
10:25 Wednesday 30th January, 2013

Chapter 6

The Bootstrap

We are now several chapters into a statistics class and have said basically nothing
about uncertainty. This should seem odd, and may even be disturbing if you are very
attached to your p-values and saying variables have “significant effects”. It is time to
remedy this, and talk about how we can quantify uncertainty for complex models.
The key technique here is what’s called bootstrapping, or the bootstrap.

6.1 Stochastic Models, Uncertainty, Sampling Distri-
butions

Statistics is the branch of mathematical engineering which studies ways of drawing
inferences from limited and imperfect data. We want to know how a neuron in a
rat’s brain responds when one of its whiskers gets tweaked, or how many rats live
in Pittsburgh, or how high the water will get under the 16mat h r mt h Street bridge
during May, or the typical course of daily temperatures in the city over the year, or
the relationship between the number of birds of prey in Schenley Park in the spring
and the number of rats the previous fall. We have some data on all of these things.
But we know that our data is incomplete, and experience tells us that repeating our
experiments or observations, even taking great care to replicate the conditions, gives
more or less different answers every time. It is foolish to treat any inference from the
data in hand as certain.

If all data sources were totally capricious, there’d be nothing to do beyond piously
qualifying every conclusion with “but we could be wrong about this”. A mathemat-
ical discipline of statistics is possible because while repeating an experiment gives
different results, some kinds of results are more common than others; their relative
frequencies are reasonably stable. We thus model the data-generating mechanism
through probability distributions and stochastic processes. When and why we can
use stochastic models are very deep questions, but ones for another time. If we can
use them in our problem, quantities like the ones I mentioned above are represented
as functions of the stochastic model, i.e., of the underlying probability distribution.

129

6.1. STOCHASTIC MODELS, UNCERTAINTY, SAMPLING
DISTRIBUTIONS 130

Since a function of a function is a “functional”, and these quantities are functions of
the true probability distribution function, we’ll call these functionals or statistical
functionals1. Functionals could be single numbers (like the total rat population), or
vectors, or even whole curves (like the expected time-course of temperature over the
year, or the regression of hawks now on rats earlier). Statistical inference becomes
estimating those functionals, or testing hypotheses about them.

These estimates and other inferences are functions of the data values, which means
that they inherit variability from the underlying stochastic process. If we “re-ran the
tape” (as the late, great Stephen Jay Gould used to say), we would get different data,
with a certain characteristic distribution, and applying a fixed procedure would yield
different inferences, again with a certain distribution. Statisticians want to use this
distribution to quantify the uncertainty of the inferences. For instance, the stan-
dard error is an answer to the question “By how much would our estimate of this
functional vary, typically, from one replication of the experiment to another?” (It
presumes a particular meaning for “typically vary”, as root mean square deviation
around the mean.) A confidence region on a parameter, likewise, is the answer to
“What are all the values of the parameter which could have produced this data with
at least some specified probability?”, i.e., all the parameter values under which our
data are not low-probability outliers. The confidence region is a promise that either
the true parameter point lies in that region, or something very unlikely under any
circumstances happened — or that our stochastic model is wrong.

To get things like standard errors or confidence intervals, we need to know the
distribution of our estimates around the true values of our functionals. These sam-
pling distributions follow, remember, from the distribution of the data, since our
estimates are functions of the data. Mathematically the problem is well-defined, but
actually computing anything is another story. Estimates are typically complicated
functions of the data, and mathematically-convenient distributions may all be poor
approximations to the data source. Saying anything in closed form about the distribu-
tion of estimates can be simply hopeless. The two classical responses of statisticians
were to focus on tractable special cases, and to appeal to asymptotics.

Your introductory statistics courses mostly drilled you in the special cases. From
one side, limit the kind of estimator we use to those with a simple mathematical form
— say, means and other linear functions of the data. From the other, assume that the
probability distributions featured in the stochastic model take one of a few forms
for which exact calculation is possible, analytically or via tabulated special functions.
Most such distributions have origin myths: the Gaussian arises from averaging many
independent variables of equal size (say, the many genes which contribute to height
in humans); the Poisson distribution comes from counting how many of a large num-
ber of independent and individually-improbable events have occurred (say, radioac-
tive nuclei decaying in a given second), etc. Squeezed from both ends, the sampling
distribution of estimators and other functions of the data becomes exactly calculable
in terms of the aforementioned special functions.

That these origin myths invoke various limits is no accident. The great results
1Most writers in theoretical statistics just call them “parameters” in a generalized sense, but I will try

to restrict that word to actual parameters specifying statistical models, to minimize confusion. I may slip
up.

10:25 Wednesday 30th January, 2013

131 6.2. THE BOOTSTRAP PRINCIPLE

of probability theory — the laws of large numbers, the ergodic theorem, the central
limit theorem, etc. — describe limits in which all stochastic processes in broad classes
of models display the same asymptotic behavior. The central limit theorem, for in-
stance, says that if we average more and more independent random quantities with a
common distribution, and that common distribution isn’t too pathological, then the
average becomes closer and closer to a Gaussian2 Typically, as in the CLT, the limits
involve taking more and more data from the source, so statisticians use the theorems
to find the asymptotic, large-sample distributions of their estimates. We have been
especially devoted to re-writing our estimates as averages of independent quantities,
so that we can use the CLT to get Gaussian asymptotics.

Up through about the 1960s, statistics was split between developing general ideas
about how to draw and evaluate inferences with stochastic models, and working out
the properties of inferential procedures in tractable special cases (especially the linear-
and-Gaussian case), or under asymptotic approximations. This yoked a very broad
and abstract theory of inference to very narrow and concrete practical formulas, an
uneasy combination often preserved in basic statistics classes.

The arrival of (comparatively) cheap and fast computers made it feasible for sci-
entists and statisticians to record lots of data and to fit models to it, so they did.
Sometimes the models were conventional ones, including the special-case assump-
tions, which often enough turned out to be detectably, and consequentially, wrong.
At other times, scientists wanted more complicated or flexible models, some of which
had been proposed long before, but now moved from being theoretical curiosities to
stuff that could run overnight3. In principle, asymptotics might handle either kind
of problem, but convergence to the limit could be unacceptably slow, especially for
more complex models.

By the 1970s, then, statistics faced the problem of quantifying the uncertainty of
inferences without using either implausibly-helpful assumptions or asymptotics; all
of the solutions turned out to demand even more computation. Here we will exam-
ine what may be the most successful solution, Bradley Efron’s proposal to combine
estimation with simulation, which he gave the less-that-clear but persistent name of
“the bootstrap” (Efron, 1979).

6.2 The Bootstrap Principle
Remember (from baby stats.) that the key to dealing with uncertainty in parameters
and functionals is the sampling distribution of estimators. Knowing what distribu-
tion we’d get for our estimates on repeating the experiment would give us things like
standard errors. Efron’s insight was that we can simulate replication. After all, we
have already fitted a model to the data, which is a guess at the mechanism which gen-
erated the data. Running that mechanism generates simulated data which, by hypoth-
esis, has the same distribution as the real data. Feeding the simulated data through

2The reason is that the non-Gaussian parts of the distribution wash away under averaging, but the
average of two Gaussians is another Gaussian.

3Kernel regression, kernel density estimation, and nearest neighbors prediction were all proposed in
the 1950s, but didn’t begin to be widely used until the 1970s, or even the 1980s.

10:25 Wednesday 30th January, 2013

6.2. THE BOOTSTRAP PRINCIPLE 132

data
.00168

-0.00249

0.0183

-0.00587

0.0139
es

tim
at

or

fitted model

q0.01 = -0.0326

parameter calculation

sim
ulati

on

simulated data
.00183

-0.00378

0.00754

-0.00587

-0.00673

es
tim

at
or

q0.01 = -0.0323

re-estimate

Figure 6.1: Schematic for model-based bootstrapping: simulated values are generated
from the fitted model, then treated like the original data, yielding a new estimate of
the functional of interest, here called q0.01.

our estimator gives us one draw from the sampling distribution; repeating this many
times yields the sampling distribution. Since we are using the model to give us its own
uncertainty, Efron called this “bootstrapping”; unlike the Baron Munchhausen’s plan
for getting himself out of a swamp by pulling himself out by his bootstraps, it works.

Figure 6.1 sketches the over-all process: fit a model to data, use the model to cal-
culate the functional, then get the sampling distribution by generating new, synthetic
data from the model and repeating the estimation on the simulation output.

To fix notation, we’ll say that the original data is x. (In general this is a whole data
frame, not a single number.) Our parameter estimate from the data is ✓̂. Surrogate
data sets simulated from the fitted model will be X̃1, X̃2, . . . X̃B . The corresponding
re-estimates of the parameters on the surrogate data are ✓̃1, ✓̃2, . . . ✓̃B . The functional
of interest is estimated by the statistic T , with sample value t̂ = T (x), and values
of the surrogates of t̃1 = T (X̃1), t̃2 = T (X̃2), . . . t̃B = T (X̃B). (The statistic T may
be a direct function of the estimated parameters, and only indirectly a function of
x.) Everything which follows applies without modification when the functional of
interest is the parameter, or some component of the parameter.

In this section, we will assume that the model is correct for some value of ✓, which
we will call ✓0. The true (population or ensemble) values of the functional is likewise

10:25 Wednesday 30th January, 2013

133 6.2. THE BOOTSTRAP PRINCIPLE

rboot <- function(B, statistic, simulator) {
tboots <- replicate(B, statistic(simulator()))
return(tboots)

}

bootstrap.se <- function(simulator, statistic, B) {
tboots <- rboot(B, statistic, simulator)
se <- sd(tboots)
return(se)

}

Code Example 10: Sketch of code for calculating bootstrap standard errors. The
function rboot generates B bootstrap samples (using the simulator function) and
calculates the statistic g on them (using statistic). simulator needs to be a func-
tion which returns a surrogate data set in a form suitable for statistic. (How would
you modify the code to pass arguments to simulator and/or statistic?) Because
every use of bootstrapping is going to need to do this, it makes sense to break it out
as a separate function, rather than writing the same code many times (with many
chances of getting it wrong). bootstrap.se just calls rboot and takes a standard
deviation.

t0.

6.2.1 Variances and Standard Errors
The simplest thing to do is to get the variance or standard error:

”Var
⇥

t̂
⇤
= Var
⇥

t̃
⇤

(6.1)
bse(t̂) = sd(t̃) (6.2)

That is, we approximate the variance of our estimate of t0 under the true but un-
known distribution ✓0 by the variance of re-estimates t̃ on surrogate data from the
fitted model b✓. Similarly we approximate the true standard error by the standard de-
viation of the re-estimates. The logic here is that the simulated X̃ has about the same
distribution as the real X that our data, x, was drawn from, so applying the same
estimation procedure to the surrogate data gives us the sampling distribution. This
assumes, of course, that our model is right, and that ✓̂ is not too far from ✓0.

Pseudo-code is provided in Code Example 10.

6.2.2 Bias Correction
We can use bootstrapping to correct for a biased estimator. Since the sampling distri-
bution of t̃ is close to that of bt , and bt itself is close to t0,

E
⇥bt⇤� t0 ⇡ E
⇥

t̃
⇤� bt (6.3)

10:25 Wednesday 30th January, 2013

6.2. THE BOOTSTRAP PRINCIPLE 134

bootstrap.bias <- function(simulator, statistic, B,
t.hat) {
tboots <- rboot(B, statistic, simulator)
bias <- mean(tboots) - t.hat
return(bias)

}

Code Example 11: Sketch of code for bootstrap bias correction. Arguments are as
in Code Example 10, except that t.hat is the estimate on the original data.

The left hand side is the bias that we want to know, and the right-hand side the was
what we can calculate with the bootstrap.

Note, in fact, that Eq. 6.3 remains valid so long as the sampling distribution of
bt � t0 is close to that of t̃ � bt . This is a weaker requirement than asking for bt and t̃
themselves to have similar distributions, or asking for bt to be close to t0. In statistical
theory, a random variable whose distribution does not depend on the parameters is
called a pivot. (The metaphor is that it stays in one place while the parameters turn
around it.) A sufficient (but not necessary) condition for Eq. 6.3 to hold is that bt � t0
be a pivot, or approximately pivotal.

6.2.3 Confidence Intervals

A confidence interval is a random interval which contains the truth with high proba-
bility (the confidence level). If the confidence interval for g is C , and the confidence
level is 1�↵, then we want

Pr (t0 2C) = 1�↵ (6.4)

no matter what the true value of t0. When we calculate a confidence interval, our
inability to deal with distributions exactly means that the true confidence level, or
coverage of the interval, is not quite the desired confidence level 1� ↵; the closer it
is, the better the approximation, and the more accurate the confidence interval.

When we simulate, we get samples of t̃ , but what we really care about is the
distribution of t̂ . When we have enough data to start with, those two distributions
will be approximately the same. But with equal amounts of data, the distribution of
t̃ � t̂ will usually be closer to that of t̂ � t0 than the distribution of t̃ is to that of
t̂ . That is, the distribution of fluctuations around the true value usually converges
quickly. (Think of the central limit theorem.) We can use this to turn information
about the distribution of t̃ into accurate confidence intervals for t0, essentially by
re-centering t̃ around t̂ .

10:25 Wednesday 30th January, 2013

135 6.2. THE BOOTSTRAP PRINCIPLE

bootstrap.ci.basic <- function(simulator, statistic, B,
t.hat, alpha) {
tboots <- rboot(B,statistic, simulator)
ci.lower <- 2*t.hat - quantile(tboots,1-alpha/2)
ci.upper <- 2*t.hat - quantile(tboots,alpha/2)
return(list(ci.lower=ci.lower,ci.upper=ci.upper))

}

Code Example 12: Sketch of code for calculating the basic bootstrap confidence
interval. See Code Examples 11 and 10.

Specifically, let q↵/2 and q1�↵/2 be the ↵/2 and 1�↵/2 quantiles of t̃ . Then

1�↵ = Pr
Ä

q↵/2  T̃  q1�↵/2
ä

(6.5)

= Pr
Ä

q↵/2� T̂  T̃ � T̂  q1�↵/2� T̂
ä

(6.6)

⇡ Pr
Ä

q↵/2� T̂  T̂ � t0  q1�↵/2� T̂
ä

(6.7)

= Pr
Ä

q↵/2� 2T̂ �t0  q1�↵/2� 2T̂
ä

(6.8)

= Pr
Ä

2T̂ � q1�↵/2  t0  2T̂ � q↵/2
ä

(6.9)

The interval C = [2T̂ � q↵/2, 2T̂ � q1�↵/2] is random, because T̂ is a random quan-
tity, so it makes sense to talk about the probability that it contains the true value
t0. Also, notice that the upper and lower quantiles of T̃ have, as it were, swapped
roles in determining the upper and lower confidence limits. Finally, notice that we
do not actually know those quantiles exactly, but they’re what we approximate by
bootstrapping.

This is the basic bootstrap confidence interval, or the pivotal CI. It is simple
and reasonably accurate, and makes a very good default choice for finding confidence
intervals.

6.2.3.1 Other Bootstrap Confidence Intervals

The basic bootstrap CI relies on the distribution of t̃ � t̂ being approximately the
same as that of t̂ � t0. Even when this is false, however, it can be that the distribution
of

⌧ =
t̂ � t0

bse(t̂) (6.10)

is close to that of

⌧̃ =
t̃ � t̂
se(t̃)

(6.11)

This is like what we calculate in a t -test, and since the t -test was invented by “Stu-
dent”, these are called studentized quantities. If ⌧ and ⌧̃ have the same distribution,

10:25 Wednesday 30th January, 2013

6.2. THE BOOTSTRAP PRINCIPLE 136

then we can reason as above and get a confidence interval
�

t̂ � bse(t̂)Q⌧̃(1�↵/2), t̂ � bse(t̂)Q⌧̃(↵/2)
�

(6.12)

This is the same as the basic interval when bse(t̂) = se(t̃), but different otherwise. To
find se(t̃), we need to actually do a second level of bootstrapping, as follows.

1. Fit the model with ✓̂, find t̂ .

2. For i 2 1 : B1

(a) Generate X̃i from ✓̂

(b) Estimate ✓̃i , t̃i

(c) For j 2 1 : B2

i. Generate X †
i j from ✓̃i

ii. Calculate t †
i j

(d) Set �̃i = standard deviation of the t †
i j

(e) Set ⌧̃i j =
t †
i j� t̃i

�̃i
for all j

3. Set bse(t̂) = standard deviation of the t̃i

4. Find the ↵/2 and 1�↵/2 quantiles of the distribution of the ⌧̃

5. Plug into Eq. 6.12.

The advantage of the studentized intervals is that they are more accurate than the
basic ones; the disadvantage is that they are more work! At the other extreme, the
percentile method simply sets the confidence interval to

�
Qt̃ (↵/2),Qt̃ (1�↵/2)

�
(6.13)

This is definitely easier to calculate, but not as accurate as the basic, pivotal CI.
All of these methods have many variations, described in the monographs referred

to at the end of this chapter.

6.2.4 Hypothesis Testing
For hypothesis tests, we may want to calculate two sets of sampling distributions: the
distribution of the test statistic under the null tells us about the size of the test and
significance levels, and the distribution under the alternative tells about power and
realized power. We can find either with bootstrapping, by simulating from either
the null or the alternative. In such cases, the statistic of interest, which I’ve been
calling T , is the test statistic. Code Example 13 illustrates how to find a p-value by
simulating under the null hypothesis. The same procedure would work to calculate
power, only we’d need to simulate from the alternative hypothesis, and testhat
would be set to the critical value of T separating acceptance from rejection, not the
observed value.

10:25 Wednesday 30th January, 2013

137 6.2. THE BOOTSTRAP PRINCIPLE

boot.pvalue <- function(test,simulator,B,testhat) {
testboot <- rboot(B=B, statistic=test, simulator=simulator)
p <- (sum(test >= testhat)+1)/(B+1)
return(p)

}

Code Example 13: Bootstrap p-value calculation. testhat should be the value of
the test statistic on the actual data. test is a function which takes in a data set and
calculates the test statistic, under the presumption that large values indicate departure
from the null hypothesis. Note the +1 in the numerator and denominator of the p-
value — it would be more straightforward to leave them off, but this is a little more
stable when B is comparatively small. (Also, it keeps us from ever reporting a p-value
of exactly 0.)

6.2.4.1 Double bootstrap hypothesis testing

When the hypothesis we are testing involves estimated parameters, we may need to
correct for this. Suppose, for instance, that we are doing a goodness-of-fit test. If we
estimate our parameters on the data set, we adjust our distribution so that it matches
the data. It is thus not surprising if it seems to fit the data well! (Essentially, it’s the
problem of evaluating performance by looking at in-sample fit, which is more or less
where we began the course.)

Some test statistics have distributions which are not affected by estimating pa-
rameters, at least not asymptotically. In other cases, one can analytically come up
with correction terms. When these routes are blocked, one uses a double bootstrap,
where a second level of bootstrapping checks how much estimation improves the ap-
parent fit of the model. This is perhaps most easily explained in pseudo-code (Code
Example 14).

6.2.5 Parametric Bootstrapping Example: Pareto’s Law of Wealth
Inequality

The Pareto distribution4, or power-law distribution, is a popular model for data with
“heavy tails”, i.e. where the probability density f (x) goes to zero only very slowly as
x!1. The probability density is

f (x) =
✓� 1

x0

Ç
x
x0

å�✓
(6.14)

where x0 is the minimum scale of the distribution, and ✓ is the scaling exponent.
(EXERCISE: show that x0 is the mode of the distribution.) The Pareto is highly right-
skewed, with the mean being much larger than the median.

4Named after Vilfredo Pareto, the highly influential late-19th/early-20th century economist, political
scientist, and proto-Fascist.

10:25 Wednesday 30th January, 2013

6.2. THE BOOTSTRAP PRINCIPLE 138

doubleboot.pvalue <- function(test,simulator,B1,B2,
estimator, thetahat, testhat) {
for (i in 1:B1) {

xboot <- simulator(theta=thetahat, ...)
thetaboot <- estimator(xboot)
testboot[i] <- test(xboot)
pboot[i] <- boot.pvalue(test,simulator,B2,

testhat=testboot[i],theta=thetaboot)
}
p <- (sum(testboot >= testhat)+1)/(B1+1)
p.adj <- (sum(pboot <= p)+1)/(B1+1)

}

Code Example 14: Code sketch for “double bootstrap” significance testing. The
inner or second bootstrap is used to calculate the distribution of nominal bootstrap
p-values. For this to work, we need to draw our second-level bootstrap samples from
✓̃, the bootstrap re-estimate, not from ✓̂, the data estimate. The code presumes the
simulator function takes a theta argument allowing this.

If we know x0, one can show that the maximum likelihood estimator of the ex-
ponent ✓ is

✓̂= 1+
n
Pn

i=1 log xi
x0

(6.15)

and that this is consistent5, and efficient. Picking x0 is a harder problem (see Clauset
et al. 2009) — for the present purposes, pretend that the Oracle tells us. The file
pareto.R, on the class website, contains a number of functions related to the Pareto
distribution, including a function pareto.fit for estimating it. (There’s an example
of its use below.)

Pareto came up with this density when he attempted to model the distribution
of wealth. Approximately, but quite robustly across countries and time-periods, the
upper tail of the distribution of income and wealth follows a power law, with the
exponent varying as money is more or less concentrated among the very richest6.
Figure 6.2 shows the distribution of net worth for the 400 richest Americans in 2003.
Taking x0 = 9⇥ 108 (again, see Clauset et al. 2009), the number of individuals in the
tail is 302, and the estimated exponent is ✓̂= 2.34.

> source("pareto.R")
> wealth <- scan("wealth.dat")
> wealth.pareto <- pareto.fit(wealth,threshold=9e8)
> signif(wealth.pareto$exponent,3)
[1] 2.34

5Because the sample mean of logX converges, under the law of large numbers
6Most of the distribution conforms to a log-normal, at least roughly.

10:25 Wednesday 30th January, 2013

139 6.2. THE BOOTSTRAP PRINCIPLE

1e+09 2e+09 5e+09 1e+10 2e+10 5e+10

0.
00
2

0.
00
5

0.
02
0

0.
05
0

0.
20
0

0.
50
0

Net worth (dollars)

Fr
ac

tio
n

of
 in

di
vi

du
al

s
at

 o
r a

bo
ve

 th
at

 n
et

 w
or

th

plot.survival.loglog(wealth,xlab="Net worth (dollars)",
ylab="Fraction of individuals at or above that net worth")

rug(wealth,side=1,col="grey")
curve((302/400)*ppareto(x,threshold=9e8,exponent=2.34,lower.tail=FALSE),

add=TRUE,lty=2,from=9e8,to=2*max(wealth))

Figure 6.2: Upper cumulative distribution function (or “survival function”) of net
worth for the 400 richest individuals in the US (2000 data). The solid line shows
the fraction of the 400 individuals whose net worth W equaled or exceeded a given
value w, Pr (W � w). (Note the logarithmic scale for both axes.) The dashed line
is a maximum-likelihood estimate of the Pareto distribution, taking x0 = $9⇥ 108.
(This threshold was picked using the method of Clauset et al. 2009.) Since there are
302 individuals at or above the threshold, the cumulative distribution function of the
Pareto has to be reduced by a factor of (302/400).

10:25 Wednesday 30th January, 2013

6.2. THE BOOTSTRAP PRINCIPLE 140

rboot.pareto <- function(B,exponent,x0,n) {
replicate(B,pareto.fit(rpareto(n,x0,exponent),x0)$exponent)

}

pareto.se <- function(B,exponent,x0,n) {
return(sd(rboot.pareto(B,exponent,x0,n)))

}

pareto.bias <- function(B,exponent,x0,n) {
return(mean(rboot.pareto(B,exponent,x0,n)) - exponent)

}

Code Example 15: Standard error and bias calculation for the Pareto distribution,
using parametric bootstrapping.

How much uncertainty is there in this estimate of the exponent? Naturally, we’ll
bootstrap. We need a function to generate Pareto-distributed random variables; this,
along with some related functions, is part of the file pareto.R on the course website.
With that tool, parametric bootstrapping proceeds as in Code Example 15.

With ✓̂ = 2.34, x0 = 9⇥ 108, n = 302 and B = 104, this gives a standard error of
±0.077. This matches some asymptotic theory reasonably well7, but didn’t require
asymptotic assumptions.

Asymptotically, the bias is known to go to zero; at this size, bootstrapping gives
a bias of 3⇥ 10�3, which is effectively negligible.

We can also get the confidence interval (Code Example 16). Using, again, 104

bootstrap replications, the 95% CI is (2.16,2.47). In theory, the confidence interval
could be calculated exactly, but it involves the inverse gamma distribution (Arnold,
1983), and it is quite literally faster to write and do the bootstrap than go to look it
up.

A more challenging problem is goodness-of-fit; we’ll use the Kolmogorov-Smirnov
statistic.8 Code Example 17 calculates the p-value. With ten thousand bootstrap
replications,

> ks.pvalue.pareto(1e4,wealth,2.34,9e8)

7“In Asympotpia”, the variance of the MLE should be (✓̂�1)2
n , in this case 0.076. The intuition is

that this variance depends on how sharp the maximum of the likelihood function is — if it’s sharply
peaked, we can find the maximum very precisely, but a broad maximum is hard to pin down. Variance
is thus inversely proportional to the second derivative of the negative log-likelihood. (The minus sign is
because the second derivative has to be negative at a maximum, while variance has to be positive.) For one
sample, the expected second derivative of the negative log-likelihood is (✓�1)�2. (This is called the Fisher
information of the model.) Log-likelihood adds across independent samples, giving us an over-all factor
of n. In the large-sample limit, the actual log-likelihood will converge on the expected log-likelihood, so
this gives us the asymptotic variance.

8The pareto.R file contains a function, pareto.tail.ks.test, which does a goodness-of-fit test for
fitting a power-law to the tail of the distribution. That differs somewhat from what follows, because it
takes into account the extra uncertainty which comes from having to estimate x0. Here, I am pretending
that an Oracle told us x0 = 9⇥ 108.

10:25 Wednesday 30th January, 2013

141 6.3. NON-PARAMETRIC BOOTSTRAPPING

pareto.ci <- function(B,exponent,x0,n,alpha) {
tboot <- rboot.pareto(B,exponent,x0,n)
ci.lower <- 2*exponent - quantile(tboot,1-alpha/2)
ci.upper <- 2*exponent - quantile(tboot,alpha/2)
return(list(ci.lower=ci.lower, ci.upper=ci.upper))

}

Code Example 16: Parametric bootstrap confidence interval for the Pareto scaling
exponent.

[1] 0.0119988

Ten thousand replicates is enough that we should be able to accurately estimate
probabilities of around 0.01 (since the binomial standard error will be

∆
0.01
0.99 104 ⇡

9.9⇥ 10�4; if it weren’t, we might want to increase B .
Simply plugging in to the standard formulas, and thereby ignoring the effects of

estimating the scaling exponent, gives a p-value of 0.16, which is not outstanding but
not awful either. Properly accounting for the flexibility of the model, however, the
discrepancy between what it predicts and what the data shows is so large that it would
take an awfully big (one-a-hundred) coincidence to produce it.

We have, therefore, detected that the Pareto distribution makes systematic errors
for this data, but we don’t know much about what they are. In Chapter 16, we’ll
look at techniques which can begin to tell us something about how it fails.

6.3 Non-parametric Bootstrapping
The bootstrap approximates the sampling distribution, with three sources of approx-
imation error. First, simulation error: using finitely many replications to stand for
the full sampling distribution. Clever simulation design can shrink this, but brute
force — just using enough replicates — can also make it arbitrarily small. Second, sta-
tistical error: the sampling distribution of the bootstrap re-estimates under our esti-
mated model is not exactly the same as the sampling distribution of estimates under
the true data-generating process. The sampling distribution changes with the param-
eters, and our initial estimate is not completely accurate. But it often turns out that
distribution of estimates around the truth is more nearly invariant than the distribu-
tion of estimates themselves, so subtracting the initial estimate from the bootstrapped
values helps reduce the statistical error; there are many subtler tricks to the same end.
Third, specification error: the data source doesn’t exactly follow our model at all.
Simulating the model then never quite matches the actual sampling distribution.

Efron had a second brilliant idea, which is to address specification error by re-
placing simulation from the model with re-sampling from the data. After all, our
initial collection of data gives us a lot of information about the relative probabili-
ties of different values. In a sense the empirical distribution is the least prejudiced
estimate possible of the underlying distribution — anything else imposes biases or

10:25 Wednesday 30th January, 2013

6.3. NON-PARAMETRIC BOOTSTRAPPING 142

ks.stat.pareto <- function(data, exponent, x0) {
data <- data[data>=x0]
ks <- ks.test(data, ppareto, exponent=exponent,

threshold=x0)
return(ks$statistic)

}

ks.pvalue.pareto <- function(B, data, exponent, x0) {
testhat <- ks.stat.pareto(data, exponent, x0)
testboot <- vector(length=B)
for (i in 1:B) {

xboot <- rpareto(length(data),exponent=exponent,
threshold=x0)

exp.boot <- pareto.fit(xboot,threshold=x0)$exponent
testboot[i] <- ks.stat.pareto(xboot,exp.boot,x0)

}
p <- (sum(testboot >= testhat)+1)/(B+1)
return(p)

}

Code Example 17: Calculating a p-value for the Pareto distribution, using the
Kolmogorov-Smirnov test and adjusting for the way estimating the scaling exponent
moves the fitted distribution closer to the data.

pre-conceptions, possibly accurate but also potentially misleading9. Lots of quanti-
ties can be estimated directly from the empirical distribution, without the mediation
of a parametric model. Efron’s non-parametric bootstrap treats the original data set
as a complete population and draws a new, simulated sample from it, picking each
observation with equal probability (allowing repeated values) and then re-running
the estimation (Figure 6.3). In fact, this is usually what people mean when they talk
about “the bootstrap” without any modifier.

Everything we did with parametric bootstrapping can also be done with non-
parametric bootstrapping — the only thing that’s changing is the distribution the
surrogate data is coming from.

The non-parametric bootstrap should remind you of k-fold cross-validation. The
analog of leave-one-out CV is a procedure called the jack-knife, where we repeat the
estimate n times on n � 1 of the data points, holding each one out in turn. It’s
historically important (it dates back to the 1940s), but generally doesn’t work as well
as the non-parametric bootstrap.

An important variant is the smoothed bootstrap, where we re-sample the data
points and then perturb each by a small amount of noise, generally Gaussian10.

Code Example 18 shows how to use re-sampling to get a 95% confidence interval

9See §15.6 in Chapter 15.
10We will see in Chapter 15 that this corresponds to sampling from a kernel density estimate

10:25 Wednesday 30th January, 2013

143 6.3. NON-PARAMETRIC BOOTSTRAPPING

data
0.00168

-0.00249

0.0183

-0.00587

0.0139

es
tim

at
or

empirical
distribution

q0.01 = -0.0392

parameter calculation

re-sampling

simulated data
0.00183

0.00183

-0.00249

-0.00249

-0.00587

es
tim

at
or

q0.01 = -0.0354

re-estimate

Figure 6.3: Schematic for non-parametric bootstrapping. New data is simulated by
re-sampling from the original data (with replacement), and parameters are calculated
either directly from the empirical distribution, or by applying a model to this surro-
gate data.

10:25 Wednesday 30th January, 2013

6.4. BOOTSTRAPPING REGRESSION MODELS 144

resample <- function(x) {
sample(x,size=length(x),replace=TRUE)

}

resamp.pareto <- function(B,data,x0) {
replicate(B,
pareto.fit(resample(data),threshold=x0)$exponent)

}

resamp.pareto.CI <- function(B,data,alpha,x0) {
thetahat <- pareto.fit(data,threshold=x0)$exponent
thetaboot <- resamp.pareto(B,data,x0)
ci.lower <- 2*thetahat - quantile(thetaboot,1-alpha/2)
ci.upper <- 2*thetahat - quantile(thetaboot,alpha/2)
return(list(ci.lower=ci.lower,ci.upper=ci.upper))

}

Code Example 18: Non-parametric bootstrap confidence intervals for the Pareto
scaling exponent.

for the Pareto exponent11. With B = 104, it gives the 95% confidence interval for the
scaling exponent as (2.18,2.48). The fact that this is very close to the interval we got
from parametric bootstrapping should actually reassure us about its validity.

6.3.1 Parametric vs. Nonparametric Bootstrapping
When we have a properly specified model, simulating from the model gives more
accurate results (at the same n) than does re-sampling the empirical distribution —
parametric estimates of the distribution converge faster than the empirical distribu-
tion does. If on the other hand the parametric model is mis-specified, then it is rapidly
converging to the wrong distribution. This is of course just another bias-variance
trade-off, like those we’ve seen in regression.

Since I am suspicious of most parametric modeling assumptions, I prefer re-sampling,
when I can figure out how to do it, or at least until I have convinced myself that a
parametric model is good approximation to reality.

6.4 Bootstrapping Regression Models
With a regression model, which is fit to a set of input-output pairs, (x1, y1), (x2, y2), . . . (xn , yn),
resulting in a regression curve (or surface) r̂ (x), fitted values ŷi = r̂ (xi), and residuals,

11Even if the Pareto model is wrong, the estimator of the exponent will converge on the value which
gives, in a certain sense, the best approximation to the true distribution from among all power laws.
Econometricians call such parameter values thepseudo-true; we are getting a confidence interval for the
pseudo-truth. In this case, the pseudo-true scaling exponent can still be a useful way of summarizing how
heavy tailed the income distribution is, despite the fact that the power law makes systematic errors.

10:25 Wednesday 30th January, 2013

145 6.4. BOOTSTRAPPING REGRESSION MODELS

✏i = yi � ŷi = r̂ (xi), we have a choice of several ways of bootstrapping, in decreasing
order of relying on the model.

• Simulate new X values from the model’s distribution of X , and then draw Y
from the specified conditional distribution Y |X .

• Hold the x fixed, but draw Y |X from the specified distribution.

• Hold the x fixed, but make Y equal to r̂ (x) plus a randomly re-sampled ✏ j .

• Re-sample (x, y) pairs.

The first case is pure parametric bootstrapping. (So is the second, sometimes, when
the regression model is agnostic about X .) The last case is just re-sampling from the
joint distribution of (X ,Y). The next-to-last case is called re-sampling the residuals
or re-sampling the errors. When we do that, we rely on the regression model to
get the conditional expectation function right, but we don’t count on it getting the
distribution of the noise around the expectations.

The specific procedure of re-sampling the residuals is to re-sample the ✏i , with
replacement, to get ✏̃1, ✏̃2, . . . ✏̃n , and then set x̃i = xi , ỹi = r̂ (x̃i) + ✏̃i . This surrogate
data set is then re-analyzed like new data.

6.4.1 Re-sampling Points: Parametric Example

A classic data set contains the time between 299 eruptions of the Old Faithful geyser
in Yellowstone, and the length of the subsequent eruptions; these variables are called
waiting and duration. We’ll look at the linear regression of waiting on duration.
We’ll re-sample (duration, waiting) pairs, and would like confidence intervals for
the regression coefficients. This is a confidence interval for the coefficients of best
liner predictor, a functional of the distribution, which, as we saw in Chapters 1 and
2, exists no matter how nonlinear the process really is. It’s only a confidence interval
for the true regression parameters if the real regression function is linear.

Before anything else, look at the model:

library(MASS)
data(geyser)
geyser.lm <- lm(waiting~duration,data=geyser)
summary(geyser.lm)

The first step in bootstrapping this is to build our simulator, which just means sam-
pling rows from the data frame:

resample.geyser <- function() {
sample.rows <- resample(1:nrow(geyser))
return(sample.rows)

}

10:25 Wednesday 30th January, 2013

6.4. BOOTSTRAPPING REGRESSION MODELS 146

geyser.lm.cis <- function(B,alpha) {
tboot <- replicate(B,

est.waiting.on.duration(resample.geyser()))
low.quantiles <- apply(tboot,1,quantile,probs=alpha/2)
high.quantiles <- apply(tboot,1,quantile,probs=1-alpha/2)
low.cis <- 2*coefficients(geyser.lm) - high.quantiles
high.cis <- 2*coefficients(geyser.lm) - low.quantiles
cis <- rbind(low.cis,high.cis)
rownames(cis) <- as.character(c(alpha/2,1-alpha/2))
return(cis)

}

Code Example 19: Bootstrapped confidence intervals for the linear model of Old
Faithful, based on re-sampling data points. Relies on functions defined in the text.

We can check this by running summary(geyser[resample.geyser(),], and seeing
that it gives about the same quartiles and mean for both variables as summary(geyser)12.

Next, we define the estimator:

est.waiting.on.duration <- function(subset,data=geyser) {
fit <- lm(waiting ~ duration, data=data,subset=subset)
return(coefficients(fit))

}

This exploits the fact that lm(), like many model-estimation functions, can take as an
optional argument a vector of row numbers (subset), and look only at those rows of
the data. We can check that this function works by seeing that est.waiting.on.duration(1:nrow(geyser))
gives the same results as coefficients(geyser.lm).

Putting the pieces together according to the basic confidence interval recipe (Code
Example 19), we get

> signif(geyser.lm.cis(B=1e4,alpha=0.05),3)
(Intercept) duration

0.025 96.5 -8.70
0.975 102.0 -6.92

Notice that we do not have to assume homoskedastic Gaussian noise — fortunately,
because that’s a very bad assumption here13.

12The minimum and maximum won’t match up well — why not?
13We have calculated 95% confidence intervals for the intercept �0 and the slope �1 separately. These

intervals cover their coefficients all but 5% of the time. Taken together, they give us a rectangle in (�0,�1)
space, but the coverage probability of this rectangle could be anywhere from 95% all the way down to 90%.
To get a confidence region which simultaneously covers both coefficients 95% of the time, we have two big
options. One is to stick to a box-shaped region and just increase the confidence level on each coordinate (to
97.5%). The other is to define some suitable metric of how far apart coefficient vectors are (e.g., ordinary
Euclidean distance), find the 95% percentile of the distribution of this metric, and trace the appropriate
contour around �̂0, �̂1.

10:25 Wednesday 30th January, 2013

147 6.4. BOOTSTRAPPING REGRESSION MODELS

6.4.2 Re-sampling Points: Non-parametric Example
Nothing in the logic of re-sampling data points for regression requires us to use a para-
metric model. Here we’ll provide 95% confidence bounds for the kernel smoothing
of the geyser data. Since the functional is a whole curve, the confidence set is often
called a confidence band.

We use the same simulator, but start with a different regression curve, and need a
different estimator.

library(np)
npr.waiting.on.duration <- function(subset,data=geyser,tol=0.1,ftol=0.1) {

bw <- npregbw(waiting ~ duration, data=data, subset=subset,
tol=tol, ftol=ftol)

fit <- npreg(bw)
return(fit)

}
geyser.npr <- npr.waiting.on.duration(1:nrow(geyser))

Now we construct pointwise 95% confidence bands for the regression curve. For
this end, we don’t really need to keep around the whole kernel regression object
— we’ll just use its predicted values on a uniform grid of points, extending slightly
beyond the range of the data (Code Example 20). Observe that this will go through
bandwidth selection again for each bootstrap sample. This is slow, but it is the most
secure way of getting good confidence bands. Applying the bandwidth we found
on the data to each re-sample would be faster, but would introduce an extra level of
approximation, since we wouldn’t be treating each simulation run the same as the
original data.

Figure 6.4 shows the curve fit to the data, the 95% confidence limits, and (faintly)
all of the bootstrapped curves. Doing the 800 bootstrap replicates took 4 minutes on
my laptop14.

14Specifically, I ran system.time(geyser.npr.cis <- npr.cis(B=800,alpha=0.05)), which not
only did the calculations and stored them in geyser.npr.cis, but told me how much time it took R to
do them.

10:25 Wednesday 30th January, 2013

6.4. BOOTSTRAPPING REGRESSION MODELS 148

evaluation.points <- seq(from=0.8,to=5.5,length.out=200)
evaluation.points <- data.frame(duration=evaluation.points)

eval.npr <- function(npr) {
return(predict(npr,newdata=evaluation.points))

}

main.curve <- eval.npr(geyser.npr)

npr.cis <- function(B,alpha) {
tboot <- replicate(B,

eval.npr(npr.waiting.on.duration(resample.geyser())))
low.quantiles <- apply(tboot,1,quantile,probs=alpha/2)
high.quantiles <- apply(tboot,1,quantile,probs=1-alpha/2)
low.cis <- 2*main.curve - high.quantiles
high.cis <- 2*main.curve - low.quantiles
cis <- rbind(low.cis,high.cis)
return(list(cis=cis,tboot=t(tboot)))

}

Code Example 20: Finding confidence bands around the kernel regression model of
Old Faithful by re-sampling data points. Notice that much of npr.cis is the same
as geyser.lm.cis, and the other functions for calculating confidence intervals. It
would be better programming practice to extract the common find-the-confidence-
limits part as a separate function, which could be called as needed. (Taking the trans-
pose of the tboot matrix at the end is just so that it has the same orientation as the
matrix of confidence limits.)

10:25 Wednesday 30th January, 2013

149 6.4. BOOTSTRAPPING REGRESSION MODELS

geyser.npr.cis <- npr.cis(B=800,alpha=0.05)
plot(0,type="n",xlim=c(0.8,5.5),ylim=c(0,100),

xlab="Duration (min)", ylab="Waiting (min)")
for (i in 1:800) {

lines(evaluation.points$duration,geyser.npr.cis$tboot[i,],
lwd=0.1,col="grey")

}
lines(evaluation.points$duration,geyser.npr.cis$cis[1,])
lines(evaluation.points$duration,geyser.npr.cis$cis[2,])
lines(evaluation.points$duration,main.curve)
rug(geyser$duration,side=1)
points(geyser$duration,geyser$waiting)

Figure 6.4: Kernel regression curve for Old Faithful (central black line), with 95%
confidence bands (other black lines), the 800 bootstrapped curves (thin, grey lines),
and the data points. Notice that the confidence bands get wider where there is less
data. Caution: doing the bootstrap took 4 minutes to run on my computer.

10:25 Wednesday 30th January, 2013

6.4. BOOTSTRAPPING REGRESSION MODELS 150

6.4.3 Re-sampling Residuals: Example
As an example of re-sampling the residuals, rather than data points, let’s take a linear
regression, from the homework using the Penn World Tables, of gdp.growth on
log(gdp), pop.growth, invest and trade:

penn <- read.csv("http://www.stat.cmu.edu/~cshalizi/uADA/13/hw/02/penn-select.csv")
penn.formula <- "gdp.growth ~ log(gdp) + pop.growth + invest + trade"
penn.lm <- lm(penn.formula, data=penn)

(Why make the formula a separate object here?) The estimated parameters are

> signif(coefficients(penn.lm),3)
(Intercept) log(gdp) pop.growth invest trade

5.71e-04 5.07e-04 -1.87e-01 7.15e-04 3.11e-05

Code Example 21 shows the new simulator for this set-up (resample.residuals.penn)15,
the new estimation function (penn.estimator)16, and the confidence interval calcu-
lation (penn.lm.cis).

Which delivers our confidence intervals:

> signif(penn.lm.cis(1e4,0.05),3)
(Intercept) log(gdp) pop.growth invest trade

low.cis -0.0153 -0.00151 -0.358 0.000499 -2.00e-05
high.cis 0.0175 0.00240 -0.021 0.000937 8.19e-05

Doing ten thousand linear regressions took 45 seconds on my computer, as op-
posed to 4 minutes for eight hundred kernel regressions.

15How would you check that this was working right?
16How would you check that this was working right?

10:25 Wednesday 30th January, 2013

151 6.4. BOOTSTRAPPING REGRESSION MODELS

resample.residuals.penn <- function() {
new.frame <- penn
new.growths <- fitted(penn.lm) +

resample(residuals(penn.lm))
new.frame$gdp.growth <- new.growths
return(new.frame)

}

penn.estimator <- function(data) {
fit <- lm(penn.formula, data=data)
return(coefficients(fit))

}

penn.lm.cis <- function(B,alpha) {
tboot <- replicate(B,

penn.estimator(resample.residuals.penn()))
low.quantiles <- apply(tboot,1,quantile,probs=alpha/2)
high.quantiles <- apply(tboot,1,quantile,probs=1-alpha/2)
low.cis <- 2*coefficients(penn.lm) - high.quantiles
high.cis <- 2*coefficients(penn.lm) - low.quantiles
cis <- rbind(low.cis,high.cis)
return(cis)

}

Code Example 21: Re-sampling the residuals to get confidence intervals in a linear
model.

10:25 Wednesday 30th January, 2013

6.5. BOOTSTRAP WITH DEPENDENT DATA 152

6.5 Bootstrap with Dependent Data
If the data point we are looking are vectors (or more complicated structures) with de-
pendence between components, but each data point is independently generated from
the same distribution, then dependence isn’t really an issue. We re-sample vectors,
or generate vectors from our model, and proceed as usual. In fact, that’s what we’ve
done so far in several cases.

If there is dependence across data points, things are more tricky. If our model
incorporates this dependence, then we can just simulate whole data sets from it. An
appropriate re-sampling method is trickier — just re-sampling individual data points
destroys the dependence, so it won’t do. We will revisit this question when we look
at time series and spatial data in Chapters 25–27.

6.6 Things Bootstrapping Does Poorly
The principle behind bootstrapping is that sampling distributions under the true pro-
cess should be close to sampling distributions under good estimates of the truth. If
small perturbations to the data-generating process produce huge swings in the sam-
pling distribution, bootstrapping will not work well, and may fail spectacularly. For
parametric bootstrapping, this means that small changes to the underlying parame-
ters must produced small changes to the functionals of interest. Similarly, for non-
parametric bootstrapping, it means that adding or removing a few data points must
change the functionals only a little17.

Re-sampling in particular has trouble with extreme values. Here is a simple ex-
ample: Our data points Xi are IID, with Xi ⇠ U ni f (0,✓0), and we want to estimate
✓0. The maximum likelihood estimate ✓̂ is just the sample maximum of the xi . We’ll
use the non-parametric bootstrap to get a confidence interval for this, as above — but
I will fix the true ✓0 = 1, and see how often the 95% confidence interval covers the
truth.

x <- runif(100)
is.covered <- function() {

max.boot <- replicate(1e3,max(resample(x)))
all(1 >= 2*max(x) - quantile(max.boot,0.975),

1 <= 2*max(x) - quantile(max.boot,0.025))
}
sum(replicate(1000,is.covered()))

When I run the last line, I get 19, so the true coverage probability is not 95% but
1.9%.

If you suspect that your use of the bootstrap may be setting yourself up for a
similar epic fail, your two options are (1) learn some of the theory of the bootstrap

17More generally, moving from one distribution function f to another (1� ✏) f + ✏g mustn’t change
the functional very much when ✏ is small, no matter in what “direction” g we perturb it. Making this idea
precise calls for some fairly deep mathematics, about differential calculus on spaces of functions.

10:25 Wednesday 30th January, 2013

153 6.7. FURTHER READING

from the references in the “Further Reading” section below, or (2) set up a simulation
experiment like this one.

6.7 Further Reading
The original paper on the bootstrap, Efron (1979), is extremely clear, and for the
most part presented in the simplest possible terms; it’s worth reading. His later small
book (Efron, 1982), while often cited, is not in my opinion so useful nowadays18.
Davison and Hinkley (1997) is both a good textbook, and the reference I consult
most often; the CRAN package boot is based on the code written for this book.
Efron and Tibshirani (1993), while also very good, is more theoretical. Canty et al.
(2006) has useful advice for serious applications.

6.8 Exercises
To think through, not to hand in.

1. Derive the maximum likelihood estimator for the Pareto distribution (Eq. 6.15)
from the density (Eq. 6.14).

2. Find confidence bands for the linear regression model of using

(a) The usual Gaussian assumptions (hint: try the intervals="confidence"
option to predict)

(b) Resampling of residuals
(c) Resampling of cases

18It seems to have done a good job of explaining things to people who were already professional statis-
ticians in 1982.

10:25 Wednesday 30th January, 2013

