
Bayes versus Frequentist

This lecture combines three blog posts that I wrote on this topic.

1 Adventures in FlatLand: Stone’s Paradox

Mervyn Stone is Emeritus Professor at University College London. He is famous for
his deep work on Bayesian inference as well as pioneering work on cross-validation,
coordinate-free multivariate analysis, as well as many other topics.

Today I want to discuss a famous example of his, described in Stone (1970, 1976,
1982). In technical jargon, he shows that “a finitely additive measure on the free group
with two generators is nonconglomerable.” In English: even for a simple problem with
a discrete parameters space, flat priors can lead to surprises. Fortunately, we don’t
need to know anything about free groups to understand this example.

1.1 Hunting For a Treasure In Flatland

I wonder randomly in a two dimensional grid-world. I drag an elastic string with me.
The string is taut: if I back up, the string leaves no slack. I can only move in four
directions: North, South, West, East.

I wander around for a while then I stop and bury a treasure. Call this path θ. Here
is an example:
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Now I take one more random step. Each direction has equal probability. Call this
path x. So it might look like this:

Two people, Bob (a Bayesian) and Carla (a classical statistician) want to find the
treasure. There are only four possible paths that could have yielded x, namely:

2



Let us call these four paths N, S, W, E. The likelihood is the same for each of these.
That is, p(x|θ) = 1/4 for θ ∈ {N,S,W,E}. Suppose Bob uses a flat prior. Since the
likelihood is also flat, his posterior is

P (θ = N |x) = P (θ = S|x) = P (θ = W |x) = P (θ = E|x) =
1

4
.

Let B be the three paths that extend x. In this example, B = {N,W,E}. Then
P (θ ∈ B|x) = 3/4.

Now Carla is very confident and selects a confidence set with only one path, namely,
the path that shortens x. In other words, Carla’s confidence set is C = Bc.

Notice the following strange thing: no matter what θ is, Carla gets the treasure
with probability 3/4 while Bob gets the treasure with probability 1/4. That is,
P (θ ∈ B|x) = 3/4 but the coverage of B is 1/4. The coverage of C is 3/4.

Here is quote from Stone (1976): (except that I changed his B and C to Bob and
Carla):

“ ... it is clear that when Bob and Carla repeatedly engage in this trea-
sure hunt, Bob will find that his posterior probability assignment becomes
increasingly discrepant with his proportion of wins and that Carla is, some-
how, doing better than [s]he ought. However, there is no message ... that
will allow Bob to escape from his Promethean situation; he cannot learn
from his experience because each hunt is independent of the other.”

Stone is not criticizing Bayes (as far I can tell). He is just discussing the effect of
using a flat prior.

1.2 More Trouble For Bob

Let A be the event that the final step reduced the length of the string. Using the
posterior above, we see that Bob finds that P (A|x) = 3/4 for each x. Since this
holds for each x, Bob deduces that P (A) = 3/4. On the other hand, Bob notes that
P (A|θ) = 1/4 for every θ. Hence, P (A) = 1/4.

Bob has just proved that 3/4 = 1/4.

1.3 The Source of The Problem

The apparent contradiction stems from the fact that the prior is improper. Technically
this is an example of the non-conglomerability of finitely additive measures. For a
rigorous explanation of why this happens you should read Stone’s papers. Here is an
abbreviated explanation, from Kass and Wasserman (1996, Section 4.2.1).
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Let π denotes Bob’s improper flat prior and let π(θ|x) denote his posterior distribu-
tion. Let πp denote the prior that is uniform on the set of all paths of length p. This
is of course a proper prior. For any fixed x, πp(A|x) → 3/4 as p → ∞. So Bob can
claim that his posterior distribution is a limit of well-defined posterior distributions.
However, we need to look at this more closely. Let mp(x) =

∑
θ f(x|θ)πp(θ) be the

marginal of x induced by πp. Let Xp denote all x’s of length p or p+1. When x ∈ Xp,
πp(θ|x) is a poor approximation to π(θ|x) since the former is concentrated on a single
point while the latter is concentrated on four points. In fact, the total variation dis-
tance between πp(θ|x) and π(θ|x) is 3/4 for x ∈ Xp. (Recall that the total variation
distance between two probability measures P and Q is d(P,Q) = supA |P (A)−Q(A)|.)
Furthermore, Xp is a set with high probability: mp(Xp)→ 2/3 as p→∞.

While πp(θ|x) converges to π(θ|x) as p→∞ for any fixed x, they are not close with
high probability.

This problem disappears if you use a proper prior.

1.4 The Four Sided Die

Here is another description of the problem. Consider a four sided die whose sides are
labeled with the symbols {a, b, a−1, b−1}. We roll the die several times and we record
the label on the lowermost face (there is a no uppermost face on a four-sided die). A
typical outcome might look like this string of symbols:

a a b a−1 b b−1 b a a−1 b

Now we apply an annihilation rule. If a and a−1 appear next to each other, we
eliminate these two symbols. Similarly, if b and b−1 appear next to each other, we
eliminate those two symbols. So the sequence above gets reduced to:

a a b a−1 b b

Let us denote the resulting string of symbols, after removing annihilations, by θ.
Now we toss the die one more time. We add this last symbol to θ and we apply the
annihilation rule once more. This results in a string which we will denote by x.

You get to see x and you want to infer θ.

Having observed x, there are four possible values of θ and each has the same likelihood.
For example, suppose x = (a, a). Then θ has to be one of the following:

(a), (a a a), (a a b−1), (a a b)

The likelihood function is constant over these four values.
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Suppose we use a flat prior on θ. Then the posterior is uniform on these four possi-
bilities. Let C = C(x) denote the three values of θ that are longer than x. Then the
posterior satisfies

P (θ ∈ C|x) = 3/4.

Thus C(x) is a 75 percent posterior confidence set.

However, the frequentist coverage of C(x) is 1/4. To see this, fix any θ. Now note
that C(x) contains θ if and only if θ concatenated with x is smaller than θ. This
happens only if the last symbol is annihilated, which occurs with probability 1/4.

1.5 Likelihood

Another consequence of Stone’s example is that, in my opinion, it shows that the
Likelihood Principle is bogus. According to the likelihood principle, the observed
likelihood function contains all the useful information in the data. In this example,
the likelihood does not distinguish the four possible parameter values.

The direction of the string from the current position — which does not affect the
likelihood — has lots of information.

1.6 Proper Priors

If you want to have some fun, try coming up with proper priors on the set of paths.
Then simulate the example, find the posterior and try to find the treasure. If you try
this, I’d be interested to hear about the results.

Another question this example raises is: should one use improper priors? Flat priors
that do not have a finite sum can be interpreted as finitely additive priors. The
father of Bayesian inference, Bruno DeFinetti, was adamant in rejecting the axiom
of countable additivity. He thought flat priors like Bob’s were fine.

It seems to me that in modern Bayesian inference, there is not universal agreement on
whether flat priors are evil or not. But in this example, I think that most statisticians
would reject Bob’s flat prior-based Bayesian inference.

1.7 Conclusion

I have always found this example to be interesting because it seems very simple and,
at least at first, one doesn’t expect there to be a problem with using a flat prior.
Technically the problems arise because there is group structure and the group is not
amenable. Hidden beneath this seemingly simple example is some rather deep group
theory.
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Many of Stone’s papers are gems. They are not easy reading (with the exception of
the 1976 paper) but they are worth the effort.

2 Robins and Wasserman Respond to a Nobel Prize

Winner

This section written by James Robins and Larry Wasserman

Chris Sims is a Nobel prize winning economist who is well known for his work on
macroeconomics, Bayesian statistics, vector autoregressions among other things. One
of us (LW) had the good fortune to meet Chris at a conference and can attest that
he is also a very nice guy.

Chris has a paper called On an An Example of Larry Wasserman. This post is a
response to Chris’ paper.

The example in question is actually due to Robins and Ritov (1997). A simplified
version appeared in Wasserman (2004) and Robins and Wasserman (2000). The
example is related to ideas from the foundations of survey sampling (Basu 1969,
Godambe and Thompson 1976) and also to ancillarity paradoxes (Brown 1990, Foster
and George 1996).

2.1 The Model

Here is (a version of) the example. Consider iid random variables

(X1, Y1, R1), . . . , (Xn, Yn, Rn).

The random variables take values as follows:

Xi ∈ [0, 1]d, Yi ∈ {0, 1}, Ri ∈ {0, 1}.

Think of d as being very, very large. For example, d = 100, 000 and n = 1, 000.

The idea is this: we observe Xi. Then we flip a biased coin Ri. If Ri = 1 then you
get to see Yi. If Ri = 0 then you don’t get to see Yi. The goal is to estimate

ψ = P (Yi = 1).

Here are the details. The distribution takes the form

p(x, y, r) = pX(x)pY |X(y|x)pR|X(r|x).

Note that Y and R are independent, given X. For simplicity, we will take p(x) to be
uniform on [0, 1]d. Next, let

θ(x) ≡ pY |X(1|x) = P (Y = 1|X = x)
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where θ(x) is a function. That is, θ : [0, 1]d → [0, 1]. Of course,

pY |X(0|x) = P (Y = 0|X = x) = 1− θ(x).

Similarly, let
π(x) ≡ pR|X(1|x) = P (R = 1|X = x)

where π(x) is a function. That is, π : [0, 1]d → [0, 1]. Of course,

pR|X(0|x) = P (R = 0|X = x) = 1− π(x).

The function π is known. We construct it. Remember that π(x) = P (R = 1|X = x)
is the probability that we get to observe Y given that X = x. Think of Y as
something that is expensive to measure. We don’t always want to measure it. So we
make a random decision about whether to measure it. And we let the probability of
measuring Y be a function π(x) of x. And we get to construct this function.

Let δ > 0 be a known, small, positive number. We will assume that

π(x) ≥ δ

for all x.

The only thing in the the model we don’t know is the function θ(x). Again, we will
assume that

δ ≤ θ(x) ≤ 1− δ.
Let Θ denote all measurable functions on [0, 1]d that satisfy the above conditions.
The parameter space is the set of functions Θ.

Let P be the set of joint distributions of the form

p(x) π(x)r(1− π(x))1−r θ(x)y(1− θ(x))1−y

where p(x) = 1, and π(·) and θ(·) satisfy the conditions above. So far, we are
considering the sub-model Pπ in which π is known.

The parameter of interest is ψ = P (Y = 1). We can write this as

ψ = P (Y = 1) =

∫
[0,1]d

P (Y = 1|X = x)p(x)dx =

∫
[0,1]d

θ(x)dx.

Hence, ψ is a function of θ. If we know θ(·) then we can compute ψ.

2.2 Frequentist Analysis

The usual frequentist estimator is the Horwitz-Thompson estimator

ψ̂ =
1

n

n∑
i=1

YiRi

π(Xi)
.
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It is easy to verify that ψ̂ is unbiased and consistent. Furthermore, ψ̂−ψ = OP (n−
1
2 ).

In fact, let us define
In = [ψ̂ − εn, ψ̂ + εn]

where

εn =

√
1

2nδ2
log

(
2

α

)
.

It follows from Hoeffding’s inequality that

sup
P∈Pπ

P (ψ ∈ In) ≥ 1− α

Thus we have a finite sample, 1− α confidence interval with length O(1/
√
n).

Remark: We are mentioning the Horwitz-Thompson estimator because it is simple.
In practice, it has three deficiencies:

1. It may exceed 1.

2. It ignores data on the multivariate vector X except for the one dimensional
summary π(X).

3. It can be very inefficient.

These problems are remedied by using an improved version of the Horwitz-Thompson
estimator. One choice is the so-called locally semiparametric efficient regression esti-
mator (Scharfstein et al., 1999):

ψ̂ =

∫
expit

(
k∑

m=1

η̂mφm(x) +
ω̂

π(x)

)
dx

where expit(a) = ea/(1 + ea), φm (x) are basis functions, and η̂1, . . . , η̂k, ω̂ are the
mle’s (among subjects with Ri = 1) in the model

log

(
P (Y = 1|X = x)

P (Y = 0|X = x)

)
=

k∑
m=1

ηmφm(x) +
ω

π(x)
.

Here k can increase slowly with n. Recently even more efficient estimators have been
derived. Rotnitzky et al (2012) provides a review. In the rest of this post, when
we refer to the Horwitz-Thompson estimator, the reader should think “improved
Horwitz-Thompson estimator.” End Remark.
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2.3 Bayesian Analysis

To do a Bayesian analysis, we put some prior W on Θ. Next we compute the likelihood
function. The likelihood for one observation takes the form p(x)p(r|x)p(y|x)r. The
reason for having r in the exponent is that, if r = 0, then y is not observed so the
p(y|x) gets left out. The likelihood for n observations is

n∏
i=1

p(Xi)p(Ri|Xi)p(Yi|Xi)
Ri =

∏
i

π(Xi)
Ri(1−π(Xi))

1−Ri θ(Xi)
YiRi(1−θ(Xi))

(1−Yi)Ri .

where we used the fact that p(x) = 1. But remember, π(x) is known. In other words,
π(Xi)

Ri(1− π(Xi))
1−Ri is known. So, the likelihood is

L(θ) ∝
∏
i

θ(Xi)
YiRi(1− θ(Xi))

(1−Yi)Ri .

Combining this likelihood with the prior W creates a posterior distribution on Θ
which we will denote by Wn. Since the parameter of interest ψ is a function of θ, the
posterior Wn for θ defines a posterior distribution for ψ.

Now comes the interesting part. The likelihood has essentially no information in it.

To see that the likelihood has no information, consider a simpler case where θ(x) is
a function on [0, 1]. Now discretize the interval into many small bins. Let B be the
number of bins. We can then replace the function θ with a high-dimensional vector
θ = (θ1, . . . , θB). With n < B, most bins are empty. The data contain no information
for most of the θj’s. (You might wonder about the effect of putting a smoothness
assumption on θ(·). We’ll discuss this in Section 4.)

We should point out that if π(x) = 1/2 for all x, then Ericson (1969) showed that a
certain exchangeable prior gives a posterior that, like the Horwitz-Thompson estima-
tor, converges at rate O(n−1/2). However we are interested in the case where π(x) is
a complex function of x; then the posterior will fail to concentrate around the true
value of ψ. On the other hand, a flexible nonparametric prior will have a posterior
essentially equal to the prior and, thus, not concentrate around ψ, whenever the prior
W does not depend on the the known function π(·). Indeed, we have the following
theorem from Robins and Ritov (1997):

Theorem. (Robins and Ritov 1997). Any estimator that is not a function of
π(·) cannot be uniformly consistent.

This means that, at no finite sample size, will an estimator ψ̂ that is not a function of
π be close to ψ for all distributions in P . In fact, the theorem holds for a neighborhood
around every pair (π, θ). Uniformity is important because it links asymptotic behavior
to finite sample behavior. But when π is known and is used in the estimator (as in
the Horwitz-Thompson estimator and its improved versions) we can have uniform
consistency.
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Note that a Bayesian will ignore π since the π(Xi)
′s are just constants in the likeli-

hood. There is an exception: the Bayesian can make the posterior be a function of π
by choosing a prior W that makes θ(·) depend on π(·). But this seems very forced.
Indeed, Robins and Ritov showed that, under certain conditions, any true subjective
Bayesian prior W must be independent of π(·). Specifically, they showed that once a
subjective Bayesian queries the randomizer (who selected π) about the randomizer’s
reasoned opinions concerning θ(·) (but not π(·)) the Bayesian will have independent
priors. We note that a Bayesian can have independent priors even when he believes
with probabilty 1 that π (·) and θ (·) are positively correlated as functions of x i.e.∫
θ (x) π (x) dx >

∫
θ (x) dx

∫
π (x) dx. Having independent priors only means that

learning π (·) will not change one’s beliefs about θ (·).
So far, so good. As far as we know, Chris agrees with everything up to this point.

2.4 Some Bayesian Responses

Chris goes on to raise alternative Bayesian approaches.

The first is to define

Zi =
RiYi
π(Xi)

.

Note that Zi ∈ {0} ∪ [1,∞). Now we ignore (throw away) the original data. Chris
shows that we can then construct a model for Zi which results in a posterior for ψ
that mimics the Horwitz-Thompson estimator. We’ll comment on this below, but
note two strange things. First, it is odd for a Bayesian to throw away data. Second,
the new data are a function of π(Xi) which forces the posterior to be a function of π.
But as we noted earlier, when θ and π are a priori independent, the π(Xi)

′s do not
appear in the posterior since they are known constants that drop out of the likelihood.

A second approach (not mentioned explicitly by Chris) which is related to the above
idea, is to construct a prior W that depends on the known function π. It can be
shown that if the prior is chosen just right then again the posterior for ψ mimics the
(improved) Horwitz-Thompson estimator.

Lastly, Chris notes that the posterior contains no information because we have not
enforced any smoothness on θ(x). Without smoothness, knowing θ(x) does not tell
you anything about θ(x+ ε) (assuming the prior W does not depend on π).

This is true and better inferences would obtain if we used a prior that enforced
smoothness. But this argument falls apart when d is large. (In fairness to Chris,
he was referring to the version from Wasserman (2004) which did not invoke high
dimensions.) When d is large, forcing θ(x) to be smooth does not help unless you
make it very, very, very smooth. The larger d is, the more smoothness you need to
get borrowing of information across different values of θ(x). But this introduces a
huge bias which precludes uniform consistency.
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2.5 Response to the Response

We have seen that response 3 (add smoothness conditions in the prior) doesn’t work.
What about response 1 and response 2? We agree that these work, in the sense
that the Bayes answer has good frequentist behavior by mimicking the (improved)
Horwitz-Thompson estimator.

But this is a Pyrrhic victory. If we manipulate the data to get a posterior that
mimics the frequentist answer, is this really a success for Bayesian inference? Is it
really Bayesian inference at all? Similarly, if we choose a carefully constructed prior
just to mimic a frequentist answer, is it really Bayesian inference?

We call Bayesian inference which is carefully manipulated to force an answer with
good frequentist behavior, frequentist pursuit. There is nothing wrong with it, but
why bother?

If you want good frequentist properties just use the frequentist estimator. If you
want to be a Bayesian, be a Bayesian but accept the fact that, in this example, your
posterior will fail to concentrate around the true value.

2.6 Summary

In summary, we agree with Chris’ analysis. But his fix is just frequentist pursuit; it is
Bayesian analysis with unnatural manipulations aimed only at forcing the Bayesian
answer to be the frequentist answer. This seems to us to be an admission that Bayes
fails in this example.

3 Freedman’s Theorem

In this post I want to review an interesting result by David Freedman (Annals of
Mathematical Statistics, Volume 36, Number 2 (1965), 454-456) available at pro-
jecteuclid.org.

The result gets very little attention. Most researchers in statistics and machine learn-
ing seem to be unaware of the result. The result says that, “almost all” Bayesian
posterior distributions are inconsistent, in a sense we’ll make precise below. The math
is uncontroversial but, as you might imagine, the intepretation of the result is likely
to be controversial.

Actually, I had planned to avoid “Bayesian versus frequentist” stuff on this blog
because it has been argued to death. But this particular result is so neat and clean
that I couldn’t resist. I will, however, resist drawing any philosophical conclusions
from the result. I will merely tell you what the result is. Don’t shoot the messenger!
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The paper is very short, barely more than two pages. My summary will be even
shorter. (I’ll use slightly different notation.)

Let X1, . . . , Xn be an iid sample from a distribution P on the natural numbers I =
{1, 2, 3, . . . , }. Let P be the set of all such distributions. We endow P with the weak∗

topology. Hence, Pn → P iff Pn(i)→ P (i) for all i.

Let µ denote a prior distribution on P . (More precisely, a prior on an appropriate
σ-field.) Let Π be all priors. Again, we endow the set with the weak∗ topology. Thus
µn → µ iff

∫
fdµn →

∫
fdµ for all bounded, continuous, real functions f .

Let µn be the posterior corresponding to the prior µ after n observations. We will
say that the pair (P, µ) is consistent if

P∞( lim
n→∞

µn = δP ) = 1

where P∞ is the product measure corresponding to P and δP is a point mass at P .

Now we need to recall some topology. A set is nowhere dense if its closure has an
empty interior. A set is meager (or first category) if it is a countable union of nowehere
dense sets. Meager sets are small; think of a meager set as the topological version of
a null set in measure theory.

Freedman’s theorem is: the sets of consistent pairs (P, µ) is meager.

This means that, in a topological sense, consistency is rare for Bayesian procedures.
From this result, it can also be shown that most pairs of priors lead to inferences that
disagree. (The agreeing pairs are meager.) Or as Freedman says in his paper:

“ ... it is easy to prove that for essentially any pair of Bayesians, each thinks the
other is crazy.”

As a postscript, let me add that David Freedman, who died in 2008, was a statistician
at Berkeley. He was an impressive person whose work spanned from the very theo-
retical to the very applied. He was a bit of a curmudgeon, which perhaps lessened
his influence a little. But he was a deep thinker with a healthy skepticism about the
limits of statistical models, and I encourage any students reading this blog to seek
out his work.
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