
1. The introduction to Part I of Wainer’s book discusses and displays a graphical train schedule developed by E.J. Marey:

 (a) Name two things that you can read from this plot that are not on an ordinary tabular schedule.

 (b) Can you find a reason why, after 100 years, Marey’s idea is not used in public transportation? In what ways is a table better?

2. In class we discussed the data-ink principle: most of the ink on a graph should be devoted to the data (the actual content of the graph). Often a graphic can be improved by removing superfluous ink.

 (a) Following the principle of data-ink, describe a useful change to Marey’s train schedule.

 (b) Describe a change to the usual histogram graphic (such as the one you made in lab) which would increase its proportion of data-ink, without sacrificing readability. Sketch an example. (Hint: the ‘content’ of a histogram is only the heights and widths of the bars.)

3. From the course web page, download the spreadsheet *hw1.xls*. Load this data into R and make a histogram of the column **PCT40.64**, using 40 bins. This data is the percentage of people aged 40–64 in each census tract in Pennsylvania, according to the 1990 Census. Make sure the axes in the plot are labeled according to this description.

 (a) Are there exceptional points which lie outside the main distribution?

 (b) Does the distribution have multiple modes? If so, identify them.

 (c) Putting together (a) and (b), summarize what this graph says about the geographic distribution of people aged 40–64 in Pennsylvania, in everyday terms. For example, are they uniformly distributed across the state?
4. Find an example in your own life where you could collect data and make use of a histogram to learn something. Try to make it personal enough that no one else in the class would think of it, and make sure that enough data could be collected for the graph to be meaningful.

(a) If you found an exceptional value or multiple modes, what would you learn?
(b) How could the common mistakes in making histograms affect what you learn?

5. Find the data set squid.dat on the course webpage and save it into your working directory. These data are various morphological measurements of squids. Now import the data: squid=read.table("squid.dat", header=T) into R.

(a) Look at the data set. Type names(squid) to see the variable names.
(b) You will often need to pick out certain parts of a data set based on a location or criterion. In R this is done with square brackets, [p,q]. Subsets of rows are specified in the 1st position (i.e. by p), and subsets of columns in the 2nd position (by q). If either position is empty, then no subsetting happens on that dimension. For example squid[5,3] picks out the value in the 5th row and 3rd column, but squid[,3] selects all rows and only the 3rd column of the squid data set.

Subsets can be specified by row/column numbers, or by a logical statement (e.g. ==,!=). Consider the data frame you made called mydat. Execute these examples and show the results, explaining what subsets you have extracted:

> mydat[1,1]
> mydat[5:9,2]
> mydat[mydat$Group=="A",]
> mydat[mydat$Score>.5,]

(c) The command plot(x,y) creates a simple scatter-plot. Use this command to get a plot of rost versus weight, and add a line to the plot to get a sense of the relevance of a possible regression relationship. Interpret what you see in the graph.