a sufficient condition, just using
the autocovariance. Subsection 22.3.2 gives a necessary and suffi-
cient condition, using the spectral representation.

Any reasonable real-valued function x(t) of time, t ∈ R, has a Fourier trans-
form, that is, we can write

x̃(ν) =
1
2π

∫ ∞

−∞
dteiνtx(t)

which can usually be inverted to recover the original function,

x(t) =
∫ ∞

−∞
dνe−iνtx̃(ν)

This one example of an “analysis”, in the original sense of resolving into parts,
of a function into a collection of orthogonal basis functions. (You can find the
details in any book on Fourier analysis, as well as the varying conventions on
where the 2π goes, which side gets the e−iνt, the constraints on x̃ which arise
from the fact that x is real, etc.)
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There are various reasons to prefer the trigonometric basis functions eiνt

over other possible choices. One is that they are invariant under translation
in time, which just changes phases1. This suggests that the Fourier basis will
be particularly useful when dealing with time-invariant systems. For stochas-
tic processes, however, time-invariance is stationarity. This suggests that there
should be some useful way of doing Fourier analysis on stationary random func-
tions. In fact, it turns out that stationary and even weakly-stationary processes
can be productively Fourier-transformed. This is potentially a huge topic, es-
pecially when it’s expanded to include representing random functions in terms
of (countable) series of orthogonal functions. The spectral theory of random
functions connects Fourier analysis, disintegration of measures, Hilbert spaces
and ergodicity. This lecture will do no more than scratch the surface, covering,
in succession, white noise, the basics of the spectral representation of weakly-
stationary random functions and the fundamental Wiener-Khinchin theorem
linking covariance functions to power spectra, why white noise is called “white”,
and the mean-square ergodic theorem.

Good sources, if you want to go further, are the books of Bartlett (1955,
ch. 6) (from whom I’ve stolen shamelessly), the historically important and in-
spiring Wiener (1949, 1961), and of course Doob (1953). Loève (1955, ch. X) is
highly edifying, particular his discussion of Karhunen-Loève transforms, and the
associated construction of the Wiener process as a Fourier series with random
phases.

22.1 White Noise

Scientists and engineers are often uncomfortable with the SDEs in the way
probabilists write them, because they want to divide through by dt and have
the result mean something. The trouble, of course, is that dW/dt does not,
in any ordinary sense, exist. They, however, are often happier ignoring this
inconvenient fact, and talking about “white noise” as what dW/dt ought to be.
This is not totally crazy. Rather, one can define ξ ≡ dW/dt as a generalized
derivative, one whose value at any given time is a random real linear functional,
rather than a random real number. Consequently, it only really makes sense in
integral expressions (like the solutions of SDEs!), but it can, in many ways, be
formally manipulated like an ordinary function.

One way to begin to make sense of this is to start with a standard Wiener
process W (t), and a C1 non-random function u(t), and to use integration by

1If t !→ t + τ , then x̃(ν) !→ eiντ x̃(ν).
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parts:

d

dt
(uW ) = u

dW

dt
+

du

dt
W (22.1)

= u(t)ξ(t) + u̇(t)W (t) (22.2)
∫ t

0

d

dt
(uW )ds =

∫ t

0
u̇(s)W (s) + u(s)ξ(s)ds (22.3)

u(t)W (t)− u(0)W (0) =
∫ t

0
u̇(s)W (s)ds +

∫ t

0
u(s)ξ(s)ds (22.4)

∫ t

0
u(s)ξ(s)ds ≡ u(t)W (t)−

∫ t

0
u̇(s)W (s)ds (22.5)

We can take the last line to define ξ, and time-integrals within which it appears.
Notice that the terms on the RHS are well-defined without the Itô calculus: one
is just a product of two measurable random variables, and the other is the time-
integral of a continuous random function. With this definition, we can establish
some properties of ξ.

Proposition 271 (Linearity of White Noise Integrals) ξ(t) is a linear
functional:

∫ t

0
(a1u1(s) + a2u2(s))ξ(s)ds = a1

∫ t

0
u1(s)ξ(s)ds + a2

∫ t

0
u2(s)ξ(s)ds (22.6)

Proof:
∫ t

0
(a1u1(s) + a2u2(s))ξ(s)ds (22.7)

= (a1u1(t) + a2u2(t))W (t)−
∫ t

0
(a1u̇1(s) + a2u̇2(s))W (s)ds

= a1

∫ t

0
u1(s)ξ(s)ds + a2

∫ t

0
u2(s)ξ(s)ds (22.8)

!

Proposition 272 (White Noise Has Mean Zero) For all t, E [ξ(t)] = 0.

Proof:
∫ t

0
u(s)E [ξ(s)] ds = E

[∫ t

0
u(s)ξ(s)ds

]
(22.9)

= E
[
u(t)W (t)−

∫ t

0
u̇(s)W (s)ds

]
(22.10)

= E [u(t)W (t)]−
∫ t

0
u̇(s)E [W (t)] ds (22.11)

= 0− 0 = 0 (22.12)
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Proposition 273 (White Noise and Itô Integrals) For all u ∈ C1,
∫ t
0 u(s)ξ(s)ds =∫ t

0 u(s)dW .

Proof: Apply Itô’s formula to the function f(t, W ) = u(t)W (t):

d(uW ) = W (t)u̇(t)dt + u(t)dW (22.13)

u(t)W (t) =
∫ t

0
u̇(s)W (s)ds +

∫ t

0
u(t)dW (22.14)

∫ t

0
u(t)dW = u(t)W (t)−

∫ t

0
u̇(s)W (s)ds (22.15)

=
∫ t

0
u(s)ξ(s)ds (22.16)

!
This could be used to extend the definition of white-noise integrals to any

Itô-integrable process.

Proposition 274 (White Noise is Uncorrelated) ξ has delta-function co-
variance: cov (ξ(t1), ξ(t2)) = δ(t1 − t2).

Proof: Since E [ξ(t)] = 0, we just need to show that E [ξ(t1)ξ(t2)] = δ(t1−
t2). Remember (Eq. 17.14 on p. 127) that E [W (t1)W (t2)] = t1 ∧ t2.

∫ t

0

∫ t

0
u(t1)u(t2)E [ξ(t1)ξ(t2)] dt1dt2 (22.17)

= E
[∫ t

0
u(t1)ξ(t1)dt1

∫ t

0
u(t2)ξ(t2)dt2

]
(22.18)

= E

[(∫ t

0
u(t1)ξ(t1)dt1

)2
]

(22.19)

=
∫ t

0
E

[
u2(t1)

]
dt1 =

∫ t

0
u2(t1)dt1 (22.20)

using the preceding proposition, the Itô isometry, and the fact that u is non-
random. But

∫ t

0

∫ t

0
u(t1)u(t2)δ(t1 − t2)dt1dt2 =

∫ t

0
u2(t1)dt1 (22.21)

so δ(t1 − t2) = E [ξ(t1)ξ(t2)] = cov (ξ(t1), ξ(t2)). !

Proposition 275 (White Noise is Gaussian and Stationary) ξ is a strongly
stationary Gaussian process.

Proof: To show that it is Gaussian, use Exercise 19.6. The mean is constant
for all times, and the covariance depends only on |t1−t2|, so it satisfies Definition
50 and is weakly stationary. But a weakly stationary Gaussian process is also
strongly stationary. !
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22.2 Spectral Representation of Weakly Station-
ary Procesess

This section will only handle spectral representations of real- and complex-
valued one-parameter processes in continuous time. Generalizations to vector-
valued and multi-parameter processes are straightforward; handling discrete
time is actually in some ways more irritating, because of limitations on allowable
frequencies of Fourier components (to the range from −π to π).

Definition 276 (Autocovariance Function) Suppose that, for all t ∈ T , X
is real and E

[
X2(t)

]
is finite. Then Γ(t1, t2) ≡ E [X(t1)X(t2)]−E [X(t1)]E [X(t2)]

is the autocovariance function of the process. If the process is weakly station-
ary, so that Γ(t, t + τ) = Γ(0, τ) for all t, τ , write Γ(τ). If X(t) ∈ C, then
Γ(t1, t2) ≡ E

[
X†(t1)X(t2)

]
−E

[
X†(t1)

]
E [X(t2)], where † is complex conjuga-

tion.

Lemma 277 (Autocovariance and Time Reversal) If X is real and weakly
stationary, then Γ(τ) = Γ(−τ); if X is complex and weakly stationary, then
Γ(τ) = Γ†(−τ).

Proof: Direct substitution into the definitions. !
Remarks on terminology. It is common, when only dealing with one stochas-

tic process, to drop the qualifying “auto” and just speak of the covariance func-
tion; I probably will myself. It is also common (especially in the time series
literature) to switch to the (auto)correlation function, i.e., to normalize by the
standard deviations. Finally, be warned that the statistical physics literature
(e.g. Forster, 1975) uses “correlation function” to mean E [X(t1)X(t2)], i.e., the
uncentered mixed second moment. This is a matter of tradition, not (despite
appearances) ignorance.

Definition 278 (Second-Order Process) A complex-valued process X is sec-
ond order when E

[
|X|2(t)

]
<∞ for all t.

Definition 279 (Spectral Representation, Power Spectrum) A real-valued
process X on T has a complex-valued spectral process X̃, if it has a spectral
representation:

X(t) ≡
∫ ∞

−∞
e−iνtdX̃(ν) (22.22)

The power spectrum V (ν) ≡ E
[∣∣∣X̃(ν)

∣∣∣
2
]
.

Remark 1. The name “power spectrum” arises because this is proportional to
the amount of power (energy per unit time) carried by oscillations of frequency
≤ ν, at least in a linear system.
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Remark 2. Notice that the only part of the right-hand side of Equation
22.22 which depends on t is the integrand, e−iνt, which just changes the phase
of each Fourier component deterministically. Roughly speaking, for a fixed ω the
amplitudes of the different Fourier components in X(t, ω) are fixed, and shifting
forward in time just involves changing their phases. (Making this simple is why
we have to allow X̃ to have complex values.)

The spectral representation is another stochastic integral, like the Itô integral
we saw in Section 19.1. There, the measure of the time interval [t1, t2] was given
by the increment of the Wiener process, W (t2)−W (t1). Here, for any frequency
interval [ν1, ν2], the increment X̃(ν2) − X̃(ν1) defines a random set function
(admittedly, a complex-valued one). Since those intervals are a generating class
for the Borel σ-field, the usual arguments extend this set function uniquely to a
random complex measure on R,B. When we write something like

∫
G(ν)dX̃(ν),

we mean an integral with respect to this measure.
Rather than dealing directly with this measure, we can, as with the Itô inte-

gral, use approximation by elementary processes. That is, we should interpret
∫ ∞

−∞
G(t, ν)dX̃(ν)

as the L2 limit of sums
∞∑

νi=−∞
G(t, ν1)(X̃(νi+1)− X̃(νi))

as sup νi+1 − νi goes to zero. This limit can be shown to exist in pretty much
exactly the same way we showed the corresponding limit for Itô integrals to
exist.2

Lemma 280 (Regularity of the Spectral Process) When it exists, X̃(ν)
has right and left limits at every point ν, and limits as ν → ±∞.

Proof: See Loève (1955, §34.4). You can prove this yourself, however, using
the material on characteristic functions in 36-752. !

Definition 281 (Jump of the Spectral Process) The jump of the spec-
tral process at ν is the difference between the right- and left- hand limits at ν,
∆X̃(ν) ≡ X̃(ν + 0)− X̃(ν − 0).

Remark 1: As usual, X̃(ν+0) ≡ limh↓0 X̃(ν + h), and X̃(ν−0) ≡ limh↓0 X̃(ν − h).
Remark 2: Some people call the set of points at which the jump is non-

zero the “spectrum”. This usage comes from functional analysis, but seems
needlessly confusing in the present context.

Proposition 282 (Spectral Representations of Weakly Stationary Pro-
cesses) Every weakly-stationary process has a spectral representation.

2There is a really excellent discussion of such stochastic integrals, and L2 stochastic calculus
more generally, in Loève (1955, §34).
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Proof: See Loève (1955, §34.4), or Bartlett (1955, §6.2). !
The following property will be very important for us, since when the spectral

process has it, many nice consequences follow.

Definition 283 (Orthogonal Increments) A one-parameter random func-
tion (real or complex) has orthogonal increments if, for t1 ≤ t2 ≤ t3 ≤ t4 ∈ T ,
the covariance of the increment from t1 to t2 and the increment from t3 to t4 is
always zero:

E
[(

X̃(ν4)− X̃(ν3)
) (

X̃(ν2)− X̃(ν1)
)†

]
= 0 (22.23)

Lemma 284 (Orthogonal Spectral Increments and Weak Stationarity)
The spectral process of a second-order process has orthogonal increments if and
only if the process is weakly stationary.

Sketch Proof: Assume, without loss of generality, that E [X(t)] = 0, so
E

[
X̃(ν)

]
= 0. “If”: Pick any arbitrary t. We can write, using the fact that

X(t) = X†(t) for real-valued processes,

Γ(τ) = Γ(t, t + τ) (22.24)
= E

[
X†(t)X(t + τ)

]
(22.25)

= E
[∫ ∞

−∞

∫ ∞

−∞
eiν1te−iν2(t+τ)dX̃†

ν1
dX̃ν2

]
(22.26)

= E

[
lim

∆ν→0

∑

ν1

∑

ν2

eit(ν1−ν2)e−iν2τ∆X̃†(ν1)∆X̃(ν2)

]
(22.27)

= lim
∆ν→0

∑

ν1

∑

ν2

eit(ν1−ν2)e−iν2τE
[
∆X̃†(ν1)∆X̃(ν2)

]
(22.28)

where ∆X̃(ν) = X̃(ν+∆ν)−X̃(ν). Since t was arbitrary, every term on the right
must be independent of t. When ν1 = ν2, eit(ν1−ν2) = 1, so E

[
∆X̃†(ν)∆X̃(ν)

]

is unconstrained. If ν1 (= ν2, however, we must have E
[
∆X̃†(ν1)∆X̃(ν2)

]
= 0,

which is to say (Definition 283) we must have orthogonal increments.
“Only if”: if the increments are orthogonal, then clearly the steps of the

argument can be reversed to conclude that Γ(t1, t2) depends only on t2 − t1. !

Definition 285 (Spectral Function, Spectral Density) The spectral func-
tion of a weakly stationary process is the function S(ν) appearing in the spectral
representation of its autocovariance:

Γ(τ) =
∫ ∞

−∞
e−iντdSν (22.29)
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Remark. Some people prefer to talk about the spectral function as the
Fourier transform of the autocorrelation function, rather than of the autoco-
variance. This has the advantage that the spectral function turns out to be
a normalized cumulative distribution function (see Theorem 286 immediately
below), but is otherwise inconsequential.

Theorem 286 (Weakly Stationary Processes Have Spectral Functions)
The spectral function exists for every weakly stationary process, if Γ(τ) is con-
tinuous. Moreover, S(ν) ≥ 0, S is non-decreasing, S(−∞) = 0, S(∞) = Γ(0),
and limh↓0S(ν + h) and limh↓0 S(ν − h) exist for every ν.

Proof: Usually, by an otherwise-obscure result in Fourier analysis called
Bochner’s theorem. A more direct proof is due to Loève. Assume, without loss
of generality, that E [X(t)] = 0.

Start by defining

HT (ν) ≡ 1√
T

∫ T/2

−T/2
eiνtX(t)dt (22.30)

and define fT (ν) through H:

2πfT (ν) ≡ E
[
HT (ν)H†

T (ν)
]

(22.31)

= E

[
1
T

∫ T/2

−T/2

∫ T/2

−T/2
eiνt1X(t1)e−iνt2X†(t2)dt1dt2

]
(22.32)

=
1
T

∫ T/2

−T/2

∫ T/2

−T/2
eiν(t1−t2)E [X(t1)X(t2)] dt1dt2 (22.33)

=
1
T

∫ T/2

−T/2

∫ T/2

−T/2
eiν(t1−t2)Γ(t1 − t2)dt1dt2 (22.34)

=
∫ T

−T

(
1− |τ |

T

)
Γ(τ)eiντdτ (22.35)

Recall that Γ(τ) defines a non-negative quadratic form, meaning that
∑

s,t

a†
satΓ(t− s) ≥ 0

for any sets of times and any complex numbers at. This will in particular work if
the complex numbers lie on the unit circle and can be written eiνt. This means
that integrals ∫ ∫

eiν(t1−t2)Γ(t1 − t2)dt1dt2 ≥ 0 (22.36)

so fT (ν) ≥ 0.
Define φT (τ) as the integrand in Eq. 22.35, so that

fT (ν) =
1
2π

∫ ∞

−∞
φT (τ)eiντdτ (22.37)
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which is recognizable as a proper Fourier transform. Now pick some N > 0 and
massage the equation so it starts to look like an inverse transform.

fT (ν)e−iνt =
1
2π

∫ ∞

−∞
φT (τ)eiντe−iνtdτ (22.38)

(
1− |ν|

N

)
fT (ν)e−iνt =

1
2π

∫ ∞

−∞
φT (τ)eiντe−iνt

(
1− |ν|

N

)
dτ (22.39)

Integrating over frequencies,
∫ N

−N

(
1− |ν|

N

)
fT (ν)e−iνtdν (22.40)

=
∫ N

−N

1
2π

∫ ∞

−∞
φT (τ)eiντe−iνt

(
1− |ν|

N

)
dτdν

=
1
2π

∫ ∞

−∞
φT (τ)

(
sinN(τ − t)/2

N(τ − t)/2

)2

Ndτ (22.41)

For fixed N , it is easy to verify that
∫ ∞

−∞
N

(
sinN(τ − t)/2

N(τ − t)/2

)2

dt = 1

and that

lim
t→τ

N

(
sinN(τ − t)/2

N(τ − t)/2

)2

= N

On the other hand, if τ (= t,

lim
N→∞

N

(
sinN(τ − t)/2

N(τ − t)/2

)2

= 0

uniformly over any bounded interval in t. (You might find it instructive to try
plotting this function; you will need to be careful near the origin!) In other
words, this is a representation of the Dirac delta function, so that

lim
N→∞

∫ ∞

−∞
φT (τ)

(
sinN(τ − t)/2

N(τ − t)/2

)2

Ndτ = φT (τ)

and in fact the convergence is uniform.
Turning to the other side of Equation 22.41,

(
1− |ν|

N

)
fT (ν) ≥ 0, so

∫ N

−N

(
1− |ν|

N

)
fT (ν)e−iνtdν

is like a characteristic function of a distribution, up to, perhaps, an over-all
normalizing factor, which will be (given the right-hand side) φT (0) = Γ(0) > 0.
Since Γ(τ) is continuous, φT (τ) is too, and so, as N → ∞, the right-hand
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side converges uniformly on φT (t), but a uniform limit of characteristic func-
tions is still a characteristic function. Thus φT (t), too, can be obtained from
a characteristic function. Finally, since Γ(t) is the uniform limit of φT (t) on
every bounded interval, Γ(t) has a characteristic-function representation of the
stated form. This allows us to further conclude that S(ν) is real-valued, non-
decreasing, S(−∞) = 0 and S(∞) = Γ(0), and has both right and left limits
everywhere. !

There is a converse, with a cute constructive proof.

Theorem 287 (Existence of Weakly Stationary Processes with Given
Spectral Functions) Let S(ν) be any function with the properties described
at the end of Theorem 286. Then there is a weakly stationary process whose
autocovariance is of the form given in Eq. 22.29.

Proof: Define σ2 = Γ(0), F (ν) = S(ν)/σ2. Now F (ν) is a properly normal-
ized cumulative distribution function. Let N be a random variable distributed
according to F , and Φ ∼ U(0, 2π) be independent of N . Set X(t) ≡ σei(Φ−Nt).
Then E [X(t)] = σE

[
eiΦ

]
E

[
e−iNt

]
= 0. Moreover,

E
[
X†(t1)X(t2)

]
= σ2E

[
e−i(Φ−Nt1)ei(Φ−Nt2)

]
(22.42)

= σ2E
[
e−iN(t1−t2)

]
(22.43)

= σ2

∫ ∞

−∞
e−iν(t1−t2)dFν (22.44)

= Γ(t1 − t2) (22.45)

!

Definition 288 (Jump of the Spectral Function) The jump of the spectral
function at ν, ∆S(ν), is S(ν + 0)− S(ν − 0).

Lemma 289 (Spectral Function Has Non-Negative Jumps) ∆S(ν) ≥ 0.

Proof: Obvious from the fact that S(ν) is non-decreasing. !

Theorem 290 (Wiener-Khinchin Theorem) If X is a weakly stationary
process, then its power spectrum is equal to its spectral function.

V (ν) ≡ E
[∣∣∣X̃(ν)

∣∣∣
2
]

= S(ν) (22.46)

Proof: Assume, without loss of generality, that E [X(t)] = 0. Substitute
the spectral representation of X into the autocovariance, using Fubini’s theorem



CHAPTER 22. SPECTRAL ANALYSIS AND L2 ERGODICITY 180

to turn a product of integrals into a double integral.

Γ(τ) = E [X(t)X(t + τ)] (22.47)
= E

[
X†(t)X(t + τ)

]
(22.48)

= E
[∫ ∞

−∞

∫ ∞

−∞
e−i(t+τ)ν1eitν2dX̃ν1dX̃ν2

]
(22.49)

= E
[∫ ∞

−∞

∫ ∞

−∞
e−it(ν1−ν2)e−iτν2dX̃ν1dX̃ν2

]
(22.50)

=
∫ ∞

−∞

∫ ∞

−∞
e−it(ν1−ν2)e−iτν2E

[
dX̃ν1dX̃ν2

]
(22.51)

using the fact that integration and expectation commute to (formally) bring the
expectation inside the integral. Since X̃ has orthogonal increments, E

[
dX̃†

ν1
dX̃ν2

]
=

0 unless ν1 = ν2. This turns the double integral into a single integral, and kills
the e−it(ν1−ν2) factor, which had to go away because t was arbitrary.

Γ(τ) =
∫ ∞

−∞
e−iτνE

[
d(X̃†

νX̃ν)
]

(22.52)

=
∫ ∞

−∞
e−iτνdVν (22.53)

using the definition of the power spectrum. Since Γ(τ) =
∫∞
−∞ e−iτνdVν , it

follows that Sν and Vν differ by a constant, namely the value of V (−∞), which
can be chosen to be zero without affecting the spectral representation of X. !

22.2.1 How the White Noise Lost Its Color

Why is white noise, as defined in Section 22.1, called “white”? The answer is
easy, given the Wiener-Khinchin relation in Theorem 290.

Recall from Proposition 274 that the autocovariance function of white noise
is δ(t1 − t2). Recall from general analysis that one representation of the delta
function is the following Fourier integral:

δ(t) =
1
2π

∫ ∞

−∞
dνeiνt

(This can be “derived” from inserting the definition of the Fourier transform
into the inverse Fourier transform, among other, more respectable routes.) Ap-
pealing then to the theorem, S(ν) = 1

2π for all ν. That is, there is equal power at
all frequencies, just as white light is composed of light of all colors (frequencies),
mixed with equal intensity.

Relying on this analogy, there is an elaborate taxonomy red, pink, black,
brown, and other variously-colored noises, depending on the shape of their power
spectra. The value of this terminology has honestly never been very clear to
me, but the curious reader is referred to the (very fun) book of Schroeder (1991)
and references therein.
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22.3 The Mean-Square Ergodic Theorem

Ergodic theorems relate functionals calculated along individual sample paths
(say, the time average, T−1

∫ T
0 dtX(t), or the maximum attained value) to func-

tionals calculated over the whole distribution (say, the expectation, E [X(t)], or
the expected maximum). The basic idea is that the two should be close, and they
should get closer the longer the trajectory we use, because in some sense any
one sample path, carried far enough, is representative of the whole distribution.
Since there are many different kinds of functionals, and many different modes of
stochastic convergence, there are many different kinds of ergodic theorem. The
classical ergodic theorems say that time averages converge on expectations3, ei-
ther in Lp or a.s. (both implying convergence in distribution or in probability).
The traditional centerpiece of ergodic theorem is Birkhoff’s “individual” ergodic
theorem, asserting a.s. convergence. We will see its proof, but it will need a lot
of preparatory work, and it requires strict stationarity. By contrast, the L2, or
“mean square”, ergodic theorem, attributed to von Neumann4 is already in our
grasp, and holds for weakly stationary processes.

We will actually prove it twice, once with a fairly transparent sufficient condi-
tion, and then again with a more complicated necessary-and-sufficient condition.
The more complicated proof will wait until next lecture.

22.3.1 Mean-Square Ergodicity Based on the Autocovari-
ance

First, the easy version, which gives an estimate of the rate of convergence.
(What I say here is ripped off from the illuminating discussion in (Frisch, 1995,
sec. 4.4, especially pp. 49–50).)

Definition 291 (Time Averages) When X is a one-sided, continuous-parameter
random process, we say that its time average between times T1 and T2 is X(T1, T2) ≡
(T2 − T1)

−1 ∫ T2

T1
dtX(t). When we only mention one time argument, by default

the time average is from 0 to T , X(T ) ≡ X(0, T ).

(Only considering time averages starting from zero involves no loss of gen-
erality for weakly stationary processes: why?)

Definition 292 (Integral Time Scale) The integral time scale of a weakly-
stationary random process is

τint ≡
∫∞
0 dτ |Γ(τ)|

Γ(0)
(22.54)

3Proverbially: “time averages converge on space averages”, the space in question being
the state space Ξ; or “converge on phase averages”, since physicists call certain kinds of state
space “phase space”.

4See von Plato (1994, ch. 3) for a fascinating history of the development of ergodic theory
through the 1930s, and its place in the history of mathematical probability.
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Notice that τint does, indeed, have units of time.
As a particular example, suppose that Γ(τ) = Γ(0)e−τ/A, where the constant

A is known as the autocorrelation time. Then simple calculus shows that τint =
A.

Theorem 293 (Mean-Square Ergodic Theorem (Finite Autocovariance
Time)) Let X(t) be a weakly stationary process with E [X(t)] = 0. If τint <∞,
then X(T ) L2→ 0 as T →∞.

Proof: Use Fubini’s theorem to to the square of the integral into a double
integral, and then bring the expectation inside it:

E




(

1
T

∫ T

0
dtX(t)

)2


 = E

[
1

T 2

∫ T

0

∫ T

0
dt1dt2X(t1)X(t2)

]
(22.55)

=
1

T 2

∫ T

0

∫ T

0
dt1dt2E [X(t1)X(t2)] (22.56)

=
1

T 2

∫ T

0

∫ T

0
dt1dt2Γ(t1 − t2) (22.57)

=
2

T 2

∫ T

0
dt1

∫ t1

0
dτΓ(τ) (22.58)

≤ 2
T 2

∫ T

0
dt1

∫ ∞

0
dτ |Γ(τ)| (22.59)

=
2
T

∫ ∞

0
dτ |Γ(τ)| (22.60)

Since the integral in the final inequality is Γ(0)τint, which is finite, everything
must go to zero as T →∞. !

Remark. From the proof, we can see that the rate of convergence of the
mean-square of

∥∥X(T )
∥∥

2

2 is (at least) O(1/T ). This would give a root-mean-
square (rms) convergence rate of O(1/

√
T ), which is what the naive statistician

who ignored inter-temporal dependence would expect from the central limit
theorem. (This ergodic theorem says nothing about the form of the distribution
of X(T ) for large T . We will see that, under some circumstances, it is Gaussian,
but that needs stronger assumptions [forms of “mixing”] than we have imposed.)
The naive statistician would expect that the mean-square time average would go
like Γ(0)/T , since Γ(0) = E

[
X2(t)

]
= Var [X(t)]. The proportionality constant

is instead
∫∞
0 dτ |Γ(τ)|. This is equal to the naive guess for white noise, and for

other collections of IID variables, but not in the general case. This leads to the
following

Corollary 294 (Convergence Rate in the Mean-Square Ergodic The-
orem) Under the conditions of Theorem 293,

Var
[
X(T )

]
≤ 2Var [X(0)]

τint

T
(22.61)
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Proof: Since X(t) is centered, E
[
X(T )

]
= 0, and

∥∥X(T )
∥∥

2

2 = Var
[
X(T )

]
.

Everything else follows from re-arranging the bound in the proof of Theorem
293, Definition 292, and the fact that Γ(0) = Var [X(0)]. !

As a consequence of the corollary, if T , τint, then the variance of the time
average is negigible compared to the variance at any one time.

22.3.2 Mean-Square Ergodicity Based on the Spectrum

Let’s warm up with some lemmas of a technical nature. The first relates the
jumps of the spectral process X̃(ν) to the jumps of the spectral function S(ν).

Lemma 295 (Mean-Square Jumps in the Spectral Process) For a weakly

stationary process, E
[∣∣∣∆X̃(ν)

∣∣∣
2
]

= ∆S(ν).

Proof: This follows directly from the Wiener-Khinchin relation (Theorem
290). !
Lemma 296 (The Jump in the Spectral Function) The jump of the spec-
tral function at ν is given by

∆S(ν) = lim
T→∞

1
T

∫ T

0
Γ(τ)eiντdτ (22.62)

Proof: This is a basic inversion result for characteristic functions. It should
become plausible by thinking of this as getting the Fourier transform of Γ as T
grows. !
Lemma 297 (Existence of L2 Limits for Time Averages) If X is weakly
stationary, then for any real f , eiftX(T ) converges in L2 to ∆X̃(f).

Proof: Start by looking at the squared modulus of the time average for
finite time.

∣∣∣∣∣
1
T

∫ T

0
eiftX(t)dt

∣∣∣∣∣

2

(22.63)

=
1

T 2

∫ T

0

∫ T

0
e−if(t1−t2)X†(t1)X(t2)dt1dt2

=
1

T 2

∫ T

0

∫ T

0
e−if(t1−t2)

∫ ∞

−∞
eiν1t1dX̃ν1

∫ ∞

−∞
e−iν2t2dX̃ν2 (22.64)

=
1

T 2

∫ T

0

∫ ∞

−∞
dt1dX̃ν1e

it1(f−ν1)

∫ T

0

∫ ∞

−∞
dt2dX̃ν2e

−it2(f−ν2) (22.65)

As T → ∞, these integrals pick out ∆X̃(f) and ∆X̃†(f). So, eiftX(T ) L2→
∆X̃(f). !

Notice that the limit provided by the lemma is a random quantity. What’s
really desired, in most applications, is convergence to a deterministic limit,
which here would mean convergence (in L2) to zero.
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Lemma 298 (The Mean-Square Ergodic Theorem) If X is weakly sta-
tionary, and E [X(t)] = 0, then X(t) converges in L2 to 0 iff

limT−1

∫ T

0
dτΓ(τ) = 0 (22.66)

Proof: Taking f = 0 in Lemma 297, X(T ) L2→ ∆X̃(0), the jump in the
spectral function at zero. Let’s show that the (i) expectation of this jump is
zero, and that (ii) its variance is given by the integral expression on the LHS of
Eq. 22.66. For (i), because X(T ) L2→ Y , we know that E

[
X(T )

]
→ E [Y ]. But

E
[
X(T )

]
= E [X](T ) = 0. So E

[
∆X̃(0)

]
= 0. For (ii), Lemma 295, plus the

fact that E
[
∆X̃(0)

]
= 0, shows that the variance is equal to the jump in the

spectrum at 0. But, by Lemma 296 with ν = 0, that jump is exactly the LHS
of Eq. 22.66. !

Remark 1: Notice that if the integral time is finite, then the integral condi-
tion on the autocovariance is automatically satisfied, but not vice versa, so the
hypotheses here are strictly weaker than in Theorem 293.

Remark 2: One interpretation of the theorem is that the time-average is con-
verging on the zero-frequency component of the spectral process. Intuitively,
all the other components are being killed off by the time-averaging, because the
because time-integral of a sinusoidal function is bounded, but the denominator
in a time average is unbounded. The only part left is the zero-frequency com-
ponent, whose time integral can also grow linearly with time. If there is a jump
at 0, then this has finite variance; if not, not.

Remark 3: Lemma 297 establishes the L2 convergence of time-averages of
the form

1
T

∫ T

0
eiftX(t)dt

for any real f . Specifically, from Lemma 295, the mean-square of this variable
is converging on the jump in the spectrum at f . Multiplying X(t) by eift makes
the old frequency f component the new frequency zero component, so it is the
surviving term. While the ergodic theorem itself only needs the f = 0 case, this
result is useful in connection with estimating spectra from time series (Doob,
1953, ch. X, §7).

22.4 Exercises

Exercise 22.1 (Mean-Square Ergodicity in Discrete Time) It is often
convenient to have a mean-square ergodic theorem for discrete-time sequences
rather than continuous-time processes. If the dt in the definition of X is re-
interpreted as counting measure on N, rather than Lebesgue measure on R+,
does the proof of Theorem 293 remain valid? (If yes, say why; if no, explain
where the argument fails.)
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Exercise 22.2 (Mean-Square Ergodicity with Non-Zero Mean) State
and prove a version of Theorem 293 which does not assume that E [X(t)] = 0.

Exercise 22.3 (Functions of Weakly Stationary Processes) Suppose X is
a weakly stationary process, and f is a measurable function such that ‖f(X0)‖2 <
∞. Is f(X) a weakly stationary process? (If yes, prove it; if not, give a counter-
example.)

Exercise 22.4 (Ergodicity of the Ornstein-Uhlenbeck Process?) Sup-
pose the Ornstein-Uhlenbeck process is has its invariant distribution as its initial
distribution, and is therefore weakly stationary. Does Theorem 293 apply?


