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Abstract

This paper studies global testing of the slope function in functional linear regression models. A

major challenge in functional global testing is to choose the dimension of projection when approxi-

mating the functional regression model by a finite dimensional multivariate linear regression model.

We develop a new method that simultaneously tests the slope vectors in a sequence of functional

principal components regression models. The sequence of models being tested is determined by the

sample size and is an integral part of the testing procedure. Our theoretical analysis shows that

the proposed method is uniformly powerful over a class of smooth alternatives when the signal to

noise ratio exceeds the detection boundary. The methods and results reflect the deep connection

between the functional linear regression model and the Gaussian sequence model. We also present

an extensive simulation study and a real data example to illustrate the finite sample performance

of our method.

Keywords: Functional linear regression, detection boundary, adaptive testing, functional principal

components
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1. INTRODUCTION

In the functional linear regression model, the data consists of i.i.d pairs (Y
i

, X
i

)n
i=1 satisfying

Y
i

= b0 + hX
i

, ✓i+ �Z
i

, i = 1, ..., n, (1)

where X
i

is a random sample from a zero-mean stochastic process indexed on [0, 1] with sample

paths in L2[0, 1]; ✓ 2 L2[0, 1] is the slope function; and Z
i

’s are independent standard Gaussian

noise. Here h·, ·i denotes the usual inner product in L2[0, 1]: hf, gi =
R

fg.

The functional linear model is an important component of functional data analysis and there

has been a vast literature on estimation and prediction for functional linear models. Methods of

estimating the slope function are studied in, among others, Cardot, Ferraty & Sarda (2003), Yao,

Müller & Wang (2005), Crambes, Kneip & Sarda (2009), Cardot & Johannes (2010). Minimax

rates of estimation are established by Hall & Horowitz (2007), Cai & Zhou (2008), Meister (2011),

using functional principal components regression, and by Yuan & Cai (2010) using a Reproducing

Kernel Hilbert Space approach. The problem of prediction is studied by Cai & Hall (2006).

The focus of this paper is hypothesis testing for the functional linear regression model (1).

Specifically, we are interested in testing the presence of a global linear e↵ect of X on Y :

H0 : ✓ = 0 against H
a

: ✓ 6= 0.

Despite the advances in estimation and prediction, there has been relatively less work on hypothesis

testing for functional linear models. Cardot, Ferraty, Mas & Sarda (2003) proposed a method that

reduces the problem to testing the linear e↵ect of the first m coordinates in a basis expansion

(for example, functional principal components) of X and ✓. González-Manteiga & Mart́ınez-Calvo

(2011) developed a bootstrap approach to construct pointwise confidence intervals for the slope

function ✓(t). Other work on related topics include testing linear e↵ects of scalar covariates on

functional response (Shen & Faraway (2004), Zhang & Chen (2007)), nonparametric regression

e↵ects of scalar covariates on functional responeses (Cardot, Prchal & Sarda (2007)), and functional

two-sample tests (Hall & van Keilegom (2007), Zhang & Chen (2007)).

In this paper, we develop a new approach to test functional global linear e↵ects that parallels

the theory and methodology for minimax estimation in functional linear models (Hall & Horowitz

(2007), Cai & Zhou (2008)). Our method follows the functional principal components regression
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approach, but simultaneously tests the slope vectors in an increasing sequence of finite dimensional

regression models. A simple version of this procedure can be described as follows. Given two

positive integers k
n,min  k

n,max, we test the functional principal components regression models

corresponding to the first m
k

= 2k principal components, for all k
n,min  k  k

n,max. Our theory

suggests that k
n,min grows slowly as n (say, for example, log log n), and k

n,max grows at the rate

of log n. Such a choice ensures that the search range is large enough so that a wide collection of

smooth alternatives can be successfully detected. On the other hand, the number of simultaneous

tests grows slowly with n so that the power is not severely reduced by multiple testing.

In our method, choosing the number of principal components is an integral part of the testing

procedure, while many existing methods need to first specify a dimension of projection and then

perform a finite dimensional test. Under suitable smoothness conditions detailed in Section 3, our

testing procedure can be justified through the following detection boundary framework.

P1. If the signal to noise ratio, k✓k22/�2, exceeds the rate (r⇤
n

)2, then our test statistic can consis-

tently separate the null and all smooth alternatives, with

r⇤
n

=

✓

p
log log n

n

◆

2�
4�+2�+1

,

where, roughly speaking, � corresponds to the decay rate of the eigenvalues of the covariance

operator of X in the sense that the jth eigenvalue is of order j�� ; and � corresponds to the

smoothness of slope function ✓, in the sense that its jth coe�cient in an orthogonal basis

expansion is bounded by j���1/2. Here k✓k22 =
R 1
0 ✓

2(t)dt is the usual squared L2 norm on

L2[0, 1].

P2. If the signal to noise ratio, k✓k22/�2, decays faster than the rate (r⇤
n

)2, then no test can

consistently separate the null and all possible alternatives.

A detailed definition of these terms, the exact meaning of � and �, as well as exact conditions and

rigorous statements, are given in Section 3.

Property P1 means that the test procedure is consistent whenever the signal to noise ratio

exceeds a certain threshold, specified by (r⇤
n

)2. This is a uniform power guarantee over a class

of alternatives, for which only smoothness is assumed. Property P2 indicates that such a critical
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rate cannot be improved. Thus our method is indeed asymptotically minimax consistent. Such

a framework of high dimensional and nonparametric testing has been considered in the literature

by Ingster (1982), Spokoiny (1996), Donoho & Jin (2004), Ingster, Tsybakov & Verzelen (2010),

Ingster, Sapatinas & Suslina (2012), Arias-Castro, Candès & Plan (2011).

The critical separation rate r⇤
n

given above is slightly smaller than the well-known corresponding

minimax error rate of estimation, which is n��/(2�+�+1) (see Hall & Horowitz (2007), Cai & Zhou

(2008), and also Meister (2011)). In other words, the testing problem is more subtle than estimation

since it is still possible to detect the e↵ect even when the signal to noise ratio is below the optimal

estimation error rate. This is because testing only tries to tell the presence of a linear e↵ect

rather than to recover it. Similar phenomenon has been observed in other high dimensional or

nonparametric inference problems such as Ingster et al. (2012), Donoho & Jin (2004).

The log log n factor in the critical rate r⇤
n

is the price for adaptivity. In fact, if we know that

the covariate functions and the alternative hypothesis belong to specific classes of smooth functions

(that is, we know the values of � and �), then one can find an optimal number of principal

components for the test without searching for it, and therefore avoid the log log n term. In the case

of unknown smoothness, we need an extra log log n factor to search over a range of dimensions of

projection on the leading principal components. This reflects another di↵erence between testing and

estimation in functional linear models: For estimation it is possible to obtain adaptive estimators

that achieve the same non-adaptive minimax optimal rate (Cai & Zhou (2008)).

The minimaxity of our test is illustrated through an extensive simulation study. In comparison

with methods using a single dimension of projection, our method always performs at least as well as

the competitors. A single dimension of projection may be suitable for some alternatives, but there

always exist other alternatives for which it performs poorly. Because when the selected dimension

is too high the test will be too noisy, and when the dimension is too low, it may miss the signal.

The minimaxity of our method ensures that it always has good power against smooth alternatives

in the detectable region. In our real data example, we consider a situation where two di↵erent

projection dimensions lead to di↵erent results. Our method can be used to support the functional

principal component regression approach and reconcile the test results obtained from di↵erent finite

dimensional tests.
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The methods and results in this paper are built on top of the deep connection between the

functional linear regression model and the Gaussian white noise model. Let � be the covariance

operator of X. It is shown by Meister (2011) that if � and �2 are known, then (1) is asymptotically

equivalent to the Gaussian white noise model in Le Cam’s sense (Le Cam (1986), Le Cam & Yang

(2000))

dY (t) =
h

�1/2✓
i

(t)dt+ n�1/2�dW (t), (2)

where (Y (t) : 0  t  1) is an Itō process; W (t) is a standard Wiener process; and the di↵erentiation

shall be interpreted in terms of the Itō calculus. Moreover, one can project both sides of (2) on the

eigenfunctions of �, obtaining the following equivalent Gaussian sequence model.

⌘
j

= ✓
j

+ (n
j

)�1/2�Z
j

, j � 1, (3)

where ⌘
j

= �1/2
j

R 1
0 �j(t)dY (t), ✓

j

=
R 1
0 �j(t)✓(t)dt, Zj

=
R 1
0 �j(t)dW (t) (i.i.d standard normal),

and (
j

,�
j

)
j�1 are the eigenvalues and eigenfunctions of � (see Section 2.1). The asymptotic

equivalence theory suggests that, when � and �2 are known, the asymptotic error rate of an inference

procedure in models (2) and (3) can usually be carried over to a corresponding inference problem in

model (1). In the functional linear regression model � and �2 often need to be estimated from the

data. One of the main e↵orts in this paper is to show that, under standard regularity conditions,

when the unknown quantities are substituted by their empirical estimates, the test developed for

the Gaussian sequence model with known covariance remains consistent in the detectable region as

defined in Section 3.2.

In Section 2 we present some preliminaries including functional principal components regression

and describe our test procedure. In Section 3 we derive the asymptotic properties of our procedure

under a detection boundary framework. The finite sample behavior of the proposed method is

presented in Section 4 through both simulation and real data examples. Section 5 gives some

concluding remarks. Technical proofs are postponed to the Appendix. Some lengthy proofs and

additional simulation results are included in the Supplementary Material.

2. PROBLEM FORMULATION AND METHODOLOGY

Let Y, X, and Z be the n⇥ 1 vector of the response variable, the collection of observed covariate

functions, and the vector of unobserved additive noise, respectively. For presentation simplicity
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assume that EY = b0 = 0 (see Remark 2.2 below). We also assume that P
X

, the marginal

distribution of X, has zero measure on any finite dimensional subspaces.

The methodological and theoretical development of this paper will also be based on the assump-

tion that the X
i

curves are fully observed without noise. In practice X
i

’s are usually observed at

discrete locations with noises. A standard approach is to first estimate each X
i

using smoothing

techniques (kernel, spline, or local polynomial). Let N be the number of observations on each

curve, and h be the smoothing bandwidth. It can be shown (Hall, Müller & Wang 2006; Zhang

& Chen 2007) that when the observation is dense enough (Nhn��

1 ! 1, N1��

2h ! 1, with

h = O(n�1/4) and positive constants �1, �2), the resulting estimators of individual curves and co-

variance operator are
p
n-consistent under standard smoothness conditions on X. In other words,

they are as good as using the true curves X
i

for estimating the covariance operator. The proofs of

this paper will go through for such pre-smoothed densely observed data because we only require

the covariance operator to be estimated with O(1/
p
n) accuracy.

2.1 Functional principal components regression

We study functional linear regression using the functional principal components approach and

establish its connection with the Gaussian sequence model. The following general discussion can

be found in the literature (see Hall & Horowitz (2007), Meister (2011), for example).

For any s, t 2 [0, 1], let �(s, t) = Cov(X(s), X(t)) be the covariance of X(s) and X(t). Then

� defines a symmetric function [0, 1]2 7! R. Let b�(s, t) = n�1
P

n

i=1Xi

(s)X
i

(t) be the sample

covariance. � and b� can be written in the eigen-decomposition (also known as the Karhunen-Loève

expansion)

�(s, t) =
1
X

j=1


j

�
j

(s)�
j

(t), b�(s, t) =
1
X

j=1

b
j

b�
j

(s)b�
j

(t), (4)

where the non-increasing sequences (
j

: j � 1) and (b
j

: j � 1) are the population and sample

eigenvalues and (�
j

: j � 1), (b�
j

: j � 1) are the corresponding eigenfunctions, each forming an

orthonormal basis of L2[0, 1]. By the linear independence of X
i

’s, we have b
n

> b
n+1 = 0. The

covariance functions �, b� can be viewed as linear operators from L2[0, 1] to L2[0, 1] as follows.

(�f)(t) =

Z 1

0
�(s, t)f(s)ds =

1
X

j=1


j

hf,�
j

i�
j

(t), 8 f 2 L2[0, 1]. (5)
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Using the idea of principal components regression, we first represent the regression coe�cient

function ✓ in these two bases:

✓ =
X

j�1

✓
j

�
j

=
X

j�1

b✓⇤
j

b�
j

, where ✓
j

= h�
j

, ✓i, b✓⇤
j

= hb�
j

, ✓i.

In view of equation (5) and the fact that EY X(t) = (�✓)(t), we have the following estimate of ✓.

b✓ =
n

X

j=1

b✓
j

b�
j

, (6)

where

b✓
j

= b�1
j

*

n�1
n

X

i=1

Y
i

X
i

, b�
j

+

.

The next lemma relates b✓
j

to b✓⇤
j

, which is useful for the development of our test and theoretical

analysis. It is proved in Appendix A.

Lemma 2.1. Let b✓ be defined as in (6), then

b✓
j

= hb�
j

, b✓i = b✓⇤
j

+
�

p

nb
j

Z⇤
j

, j = 1, ..., n, (7)

where (Z⇤
j

: 1  j  n) is a sequence of independent standard Gaussian random variables.

Lemma 2.1 provides a starting point for the development of our methods. It relates functional

linear regression to the Gaussian sequence model in (3) with obvious correspondence. The Gaussian

sequence model (3) can be viewed as a population version of (7). This is clearly an ill-posed inverse

problem because (n
j

)�1/2 ! 1, as j ! 1. Minimax testing problem for model (3) has been

studied by Ingster et al. (2012). Inspired by the result in Meister (2011), our strategy is to make

use of such a similarity between (7) and (3), showing that the tests developed for the latter can be

used to solve the former.

Remark 2.2. When Y (and possibly X) is not centered, one can re-center the data by removing

the sample mean from each data point. In this case, Lemma 2.1 holds in exactly the same manner.

Moreover, it is known (Hall et al. 2006) that the estimated covariance operator is still
p
n-consistent.

As a result, the estimation error induced in re-centering does not a↵ect the methods and results

presented below.
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2.2 The Exponential Scan Test

Under the null hypothesis ✓ = 0 and hence b✓⇤
j

= h✓, b�
j

i = 0 for all j. Eq. (7) suggests that
p

nb
j

��1
b✓
j

= Z⇤
j

are independent standard Gaussian random variables. For all 1  m  n, define

S
n,m

=
n

b�2

m

X

j=1

b
j

b✓2
j

, and T
n,m

=
1p
2m

(S
n,m

�m), (8)

where b�2 is an estimate of �2 and will be discussed later. If b�2 is an accurate estimate of �2,

then the statistic S
n,m

has approximately a �2 distribution with m degrees of freedom under the

null hypothesis, while T
n,m

, a centered and scaled version of S
n,m

, converges weakly to a standard

normal when m and n are large (see Cardot, Ferraty, Mas & Sarda (2003), Ingster et al. (2012)).

For a fixed value of m, one can easily derive a level ↵ test using S
n,m

or T
n,m

. However, each m

leads to a di↵erent test, whose power depends on the particular simple alternative hypothesis. We

propose to scan over di↵erent values of m so that the test can detect a wide range of alternative

hypotheses. Specifically, let m0 = m0(n) be an integer depending on n such that m0(n)/ log n ! 0

and m0(n) ! 1. For example, one can choose m0(n) = b
p
log nc. Then we define m

k

= m02k for

k = 0, 1, ..., k
n,max := dlog2(n1/3/m0)e. The Exponential Scan Test is given by

Reject H0, if  ES(Y,X) = 1,

where

 ES(Y,X) = 1I {90  k  k
n,max, s.t. T

n,mk � b(m
k

)} , (9)

where T
n,m

is defined as in (8), and b(m) is a function to be determined by the user. We call

it the Exponential Scan Test since it searches sub-models with exponentially increasing number

of principal components. It is inspired by similar methods developed for the Gaussian sequence

model (Ingster et al. (2012)). To apply this procedure, we need to specify two components: (1) the

function b(m), and (2) the estimator b�2. Here we give some brief comments on their choices for

practical concerns. Some theoretical discussions on b(m) and b�2 are given in Section 3.

Choosing the threshold b(m) for a specific level ↵. Suppose we want to construct a level ↵

test for a given ↵ 2 (0, 1). One choice of b(m) can be given by Bonferroni correction:

b(m) =
1p
2m

[t(↵/(k
n,max + 1),m)�m] , (10)
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where t(a,m) is the upper a-quantile of a �2 random variable with m degrees of freedom. More

generally, one can use b(m
k

) = [t(↵
k

,m
k

)�m
k

] /
p
2m, with

P

kn,max

k=0 ↵
k

= ↵.

Estimating the noise variance. A consistent estimator of �2 can be obtained by the residual

mean square in the linear regression of Y on the first m
n

estimated principal components, provided

that m
n

grows slowly to infinity as n increases (Cai & Zhou (2008)). In our implementation,

m
n

= b
p
nc gives reasonable estimates for small and moderate values of n. For theoretical concerns,

we actually need b�2 to be accurate enough with a specific rate of convergence. Further discussion

is given in Section 3.2.

3. THEORETICAL PROPERTIES

In this section we discuss the asymptotic properties of our method in a detection boundary frame-

work. Specifically, we rigorously state and prove properties P1 and P2 listed in Section 1. In

the following discussion, all limits are considered as n ! 1. For two positive sequences (a
n

)

and (b
n

), a
n

= o(b
n

) means a
n

/b
n

! 0, and a
n

= !(b
n

) means a
n

/b
n

! 1. The “big O”

notation is defined as usual: a
n

= O(b
n

) means lim sup a
n

/b
n

< 1. Also, a
n

⇣ b
n

means

c1  lim inf a
n

/b
n

 lim sup a
n

/b
n

 c2 for some positive constants c1, c2. Unless otherwise

noted, the notation
P

j

means summing over all positive integers j.

3.1 The Detection Boundary Framework and Critical Separation Rates

The function space L2[0, 1] is infinite dimensional. Therefore, inferences for functional linear models

are typically carried out under some smoothness conditions:

c1j
��  

j

 c2j
�� , 8 j � 1; ✓ 2 ⇥(�, L) :=

8

<

:

✓ :
X

j�1

j2�✓2
j

 L2�2

9

=

;

, (11)

for some positive constants c1, c2, �, �, and L. These conditions imply the smoothness of X and

✓ respectively, indicating that the higher order terms (✓
j

and 
j

with large values of j) in (7) and

(3) can be safely ignored. Similar conditions are considered in estimating ✓, such as Cavalier &

Tsybakov (2002) for the white noise and Gaussian sequence models, and Hall & Horowitz (2007),

Meister (2011) for functional linear regression. It is also considered in hypothesis testing for white

noise and Gaussian sequence models by Ingster et al. (2012).
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For any test  =  (Y,X) : (R⌦L2[0, 1])n 7! [0, 1], we define its type I error in the usual sense:

↵
n

( ) = E
✓=0 (Y,X),

and the type II error at ✓ 6= 0:

�
n

( , ✓) = E
✓

(1�  (Y,X)).

Let ⇥ be a class of alternatives, define the worst case type II error as

�
n

( ,⇥) = sup
✓2⇥

�
n

( , ✓).

A conservative goal in designing a test is to control the worst case total error ↵
n

( ) + �
n

( ,⇥).

This corresponds to the minimax criterion. However, for any test at a given level ↵, we can always

find a ✓ 2 ⇥(�, L)\{0} close enough to zero such that the test has power only slightly larger than

↵. To exclude this case, we consider a modified testing problem that provides some separation

between the null and alternative. For any r > 0, define

⇥(�, L, r) = {✓ : ✓ 2 ⇥(�, L), k✓k22 � r2�2}.

Given r
n

> 0, we consider the following testing problem:

H0 : ✓ = 0 against H
a

: ✓ 2 ⇥(�, L, r
n

). (12)

Then it is natural to ask how the worst case total error changes with r
n

. Following this idea, the

critical separation rate for the functional linear model is defined as follows.

Definition 3.1 (Critical Separation Rate). For testing problem (12) under model (1) and condition

(11), a sequence r⇤
n

> 0 is called the critical separation rate if the following holds.

1. If r
n

= o(r⇤
n

), then there exists a distribution P on (Y,X) such that ↵
n

( )+�
n

( ,⇥(�, L, r
n

)) !

1 as n ! 1 for any  ;

2. If r
n

= !(r⇤
n

), then there exists a test  such that ↵
n

( ) + �
n

( ,⇥(�, L, r
n

)) ! 0 as n ! 1.

In the next subsection we shall see that the critical separation rate for the functional linear

global testing problem is

r⇤
n

=

✓

p
log log n

n

◆

2�
4�+2�+1

, (13)
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and  ES is a consistent test whenever the signal to noise ratio exceeds this rate.

Remark: The sequence of critical rate r⇤
n

, if it exists, is not unique. For example, if r⇤
n

is such

a sequence, then any sequence r0
n

⇣ r⇤
n

also satisfies the definition. Therefore, the definition

ignores constants and focuses on rates of convergence/growth. When r
n

⇣ r⇤
n

, the so-called “sharp

asymptotic result” (Meister (2011), Ingster et al. (2012)) suggests that the worst case total error

stays at a constant level and bounded away from both zero and one. Such a framework (also known

as the detection boundary problem) has been studied in high-dimensional and nonparametric testing

problems such as Ingster (1982), Donoho & Jin (2004), Ingster et al. (2010), Ingster et al. (2012)

Arias-Castro et al. (2011).

3.2 Asymptotic Results

In this section we present our main consistency results. The idea and argument resembles that for

the Gaussian sequence model given in Ingster et al. (2012), but requires a careful control of the

estimation error in b✓
j

, b�, and b�2. Formally, we need the following conditions with some positive

constants c3 and C.

Z

EX(t)4dt < 1; EhX,�
j

i4  C2
j

, 8 j � 1. (14)


j

� 
j+1 � c3j

���1, 8 j � 1; 1 < � < � � 3/2. (15)

Equation (14) ensures that X has light tails so that the empirical covariance operator has
p
n

consistency. The first condition in (15) requires a gap between the eigenvalues of �. It ensures the

accuracy of the estimated eigenfunctions b�
j

. The second condition in (15) requires that the slope

function ✓ is smoother than the covariate function X, so that the errors in b✓⇤
j

= hb�
j

, ✓i do not

accumulate. These conditions are standard ones used in the minimax estimation and prediction for

functional linear models (Meister (2011), Hall & Horowitz (2007), Cai & Hall (2006)).

The following theorem, proved in Appendix A.2, says that under the above smoothness and

eigen-gap conditions, the Exponential Scan Test is uniformly consistent over ⇥(�, L, r
n

) whenever

r
n

exceeds the rate (
p
log log n/n)2�/(4�+2�+1).

Theorem 3.2. Consider testing problem (12) under model (1) and conditions (11), (14), and (15).

For  ES given in (9) with b(m) = 4
p
log logm and b�2 such that b�2 � �2 = o

P

(n�1/5) uniformly

11



over ⇥(�, L), we have,

lim
n!1

↵
n

( ES) + �
n

( ES,⇥(�, L, r
n

)) = 0.

whenever r
n

= !(r⇤
n

) where r⇤
n

is defined in (13)

In our proof of Theorem 3.2, it is clearly indicated that the
p
log log n factor in the critical

separation rate comes from the need to search for an optimal dimension of projection onto principal

components. If � is known, one can construct test with a projection dimension determined by the

sample size and � and achieve the non-adaptive critical rate n�2�/(4�+2�+1).

In order to apply Theorem 3.2, we need an estimator b�2 with convergence rate faster than n�1/5

uniformly over all smooth ✓. Now we show that such an estimator exists under the condition of the

theorem. From Eq. (7), we see that for large values of j,
p

nb
j

b✓
j

⇡ �Z⇤
j

, because
p

nb
j

b✓⇤
j

goes to

0 as j becomes large. Note that Z⇤
j

’s are independent standard Gaussian, so we can estimate b�2

using b✓
j

’s with large values of j. In particular, we consider

b�2 =
2

n

X

n
2

<jn

nb
j

b✓2
j

. (16)

The following lemma indicates that b�2 given in (16) is a qualified estimator to apply Theorem 3.2.

The proof is elementary and omitted.

Lemma 3.3. Let b�2 be given in (16), then under conditions (11), (14), and (15), we have, uni-

formly over ⇥(�, L),

b�2 � �2 = o
P

(n�1/5).

Remark. In practice it is more convenient to estimate b�2 by residual mean square of principal

components regression with m
n

dimensions, where m
n

can be chosen to grow slowly with n (for

example, b
p
nc). We found it highly non-trivial to derive a rigorous rate of convergence of such

a simple estimator without making stronger assumptions, although it gives very good empirical

performance.

Next we state a lower bound result, saying that the rate in Theorem 3.2 cannot be improved

and is the critical separation rate for the testing problem. It is a consequence of the lower bound

results for the Gaussian sequence model established in Ingster et al. (2012), and the asymptotic

equivalence between the Gaussian sequence model and the functional linear model (Meister (2011)).
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Theorem 3.4. Consider testing problem (12) under model (1) and condition (11). All tests

 (Y,X) : (R⌦ L2[0, 1])n 7! [0, 1] satisfy

lim
n!1

↵
n

( ) + �
n

( ,⇥(�, L, r
n

)) = 1,

whenever r
n

= o(r⇤
n

) with r⇤
n

defined in (13).

We discuss the proof of Theorem 3.4 in Appendix A.3. We also give a direct argument for a

slightly weaker result (r
n

= o(n�2�/(4�+2�+1))) by explicitly constructing a least favorable alterna-

tive, without invoking the asymptotic equivalence machinery.

4. NUMERICAL EXAMPLES

In this section we present simulation studies and a real data example. The noise variance is

estimated by residual mean square estimators discussed in Section 2.2. The threshold b(m) is

determined by equation (10) for a given level ↵.

4.1 Fixed Simple Alternative

We first look at a simple setting where the alternative is fixed. Let ✓
j

= r✓̄
j

/k✓̄k2, with ✓̄1 = 0.3,

✓̄
j

= 4(�1)jj2 for j � 2. The covariance operator has eigenvalues 
j

= j�1.1, and eigenfunctions

�1(t) = 1, �
j

(t) =
p
2 cos((j � 1)⇡t) for j � 2. The covariate curves are generated as X

i

(t) =
P100

j=1
p

j

X
ij

�
j

(t), for i = 1, ..., n, whereX
ij

are independent standard Gaussian; and Y
i

= hX
i

, ✓i+

Z
i

, with ✓(t) =
P100

i=1 ✓j�j(t) and Z
i

being independent standard Gaussian. We use this setting to

demonstrate the small sample (n = 50), moderate sample (n = 100), and large sample (n = 500)

behavior of our test. This setting corresponds to ↵ = 1.1 and � < 1.5. Although it does not satisfy

the second part of Eq. (15), our simulation results suggest that our test is still consistent when

the signal is strong enough. A similar setting is used in the estimation literature (Hall & Horowitz

(2007)). We considered four di↵erent values of our signal strength r2 = 0, 0.1, 0.2, 0.5, where r2 = 0

corresponds to the null hypothesis. We report the percentage of rejections in 500 independently

generated samples for all values of n. The result is summarized in Table 1. It can be seen from

Table 1 that the test controls type I error at the nominal level and its power increases as the sample

size and signal strength increase.
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Table 1: Simulation results for a fixed simple alternative under Gaussian design over 500 repetitions.

Reported numbers are percentage of rejections.

k✓k22 = 0 0.1 0.2 0.5

level = 5% n = 50 4.4 17.4 34.8 74.2

100 4.8 30.0 54.2 95.0

500 3.0 97.0 100 100

1% n = 50 1.4 5.8 18.4 54.4

100 1.6 14.8 35.6 87.8

500 0.8 90.2 100 100

4.2 Sparse Signals with Varying Location

In this subsection we demonstrate the minimaxity of the proposed test. We compare our method

in terms of the power for a random alternative at targeted type I error level ↵ = 0.05, with

three competing methods, namely, FVE80, FVE85 and FVE90. The FVE80 method takes bm

leading principal components such that they explain at least 80 percent of the total variance.

Mathematically, bm = inf
m

P
1jm bjP

j�1

bj
� 0.8 (and likewise for FVE85 and FVE90). Then the test is

given by an F-test applied to the principal component regression of dimension bm.

To avoid using the same alternative throughout the simulation, we randomly generate the

regression function ✓ =
P100

j=1 ✓j�j , where �
j

’s are the same eigenfunctions as in the previous

setting. In the first model, we fix ✓
j

= 0 for j > 2, and let ✓
j

= b
j

· I
j

for j = 1, 2, where b0
j

s

are independent Unif(0, 1) random variables and (I1, I2) is drawn from a multinomial distribution

Mult(1; 0.5, 0.5). That is, a signal of random size appears randomly in one of the first two principal

components. Then ✓ function is scaled by a factor of r for r2 = 0, 0., 0.2, 0.5, 1.5. We denote

this model as M(2, 1). The second model is similar, where two signals appear randomly in two

of the first nine principal components. We denote this model as M(9, 2). The data is generated

similarly as in Section 4.1, expect that we set 
j

= j�1.7 in generating X(t). This makes the

covariate curves X(t) smoother, with fewer principal components selected in FVE methods. In our

simulation FVE80 uses 4 or 5 principal components; FVE85 typically uses 6 or 7 PC’s; and FVE90
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uses 10-12 PC’s. Table 2 reports the proportion of rejections over 500 repetitions at level 0.05.

Taking into account of random fluctuations in the simulation, a di↵erence in rejection percentage

of 4 can be considered significant. From Table 2 we see that, in all settings the test  ES performs

at least as well as other methods. In Model (2,1), where the signals concentrate in the first two

PC’s, the method FVE80 uses four or five leading principal components and hence performs better

than the other two FVE methods. The  ES test gives similar (or even slightly better, especially

when the sample size is small) performance as the FVE80 method. On the other hand, in Model

(9,2), the signal is more spread out and the FVE80 method does not consistently outperform the

other FVE methods. Actually, in this setting, the signal “randomly” favors one of the three FVE

methods. When the signal is strong and sample size is large, FVE85 and FVE90 outperform FVE80,

which concentrates only on the first few principal components and will not capture any signal for a

significant proportion of the random samples. Again, the  ES test is comparable to the best FVE

method. A remarkable example is n = 500 and r2 = 1.5, where the power of FVE80 is much lower

than FVE90, but  ES remains powerful.

In the Supplementary Material, we report additional results when the X process is generated

from a Gaussian mixture and when the additive error variable is generated from a non-Gaussian

distribution. The results agree with those reported in Tables 1 and 2.

4.3 ✓ generated by spline basis

Now we generate the function ✓ from B-splines with d degrees of freedom. Two values of d are

investigated, where d = 4 corresponds to very smooth functions, and d = 16 corresponds to less

smooth functions. The B-spline coe�cients are generated randomly from independent standard

Gaussian. When the coe�cients are generated, the ✓ function is then computed and re-scaled so

that k✓k22 = r2 for r2 = 0, 0.1, 0.2, 0.5, 1. The results are summarized in Table 3. Because ✓ is

generated from a di↵erent basis, its representation on the trigonometric basis (the eigenfunctions

of X process) is not sparse and is typically evenly spread in the first few eigenfunctions. This makes

FVE80 more preferable than FVE85 and FVE90, because it always captures a good proportion of

the signal while has small variability. However, the  ES test is competitive in all situations, and is

preferable when the sample size is small and the alternative is smooth.
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Table 2: Simulation results for randomized signals under Gaussian design over 500 repetitions.

Level = 0.05. Reported numbers are percentage of rejections.

k✓k22 = 0 0.1 0.2 0.5 1.5

Model (2,1) n = 50  ES 5.2 16.2 26.4 54.2 80.8

FVE80 5.4 13.0 21.4 47.8 76.2

FVE85 3.6 11.2 17.4 41.8 72.4

FVE90 4.2 9.6 16.4 36.8 65.4

n = 100  ES 4.6 25.8 42.2 68.2 90.4

FVE80 6.0 24.4 42.6 67.0 89.0

FVE85 5.4 22.2 37.2 61.8 87.8

FVE90 3.8 18.4 28.6 54.2 86.4

n = 500  ES 5.8 67.2 84.6 94.4 97.2

FVE80 7.2 65.0 83.2 94.6 96.8

FVE85 6.2 62.8 82.4 93.4 96.6

FVE90 7.0 57.6 79.4 93.6 96.2

Model (9,2) n = 50  ES 5.6 9.0 14.0 29.6 43.4

FVE80 5.6 9.2 10.8 26.4 43.2

FVE85 5.8 7.6 10.4 26.0 42.5

FVE90 5.6 7.2 8.4 22.2 41.6

n = 100  ES 5.6 13.4 27.8 39.8 65.8

FVE80 6.2 13.2 28.4 38.6 61.8

FVE85 5.4 11.6 24.2 41.8 67.0

FVE90 7.6 10.8 23.6 36.8 66.6

n = 500  ES 4.4 42.4 47.8 72.4 93.4

FVE80 5.2 45.2 50.8 68.6 80.8

FVE85 5.2 45.6 52.4 75.2 92.8

FVE90 5.0 40.8 48.2 76.8 95.6
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Table 3: Simulation results for randomized signals using spline basis under Gaussian design over

500 repetitions. Level = 0.05. Reported numbers are percentage of rejections.

k✓k22 = 0 0.1 0.2 0.5 1

df = 4 n = 50  ES 7.0 26.2 43.8 75.0 91.8

FVE80 6.8 20.8 36.4 69.4 89.4

FVE85 6.4 17.4 32.8 65.6 87.6

FVE90 4.6 12.2 27.4 56.2 83.6

n = 100  ES 5.4 39.8 62.6 90.8 97.8

FVE80 7.4 37.0 62.0 90.8 98.0

FVE85 6.0 32.6 53.8 90.2 98.0

FVE90 6.0 26.6 47.4 86.0 97.4

n = 500  ES 4.8 93.4 96.8 100 100

FVE80 6.0 94.2 98.2 100 100

FVE85 4.0 91.8 98.2 100 100

FVE90 5.0 87.2 97.4 99.8 100

df = 16 n = 50  ES 5.6 13.2 17.4 36.0 60.8

FVE80 4.8 9.0 14.6 30.4 57.0

FVE85 4.4 9.2 14.8 29.2 52.0

FVE90 6.2 7.8 11.4 23.6 46.6

n = 100  ES 5.0 15.2 27.4 55.4 75.0

FVE80 5.2 14.6 24.2 55.4 75.8

FVE85 4.6 13.2 23.8 52.2 75.6

FVE90 4.6 12.6 20.0 45.4 71.0

n = 500  ES 4.0 54.0 78.8 96.0 99.0

FVE80 5.8 56.2 81.4 96.4 98.6

FVE85 6.2 52.4 79.0 96.6 99.2

FVE90 5.6 47.4 75.2 95.8 99.0
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Figure 1: Daily temperature curves for 35 Canadian weather stations. Left panel: smoothed

curves. Right panel, re-centered curves and first three principal components (re-scaled for better

visualization). Thick solid curve: FPC1; Dashed curve: FPC2; Dotted curve: FPC3.

4.4 Application to the Canadian Weather Data.

Now we apply our method to the Canadian Weather Data. The data set contains daily temperature

together with the annual total precipitation at 35 weather stations. The data is available in the fda

package in R. It has been studied in various works on functional data analysis, such as functional

ANOVA (Ramsay & Silverman (2005) Chapter 13), classification and clustering of functional data

(Clarkson, Fraley, Gu & Ramsey (2005), Giraldo, Delicado & Mateu (2012)), functional linear

regression (Ramsay & Silverman (2005) Chapter 15, James, Wang & Zhu (2009)), and two/multi-

sample mean function testing (Zhang & Chen (2007)).

We consider a functional linear regression problem of predicting the (log) annual precipitation

using the daily temperature. The daily temperature vector can be treated as a dense, regular, and

possibly noisey observation from a smooth curve. As discussed in Section 2.1 (see also the refer-

ences above), a common practice is to pre-smooth the curves and then treat them as independent

observations of a process X(t). Here we use R function smooth.spline with parameter spar = 0.4.

The 35 smoothed curves are plotted in the left panel of Figure 1.

The centered curves and first three principal components are plotted in the right panel of
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Figure 1. The first functional principal component (FPC) is relatively flat, roughly representing

the overall temperature during the year (especially the winter temperature). It explains 88% of

the total variance of the smoothed temperature curve. In order to make the testing problem more

subtle, we remove the linear e↵ect of the first FPC and test if the remaining FPC’s have a significant

linear relationship with the response variable. More specifically, we consider new response variable

Y 0
i

= Y
i

� bY
i

(PC1), where bY
i

(PC1) is the fitted value when regressing Y on the first FPC. The new

covariate curves are X 0
i

= X
i

�hX
i

, b�1ib�1. In this case, if we apply functional principal component

regression of Y 0 on X 0 and test the significance of linear relationship at level 0.05, the result would

be di↵erent when di↵erent numbers of FPC’s are used. When the first remaining FPC is used, the

p-value is 0.0589, which is slightly higher than the nominal level. However, the p-value becomes

7.5 ⇥ 10�5 if the first two remaining FPC’s are used. Although it seems straightforward that the

linear relationship exists, the test result can go either way, depending on whether or not more

than one remaining FPC is used. On the other hand, the  ES test checks simultaneously three

functional principal components regression models with one, two and four leading FPC’s. The

resulting p-values are 8.18⇥10�3, 2.63⇥10�7, and 5.37⇥10�8, respectively. The simultaneous test

would reject the null hypothesis at both 0.05 and 0.01 level, and hence confirm the existence of a

linear relationship between daily temperature curve and log-precipitation after removing the e↵ect

of the first FPC. Thus, our method can be used to further support the use of functional principal

component regression in global testing, reconciling the p-values when di↵erent numbers of FPC’s

are considered.

5. DISCUSSION

We have derived the critical separation rates and consistent adaptive tests for the functional linear

model, by exploiting its connection with the Gaussian sequence model. Our results indicate that

the signal strength required by a consistent test is less than the minimax error of estimating ✓ under

the same regularity conditions. Such a fundamental di↵erence between testing and estimation can

also be seen from the construction of the test statistics. Usually the test statistics approximate

some functions of the parameter ✓, rather than ✓ itself. This observation suggests the possibil-

ity of avoiding the eigen-gap and extra smoothness conditions in eq. (15). The consistency result
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developed in this paper would still hold if one can establish a good lower bound on the norm of

the projection of ✓ on the estimated principal subspace, which reduces to showing the quality of

estimated principal subspaces instead of fast convergence rate for each individual eigenfunction.

Furthermore, if one can avoid the eigen-gap condition, it is then possible to extend the results to

other classes of covariance and smoothness structures, for example, when 
j

and ✓
j

decay exponen-

tially rather than polynomially. The exponential decay of 
j

corresponds to the “severely ill-posed”

inverse problems (compared to the “mildly ill-posed” inverse problems considered here) and the

exponential decay of ✓
j

corresponds to classes of analytic functions (compared to Sobolev functions

in this paper).

Hilgert, Mas & Verzelen (2012) independently consider the global testing under the functional

linear model with a di↵erent alternative hypothesis k�1/2✓k2 � r0
n

(instead of k✓k2 � r
n

considered

in this paper). They propose simultaneously testing a sequence of FPC regression with geomet-

rically increasing dimension based on the F-statistic. Due to the di↵erent alternative class, the

asymptotic results are not directly comparable. We tried to investigate the minimax rates of both

methods under some special cases. When 
j

= j�� , one can find a point ✓ that is on the detection

boundary suggested by both methods, and hence no method is dominated by the other (ignoring

log terms). We note that our formulation is directly aligned with the majority of estimation and

prediction literature (for example, Cai & Hall (2006), Hall & Horowitz (2007), Meister (2011),

Cai & Yuan (2012)). The technical tools used in this paper are also di↵erent and reflect the deep

connection between functional linear model and other popular nonparametric function estimation

models.

The results and methods developed in this paper are applicable to functional data where the

X process is smooth and observed on a dense grid with noise. The situation for sparsely and

noisily observed X process is important and poses further challenges for statistical inferences. It

is known that the sparsity of observation may have an e↵ect on estimating the covariance and

mean function (Hall et al. (2006), Cai & Yuan (2011)). Intuitively, it shall also a↵ect the global

testing. The separation rate and optimal testing procedure for sparsely observed functional data is

an interesting and important problem for future study. Another interesting problem for future work

is to develop inference methods and theory for other related models, such as functional regression
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with multiplicative errors.

APPENDIX A. TECHNICAL PROOFS

A.1 Proof of Lemma 2.1

Proof of Lemma 2.1. The proof is direct calculation with linear algebra.

Let bX
ij

= b�1/2
j

hX
i

, b�
j

i, for 1  i, j  n. Denote bX = ( bX
ij

) be the n⇥ n matrix whose (i, j)th

entry is bX
ij

, so that bXT

b

X = nI. Let b✓⇤ = (h✓, b�1i, ..., h✓, b�ni)T , then

b✓
j

=b�1
j

*

n�1
n

X

i=1

Y
i

X
i

, b�
j

+

= b�1
j

*

n�1
n

X

i=1

(hX
i

, ✓i+ �Z
i

)X
i

, b�
j

+

=b�1
j

*

n�1
n

X

i=1

 

n

X

k=1

p

b
k

bX
ik

b✓⇤
k

+ �Z
i

!

n

X

k=1

p

b
k

bX
ik

b�
k

, b�
j

+

=b�1
j

n�1
n

X

i=1

 

n

X

k=1

p

b
k

bX
ik

b✓⇤
k

+ �Z
i

!

q

b
j

bX
ij

=b�1/2
j

n�1
n

X

i=1

 

n

X

k=1

p

b
k

bX
ik

bX
ij

b✓⇤
k

+ �Z
i

bX
ij

!

=b�1/2
j

n�1
n

X

k=1

b✓⇤
k

p

b
k

n

X

i=1

bX
ik

bX
ij

+
�

p

nb
j

n

X

i=1

n�1/2
bX
ij

Z
i

=b✓⇤
j

+
�

p

nb
j

Z⇤
j

,

where the last inequality uses the orthogonality of bX and defines Z⇤
j

=
P

n

i=1 n
�1/2

bX
ij

Z
i

. Again the

orthogonality of bX implies that Z⇤ is n-dimensional standard Gaussian and independent of X.

A.2 Proof of Consistency (Theorem 3.2)

Proof of Theorem 3.2. First we consider the type I error. Let T ⇤
n,m

= (2m)�1/2
P

m

j=1(�
�2nb

j

b✓2
j

�1).

That is, T ⇤
n,m

is the “ideal” version of T
n,m

, with b�2 replaced by �2. When ✓ = 0, we have b✓⇤
j

= 0

for all j and hence

T ⇤
n,m

=
1p
2m

0

@

m

X

j=1

Z⇤
j

2 �m

1

A ,

kn,max

sup
k=0

|T
n,mk � T ⇤

n,mk
|  1

p

2m
kn,max

mkn,max

X

j=1

Z⇤
j

2

�

�

�

�

1� �2

b�2

�

�

�

�

 o
P

(n�1/5)
p
m

kn,max

= o
P

(1),

because
P

m

j=1 Z
⇤
j

2 = O
P

(m) and m
kn,max

= O(n1/3).
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Then ↵
n

( ES) = P0( ES = 1) and can be bounded by using Lemma 1 of (Laurent & Massart

2000) with x
k

= 2 log logm
k

and a = 1/
p
2m

k

.

P0( SE(Y,X) = 1)

P0

⇣

9k : T
n,mk � 4

p

log logm
k

⌘


kn,max

X

k=0

P0

⇣

T ⇤
n,mk

� 3
p

log logm
k

⌘

+ P0

✓

kn,max

sup
k=0

|T
n,mk � T ⇤

n,mk
| �

p

log logm0

◆


kn,max

X

k=0

P0

✓

T
n,mk � 2

p
x
k

+

r

2

m
k

x
k

◆

+ o(1)


X

k�0

(logm
k

)�2 + o(1) =
X

k�0

(logm0 + k log 2)�2 + o(1)

 1

log 2(logm0 � log 2)
+ o(1) = o(1). (A.1)

For the type II error, we expand the test statistic T
n,m

(m0  m  n1/3) as follows.

T
n,m

=
1p
2m

m

X

j=1



b��2nb
j

(b✓⇤
j

)2 + 2b��2�
q
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where

Q1,m =
1p
2m

m

X

j=1

nb
j

(b✓⇤
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)2, Q2,m =
2p
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m
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◆

.

Now consider a fixed m 2 [m0, n1/3]. Because b�2 � �2 = o
P

(n�1/5) and m  n1/3, we have

Q4,m = o
P

(1) and hence �2b��2Q3,m +Q4,m = O
P

(1) uniformly over ⇥(�, L). On the other hand,

we observe that,

Q2,m =
2

(2m)1/4
Q

1

2

1,m
eZ
m

,

where

eZ
m

=
m

X

j=1

p

nb
j

b✓⇤
j

(
p
2mQ1,m)1/2

Z⇤
j

is a standard Gaussian because Z⇤
j

are independent standard Gaussian as shown in Lemma 2.1.
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Define m̄ = b(2L/r
n

)1/�c. If r
n

= o((log n)��/2), then m̄ 2 [m0, n1/3] for n large enough. By our

construction of the sequence m0,m1, ...,m
kn,max

, there exists a unique k such that m̄  m
k

< 2m̄.

Denote this m
k

by m⇤. For all ✓ 2 ⇥(�, L, r
n

), we have the following control of type II error.
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1,m⇤ eZ
m

⇤  5
p
log logm⇤

Q1,m⇤

�

+ o(1).

In Lemma A.1 we show that
p
log logm⇤/Q1,m⇤ = o

P

(1), uniformly for all ✓ 2 ⇥(�, L, r
n

). As a

consequence, the term (
p
m⇤Q1,m⇤)�1/2

eZ
m

⇤ = o
P

(1) uniformly over ✓. Therefore we have P
✓

[ ES =

0] = o(1) uniformly over ⇥(�, L, r
n

) and hence �
n

( ES,⇥(�, L, r
n

)) = o(1).

The case (log n)��/2 = O(r
n

) can be dealt with by taking m⇤ = m0, followed by the same

argument presented above.

Lemma A.1. Let m⇤ be the value of m
k

such that m̄  m
k

 2m̄, where m̄ = b(2L/r
n

)1/�c (define

m⇤ = m0 if m̄ < m0). Let U
n

(r
n

) = nr(4�+2�+1)/2�
n

. If r
n

= !((
p
log log n/n)2�/(4�+2�+1)), then

there exists a constant c
�,L

> 0 such that

lim
n!1

inf
✓2⇥(�,L,rn)

P
✓

[Q1,m⇤ � c
�,L

U
n

(r
n

)] = 1.

Lemma A.1 implies that with overwhelming probability, Q1,m⇤ grows at least as fast as U
n

(r
n

).

When r
n

exceeds the rate (
p
log log n/n)2�/(4�+2�+1) we have U

n

(r
n

) = !(
p
log log n), which is

precisely what we need in the proof of Theorem 3.2.

Proof. First consider the case r
n

= o((log n)��/2). Then for n large enough we have m⇤ 2 [m̄, 2m̄).

We proceed with a decomposition of Q1,m⇤ :

Q1,m⇤ =
np
2m⇤

m

⇤
X

j=1

(
j

+ (b
j

� 
j

))(✓
j

+ (b✓⇤
j

� ✓
j

))2

=
np
2m⇤

m

⇤
X

j=1


j

✓2
j

+
np
2m⇤

m

⇤
X

j=1

(b
j

� 
j

)✓2
j

+
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2
np
2m⇤

m

⇤
X

j=1


j

✓
j

(b✓⇤
j

� ✓
j

) + 2
np
2m⇤

m

⇤
X

j=1

(b
j

� 
j

)✓
j

(b✓⇤
j

� ✓
j

)+

np
2m⇤

m

⇤
X

j=1


j

(b✓⇤
j

� ✓
j

)2 +
np
2m⇤

m

⇤
X

j=1

(b
j

� 
j

)(b✓⇤
j

� ✓
j

)2

:= J1,m⇤ + J2,m⇤ + J3,m⇤ + J4,m⇤ + J5,m⇤ + J6,m⇤ (A.3)

The plan is to show that, when r
n

= !(n�2�/(4�+2�+1)) we have

J1,m⇤ � c(�, L)U
n

(r
n

) = !(1),

with some constant c(�, L) independent of ✓, while each of the last five terms is o
p

(J1,m⇤) .

The desired lower bound of J1,m⇤ can be derived as follows (see also Ingster et al. (2012)).

J1,m⇤ =
np
2m⇤

m

⇤
X

j=1


j

✓2
j

� n
m

⇤
p
2m⇤

m

⇤
X

j=1

✓2
j

� n
m

⇤
p
2m⇤

0

@r2
n

�
1
X

j=m

⇤+1

✓2
j

1

A

=
n

m

⇤
p
2m⇤

0

@r2
n

�
1
X

j=m

⇤+1

j�2�j2�✓2
j

1

A � n
m

⇤
p
2m⇤

⇣

r2
n

� (m⇤ + 1)�2�L2
⌘

�2�3/2c1n(m
⇤)���1/2r2

n

� 2�3/2c1(2L)
�(2�+1)/2�nr

4�+2�+1

2�
n

= c(�, L)U
n

(r
n

),

where c(�, L) = 2�3/2c1(2L)(2�+1)/2� , and c1 is the constant in condition (11).

To control the other five terms, the key is to show that the approximation errors b
j

� 
j

and

b✓⇤
j

� ✓
j

are small enough. By Equation (5.4) in Meister (2011) we have, under assumption (15), for

all ✓ 2 ⇥(�, L),

E
X

j

(b✓⇤
j

� ✓
j

)2  CEkb�� �k2HS,

where the constant C depends only on L, and k ·kHS is the Hilbert-Schmidt norm. It is standard to

show that under assumption (14) we have Ekb���k2HS = O(n�1) (Hall & Horowitz (2007), Section

5.3).

Consider event

E1 :=

⇢

kb�� �k2HS  log n

n

�

,
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then assumption (14) ensures that P(E1) ! 1 as n ! 1 because by Markov’s inequality,

P
✓

kb�� �k2HS � log n

n

◆

 n

log n
Ekb�� �k2HS = o(1).

Note that on E1 we have sup
j

|b✓⇤
j

�✓
j

| 
p
C
q

logn
n

, and sup
j

|b
j

�
j

| 
q

logn
n

(Weyl’s inequality).

The arguments used to control the last five terms in the decomposition of Q1,m⇤ in (A.3) are

rather similar. We shall just give the detail for J3,m⇤ , which is the most complicated one. We also

focus the “hardest” case that k✓k2 = r
n

�. Then on E1 we have, by Cauchy-Schwartz,

|J3,m⇤ |
J1,m⇤

=

np
2m⇤

�

�

�

P

m

⇤

j=1 j✓j(
b✓⇤
j

� ✓
j

)
�

�

�

np
2m⇤

P

m

⇤

j=1 j✓
2
j


np
2m⇤

⇣

P

m

⇤

j=1 j✓
2
j

⌘1/2 ⇣
P

m

⇤

j=1 j(
b✓⇤
j

� ✓
j

)2
⌘1/2

np
2m⇤

P

m

⇤

j=1 j✓
2
j

=

p
n
⇣

P

m

⇤

j=1 j(
b✓⇤
j

� ✓
j

)2
⌘1/2

⇣

n
P

m

⇤

j=1 j✓
2
j

⌘1/2
 2c2(2m⇤)�1/4

p
log n

[U
n

(r
n

)]1/2

⇣
p
log nr

1

4�
n

n1/2r
4�+2�+1

4�
n

=

p
log n

n1/2r
4�+2�

4�
n

= o
⇣

p

log nn� 1

8�+4�+2

⌘

= o(1).

It is straightforward to check that the convergence does not depend on ✓ and hence is uniform over

⇥(�, L, r
n

).

In the case (log n)��/2 = O(r
n

), then for n large enough we have m̄ < m0. It is straightforward

to check that J1,m
0

� c(�, L)n · Poly(log n), where Poly(log n) is a polynomial of log n and hence

J1,m
0

= !(n1��) for all � > 0. The rest of the proof follows the previous case and is omitted.

A.3 Proof of Lower Bound (Theorem 3.4)

Proof of Theorem 3.4. The proof of the lower bound result follows from the combination of two

existing results, both established recently in the literature.

The first result is the lower bound of detection boundary for the Gaussian sequence model in

Eq. (3). As derived in Lemma 2.1, there is an obvious and natural correspondence between the

Gaussian sequence model and the functional linear model. As a result, the same testing problem can

be studied under both models. Ingster et al. (2012) have shown that the detection boundary for the

testing problem in Eq. (12) under the Gaussian sequence model is r⇤
n

= (
p
log log n/n)2�/(4�+2↵+1).

It implies that if r
n

= o(r⇤
n

) then all tests must satisfy ↵
n

( ) + �
n

( ,⇥(�, L)) ! 1.
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The second result is the asymptotic equivalence between the functional linear model (1) and

the Gaussian sequence model (3). Specifically, Meister (2011) has shown that, under regularity

conditions (14), (15), the two models are asymptotically equivalent in Le Cam’s sense (Le Cam

(1986)), provided that the covariance operator � and noise variance �2 are known in the functional

linear model. Roughly speaking, an important consequence of asymptotic equivalence is that any

inference procedure for one model can be transformed (without involving unknown parameters) to

form an inference procedure for the other one, with the same asymptotic risk for all bounded loss

functions.

In this case, the two testing problems shall have exactly the same detection boundary r⇤
n

.

However, for our testing problem the covariance operator and the noise variance are not known and

hence the problem can only become harder. Thus the detection boundary for our testing problem

is at least as large as r⇤
n

.

In the Supplementary Material, we give a direct and constructive proof of a slightly weaker

version of Theorem 3.4. That is, we drop the log log n term and prove that no test can be consistent

when r
n

= o(n�2�/(4�+2�+1)), with an additional assumption of 4�+2� � 1. The idea of the proof

does not involve the asymptotic equivalence machinery, but is based another general framework of

Le Cam’s (Le Cam (1986), Le Cam & Yang (2000)). The key is to construct a least favorable prior µ

of ✓ supported on ⇥(�, L, r
n

) such that the induced marginal distribution of (Y,X) is close to that

under the null. Such a least favorable prior also provides insights to the upper bound construction.
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Supplementary Material

APPENDIX B. A CONSTRUCTIVE LOWER BOUND PROOF

We state and give a constructive proof of the non-adaptive lower bound.

Theorem B.1. Consider testing problem (12) under model (1) and condition (11). Assume further

that 4� + 2� > 1 then all tests  (Y,X) : (R⌦ L2[0, 1])n 7! [0, 1] satisfy

lim
n!1

↵
n

( ) + �
n

( ,⇥(�, L, r
n

)) = 1,

whenever r
n

= o(n�(2�)/(4�+2�+1)).

Proof. For any distribution µ supported on ⇥(�, L, r
n

), let P
µ

(Y,X) be the joint distribution of the

n-fold data set (Y1, X1), ..., (Yn, Xn

) when ✓ ⇠ µ, and P0(Y,X) be the corresponding distribution

when ✓ = 0. By Le Cam’s theory, if dtv(Pµ

,P0) ! 0, then for any test the worst case total

error tends to 1. Here dtv(·, ·) denotes the usual total variation distance between two probability

measures. If P
µ

and P0 have densities f
µ

and f0 then dtv(Pµ

,P0) = 2�1
R

|f
µ

� f0|. In our problem

X is a random function and density does not exist. However, the likelihood ratio dP
µ

/dP0 is

still well-defined (Rao (2000), Chapter V) and can be used to control the total variation distance

(Ingster & Suslina (2003)):

dtv(P0,Pµ

)  1

2

s

E0

✓

dP
µ

dP0

◆2

� 1.

Thus, in order to derive the lower bound, it su�ces to find a µ supported on ⇥(�, L, r
n

) such that

E0(dPµ

/dP0)2 ! 1 when r
n

n2�/(4�+2�+1) ! 0. If we choose X to be a Gaussian process with

covariance �, then the analysis reduces to bounding the likelihood ratio for an infinite dimensional

Gaussian random design regression model, which is related to a similar argument in (Verzelen &

Villers 2010).

The key is to find a distribution µ supported on ⇥(�, L, r
n

) (note that µ must depend on r
n

)

such that

lim sup
n!1

E0

✓

dP
µ

dP0

◆2

= 1.

To proceed, pick an arbitrary orthonormal basis {�
j

: j � 1} of L2[0, 1] (for example, the

trigonometric basis). Let X
i

=
P

j�1
p

j

X
ij

�
j

, for 1  i  n and j � 1, where X
ij

’s are
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independent standard Gaussian variables, and 
j

> 0 satisfies (11) and (15). Now define ✓ =
P

j�1 ✓j�j

with ✓
j

= ⇣
j

⌧
j

�, where {⌧
j

: j � 1} 2 ⇥(�, L, r
n

) is to be chosen later and ⇣
j

’s are

independent Rademacher random variables. Let µ be the corresponding distribution of ✓.

For convenience, we let, with a slight abuse of notation, X be the n⇥1 matrix whose (i, j)th

entry is
p

j

X
ij

.

Now calculate the n-tuple likelihood ratio with a given ✓ from model (1):

dP
✓

dP0
(Y,X) = exp

⇢

��2
Y

T

X✓ � 1

2�2
kX✓k22

�

.

Let ✓ and ✓0 be two independent copies of ✓ ⇠ µ generated from ⇣ and ⇣ 0, respectively, then

E0



dP
µ

(Y,X)

dP0(Y,X)

�2

= E0



E
✓⇠µ

exp

⇢

��2
Y

T

X✓ � 1

2�2
kX✓k22

��2

= E0E
✓,✓

0⇠µ

exp

⇢

��2
Y

T

X(✓ + ✓0)� 1

2�2
kX✓k22 �

1

2�2
kX✓0k22

�

= E
✓,✓

0⇠µ

EX exp{��2✓TXT

X✓0}

= E
⇣,⇣

0

2

4E
X

1

exp

8

<

:

1
X

j=1

p

j

X1j⇣j⌧j

1
X

j=1

p

j

X1j⇣
0
j

⌧
j

9

=

;

3

5

n

.

Now let W =
P1

j=1
p

j

X1j⇣j⌧j and W 0 =
P1

j=1
p

j

X1j⇣ 0
j

⌧
j

. Then, conditioning on (⇣, ⇣ 0), W

and W 0 are jointly Gaussian, with common marginal distribution N(0, s2) where s2 =
P

j


j

⌧2
j

.

Note that ⇢ = Cov(W,W 0) =
P

j


j

⌧2
j

⇣
j

⇣ 0
j

d

=
P

j


j

⌧2
j

⇣
j

since ⇣ and ⇣ 0 are independent Rademacher

random variables.

Let W 00 = W 0 � ⇢s�2W , then W 00 ⇠ N(0, s2 � ⇢2s�2) and is independent of W . Then we have,

conditioning on ⇣, ⇣ 0,

E
X

1

exp

8

<

:

1
X

j=1

p

j

X1j⇣j⌧j

1
X

j=1

p

j
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j
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;

=E
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0 exp(WW 0) = E
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00 exp
�

W 00W + ⇢s�2W 2
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⇥
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W 00W
 

�
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⇢s�2W 2 +
1

2
(s2 � ⇢2s�2)W 2

◆

=

s

1

1� (2⇢+ s4 � ⇢2)
.

Then, for s2 small enough using the fact log(1� x)�1  x+ x2 for x  1/2,

E0



dP
µ

(Y,X)

dP0(Y,X)

�2

= E
⇣

exp

⇢

n

2
log

1
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�
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 E
⇣

exp
nn

2

⇥

2⇢+ s4 � ⇢2 + (2⇢+ s4 � ⇢2)2
⇤

o

 exp(5ns4)E
⇣

exp {n⇢} = exp(5ns4)
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cosh(n
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⌧2
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 exp
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A . (A.4)

Consider the sequence: ⌧2
j

= A
n

�1
j

�

1� (j/M
n

)2�
�

+
, where A

n

and M
n

are chosen such that
P

j

⌧2
j

= r2
n

�2,
P

j

j2�⌧2
j

= L2�2. This choice of ⌧ is motivated by minimizing
P

j

2
j

⌧4
j

subject

to
P

j

⌧2
j

� r2
n

�2 and
P

j

j2�⌧2
j

 L2�2. Its derivation and existence will be discussed in detail in

Equation (A.4).

Then, by Riemann sum approximation,
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X
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.

Similarly from
P

j

j2�⌧2
j

= L2�2 we derive A
n

M2�+�+1
n

⇣ 1. It is then straightforward to verify

that

A
n

⇣ r
2�+�+1

�
n

, M
n

⇣ r
� 1

�
n

.

Then
P

j

2
j

⌧4
j

⇣ r
4�+2�+1

�
n

, and s2 =
P

j


j

⌧2
j

⇣ r
2�+�

�
n

. Therefore, when r
n

= o(n� 2�
4�+2�+1 ), we

have ns4 = o(1) (because 4� + 2� � 1) as well as n2
P

j

2
j

⌧4
j

= o(1).

More on the construction of the least favorable prior

The choice of the sequence ⌧
j

in the proof of Theorem B.1 may seem mysterious at first. Here we

give a full explanation for the motivation and detailed derivation.

Recall that in the proof of Theorem 3.4, we need to show that there exists a ⌧ 2 ⇥(�, L, r
n

) such

that the right hand side of Equation (A.4) is o(1) whenever r
n

= o(n�2�/(4�+2�+1)). Observe that

there are two terms in the exponent: 5n�4 and 2�1n2
P

j

2
j

⌧4
j

. The second term has an extra factor

of n and shall be dominating. The strategy is to minimize the second term over all ⌧ 2 ⇥(�, L, r
n

),

and show that the value of Equation (A.4) is o(1) at this minimum point. Such a minimization

problem has also been used to give a lower bound for the Gaussian sequence model in (Ingster
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et al. 2012) but the details are omitted there. Here we work out the full details. In this subsection

we shall work with �2 = 1 with out loss of generality.

Consider a optimization problem:

max
⌧

X

j

2
j

⌧4
j

, s.t.
X

j

⌧2
j

� r2
n

,
X

j

j2�⌧2
j

 L2. (A.5)

Let x
j

= 
j

⌧2
j

, �2
j

= �1
j

, a
j

= L�1/�j� , the optimization problem can be written equivalently

as

min
x

X

j

x2
j

, s.t.
X

j

�2
j

x
j

� r2
n

,
X

j

a2
j

�2
j

x
j

 1, x
j

� 0, 8 j.

Consider Lagrangian, with u > 0, v > 0 and w > 0,

L(x;u, v, w) =
X

j

x2
j

+ u

0

@r2
n

�
X

j

�2
j

x
j

1

A+ v

0

@

X

j

a2
j

�2
j

x
j

� 1

1

A�
X

j

w
j

x
j

=
X

j

⇥

x2
j

� (u�2
j

� va2
j

�2
j

+ w
j

)x
j

⇤

+ r2
n

u� v.

The dual function

g(u, v, w) = min
x

L(x;u, v, w) = �1

4

X

j

(u�2
j

� va2
j

�2
j

+ w
j

)2 + r2
n

u� v.

The dual problem is

max
u,v,w

g(u, v, w), s.t. u � 0, v � 0, w
j

� 0, 8 j.

Observe that g(u, v, w) must be maximized by taking ew
j

= (va2
j

�2
j

� u�2
j

)+.

Let

g(u, v) = max
w

g(u, v, w) = �1

4

X

j

(u�2
j

� va2
j

�2
j

)2+ + r2
n

u� v.

Assume the optimal solution for u is not 0. Let v = Bu. Then the dual problem becomes

max
u,B

� 1

4

2

4

X

j

�4
j

(1�Ba2
j

)2+

3

5u2 + (r2
n

�B)u, s.t. u � 0, B � 0.

The above maximization problem is maximized by taking

eu =
2(r2

n

�B)+
P

j

�4
j

(1�Ba2
j

)2+
.
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Let g(B) = g(eu,B). We have

g(B) =

8

>

<

>

:

(r2n�B)2P
j �

4

j (1�Ba

2

j )
2

+

, if 0  B  r2
n

,

0, B � r2
n

.

Note that g(0) = g(r2
n

) = 0 because
P

j

�4
j

= 1. Therefore the maximizer of B must be in (0, r2
n

)

and hence eu > 0, ev > 0. By complimentary slackness we must have
P

j

�2
j

ex
j

= r2
n

,
P

j

a2
j

�2
j

ex
j

= 1,

and ex
j

= 0, for all 1�Ba2
j

< 0.

Note that

ex
j

=
1

2
(eu�2

j

� eva2
j

�2
j

+ ew
j

).

Plugging in,

ex
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=
1

2
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j
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)+ =
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2
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with

A
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=
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�B)
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.
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APPENDIX C. ADDITIONAL SIMULATION RESULTS

C.1 Gaussian mixture design

Now we provide simulation results that parallels Tables 1 and 2 using a Gaussian mixture design.

The results are qualitatively similar to those in the Gaussian design.

Table 4: Simulation results for a fixed simple alternative under Gaussian mixture design over 500

repetitions. Reported numbers are percentage of rejections. For hX,�
j

i the mixture distributions

are N(�0.5
p

j

, 0.75
j

) and N(0.5
p

j

, 0.75
j

) with equal proportion.

r2 = 0 0.1 0.2 0.5

level = 5% n = 50 4.8 16.8 34.4 71.4

100 5.4 24.8 55.4 92.2

500 4.8 96.2 100 100

1% n = 50 1.0 8.6 18.4 51.8

100 1.2 12.6 35.6 81.8

500 0.8 89.8 100 100

C.2 Non-Gaussian error

Here we give an example of non-Gaussian error distribution. The simulation set up is analogous to

those in Table 1 and Table 4, but the error distribution is changed from a standard Gaussian to a

Student-t distribution with six degrees of freedom (normalized to have standard deviation 1). The

simulation results are similar to those for the case of Gaussian error.
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Table 5: Simulation results for randomized signals under Gaussian mixture design over 500 rep-

etitions. Level = 0.05. Reported numbers are percentage of rejections. For hX,�
j

i the mixture

distributions are N(�0.5
p

j

, 0.75
j

) and N(0.5
p

j

, 0.75
j

) with equal proportion.

k✓k22 = 0 0.1 0.2 0.5 1.5

Model (2,1) n = 50  ES 4.4 16.2 29.8 52.0 76.6

FVE80 5.0 13.8 26.2 48.0 75.2

FVE85 4.2 13.0 23.8 44.8 71.8

FVE90 3.8 11.4 21.0 40.4 70.6

n = 100  ES 4.2 24.0 42.0 69.0 88.6

FVE80 4.2 27.4 41.0 69.6 89.2

FVE85 4.6 24.6 39.0 65.6 88.0

FVE90 5.4 19.6 31.6 60.8 86.6

n = 500  ES 3.2 66.6 82.0 94.2 99.0

FVE80 4.0 67.2 82.0 95.2 99.0

FVE85 4.6 65.4 80.4 93.8 99.2

FVE90 4.2 58.6 76.4 92.4 98.8

Model (9,2) n = 50  ES 4.4 12.4 20.6 32.2 56.2

FVE80 5.6 11.0 19.0 30.8 55.6

FVE85 3.6 9.4 17.0 28.4 55.4

FVE90 5.0 9.2 16.6 26.6 52.4

n = 100  ES 5.4 17.2 21.0 43.2 69.0

FVE80 4.6 17.6 22.4 43.0 64.6

FVE85 4.2 17.4 21.4 43.0 68.4

FVE90 4.8 15.6 19.0 42.2 68.2

n = 500  ES 4.4 41.6 56.4 79.6 93.4

FVE80 5.2 45.2 59.6 75.8 90.6

FVE85 4.6 44.2 60.6 77.0 91.4

FVE90 6.2 41.0 59.6 82.6 94.2
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Table 6: Simulation results for a fixed simple alternative under Gaussian design over 500 repetitions.

The error distribution is Student-t with six degrees of freedom. Reported numbers are percentage

of rejections.

r2 = 0 0.1 0.2 0.5

level = 5% n = 50 4.4 17.4 34.8 74.2

100 4.8 30.0 54.2 95.0

500 3.0 97.0 100 100

1% n = 50 1.4 5.8 18.4 54.4

100 1.6 14.8 35.6 87.8

500 0.8 90.2 100 100
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