
36-708 Introduction and Review

1 Statistics versus ML

Statistics and ML are overlapping fields. Both address the same question: how do we extract
information from data? But there are differences in emphasis. In particular, some topics get
greater emphasis than others. Here are some examples:

More emphasis in ML More emphasis in Stat Common Areas
Bandits Confidence Sets Prediction (Regression and Classification)
Reinforcement Learning Large Sample Theory Probability Bounds (Concentration)
Efficient Computation Statistical Optimality Clustering
Deep Learning Causality Graphical Models

However, the lines between the two fields are blurry and will become increasingly so.

Another difference between the two fields is that ML researchers tend to publish short pa-
pers in conferences while Statisticians tend to publish long papers in journals. Each has
advantages and disadvantages.

2 Concentration

Hoeffding’s inequality:

Theorem 1 (Hoeffding) If Z1, Z2, . . . , Zn are iid with mean µ and P(a ≤ Zi ≤ b) = 1,
then for any ε > 0

P(|Zn − µ| > ε) ≤ 2e−2nε
2/(b−a)2 (1)

where and Zn = 1
n

∑n
i=1 Zi.

VC Dimension. Let A be a class of sets. If F is a finite set, let s(A, F ) be the number of
subset of F ‘picked out’ by A. Define the growth function

sn(A) = sup
|F |=n

s(A, F ).

Note that sn(A) ≤ 2n. The VC dimension of a class of set A is

VC(A) = sup
{
n : sn(A) = 2n

}
. (2)

If the VC dimension is finite, then there is a phase transition in the growth function from
exponential to polynomial:
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Theorem 2 (Sauer’s Theorem) Suppose that A has finite VC dimension d. Then, for
all n ≥ d,

s(A, n) ≤
(en
d

)d
. (3)

Given data Z1, . . . , Zn ∼ P . The empirical measure Pn is

Pn(A) =
1

n

∑
i

I(Zi ∈ A).

Theorem 3 (Vapnik and Chervonenkis) Let A be a class of sets. For any t >
√

2/n,

P
(

sup
A∈A
|Pn(A)− P (A)| > t

)
≤ 4 s(A, 2n)e−nt

2/8 (4)

and hence, with probability at least 1− δ,

sup
A∈A
|Pn(A)− P (A)| ≤

√
8

n
log

(
4 s(A, 2n)

δ

)
. (5)

Hence, if A has finite VC dimension d then

sup
A∈A
|Pn(A)− P (A)| ≤

√
8

n

(
log

(
4

δ

)
+ d log

(ne
d

))
. (6)

Bernstein’s inequality is a more refined inequality than Hoeffding’s inequality. It is especially
useful when the variance of Y is small. Suppose that Y1, . . . , Yn are iid with mean µ, Var(Yi) ≤
σ2 and |Yi| ≤M . Then

P(|Y − µ| > ε) ≤ 2 exp

{
− nε2

2σ2 + 2Mε/3

}
. (7)

It follows that

P

(
|Y − µ| > t

nε
+

εσ2

2(1− c)

)
≤ e−t

for small enough ε and c.

3 Probability

1. Xn
P→ 0 means that means that, for every ε > 0 P(|Xn| > ε)→ 0 as n→∞.
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2. Xn  Z means that P(Xn ≤ z)→ P(Z ≤ z) at all continuity points z.

3. Xn = OP (an) means that, Xn/an is bounded in probability: for every ε > 0 there is

an M > 0 such that, for all large n, P
(∣∣∣Xn

an

∣∣∣ > M
)
≤ ε.

4. Xn = op(an) means that Xn/an goes to 0 in probability: for every ε > 0

P
(∣∣∣∣Xn

an

∣∣∣∣ > ε

)
→ 0 as n→∞.

5. Law of large numbers: X1, . . . , Xn ∼ P then

Xn
P→ µ

where Xn = 1
n

∑n
i=1Xi and µ = E[Xi].

6. Central limit theorem: X1, . . . , Xn ∼ P then

√
n(Xn − µ)

σ
 N(0, 1)

where σ2 = Var(Xi).

4 Basic Statistics

1. Bias and Variance. Let θ̂ be an estimator of θ. Then

E(θ̂ − θ)2 = bias2 + Var

where bias = E[θ̂]−θ and Var = Var(θ̂). In many cases there is a bias-variance trade-
off. In parametric problems, we typically have that the standard deviation is O(n−1/2)
but the bias is O(1/n) so the variability dominates. In nonparametric problems this is
no longer true. We have to choose tuning parameters in classifiers and estimators to
balance the bias and variance.

2. A set of distributions P is a statistical model. They can be small (parametric models)
or large (nonparametric models).

3. Confidence Sets. Let X1, . . . , Xn ∼ P where P ∈ P . Let θ = T (P ) be some quantity
of interest, Then Cn = C(X1, . . . , Xn) is a 1− α confidence set if

inf
P∈P

P (T (P ) ∈ Cn) ≥ 1− α.

4. Maximum Likelihood. Parametric model {pθ : θ ∈ Θ}. We also write pθ(x) =

p(x; θ). Let X1, . . . , Xn ∼ pθ. MLE θ̂n (maximum likelihood estimator) maximizes the
likelihood function

L(θ) =
n∏
i=1

p(Xi; θ).

3



5. Fisher information In(θ) = nI(θ) where

I(θ) = −E
[
∂2 log p(X; θ)

∂θ2

]
.

6. Then
θ̂n − θ
sn

 N(0, 1)

where sn =
√

1

nI(θ̂)
.

7. Asymptotic 1− α confidence interval Cn = θ̂n ± zα/2 sn. Then

P(θ ∈ Cn)→ 1− α.

5 Minimaxity

Let P be a set of distributions. Let θ be a parameter and let L(θ̂, θ) be a loss function. The
minimax risk is

Rn = inf
θ̂

sup
P∈P

EP [L(θ̂, θ)].

If supP∈P EP [L(θ̂, θ)] = Rn then θ̂ is a minimax estimator.

For example, if X1, . . . , Xn ∼ N(θ, 1) and L(θ̂, θ) = (θ̂ − θ)2 then the minimax risk is 1/n
and the minimax estimator is Xn.

As another example, if X1, . . . , Xn ∼ p where Xi ∈ Rd, L(p̂, p) =
∫

(p̂ − p)2 and p ∈ P , the
set of densities with bounded second derivatives, then Rn = (C/n)4/(4+d). The kernel density
estimator is minimax.

6 Regression

1. Y ∈ R, X ∈ Rd and prediction risk is

E(Y −m(X))2.

We write X = (X(1), . . . , X(d)).

2. Minimizer is m(x) = E(Y |X = x).

3. Best linear predictor: minimize
E(Y − βTX)2

where X(1) = 1 so that β1 is the intercept. Minimizer is

β = Λ−1α

where Λ(j, k) = E[X(j)X(k)] and α(j) = E(Y X(j)).
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4. The data are
(X1, Y1), . . . , (Xn, Yn).

Given new X predict Y .

5. Minimize training error

R̂(β) =
1

n

∑
i

(Yi − βTXi)
2.

Solution: least squares:
β̂ = (XTX)−1XTY

where X(i, j) = Xi(j).

6. Fitted values Ŷ = Xβ̂ = HY where H = X(XTX)−1XT is the hat matrix: the projector
onto the column space of X.

7. Bias-Variance tradeoff: Write Y = m(X) + ε and let Ŷ = m̂(X) where m̂(x) = xT β̂.
Then

R = E(Ŷ − Y )2 = σ2 +

∫
b2(x)p(x)dx+

∫
v(x)p(x)dx

where b(x) = E[m̂(x)]−m(x), v(x) = Var(m̂(x)) and σ2 = Var(ε).

7 Classification

1. X ∈ Rd and Y ∈ {0, 1}.
2. Classifier h : Rd → {0, 1}.
3. Prediction risk:

R(h) = P(Y 6= h(X)).

The Bayes rule minimizes R(h):

h(x) = I(m(x) > 1/2) = I(π1p1(x) > π0p0(x))

where m(x) = P(Y = 1|X = x), π1 = P(Y = 1), π0 = P(Y = 0), p1(x) = p(x|Y = 1)
and p0(x) = p(x|Y = 0).

4. Re-coded loss. If we code Y as Y ∈ {−1,+1}. then many classifiers can be written
as

h(x) = sign(ψ(x))

for some ψ. For linear classifiers, ψ(x) = βTx. Then the loss can be written as
I(Y 6= h(X)) = I(Y ψ(X) < 0) and risk is

R = P(Y 6= h(X)) = P(Y ψ(X) < 0)

.
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5. Linear Classifiers. A linear classifier has the form hβ(x) = I(βTx > 0). (I am
including a intercept in x. In other words x = (1, x(2), . . . , x(d)).) Given data
(X1, Y1), . . . , (Xn, Yn) there are several ways to estimate a linear classifier:

(a) Empirical risk minimization (ERM): Choose β̂ to minimize

Rn(β) =
1

n

n∑
i=1

I(Yi 6= hβ(Xi)).

(b) Logistic regression: use the model

P (Y = 1|X = x) =
eβ

T x

1 + eβT x
≡ p(x, β).

So Yi ∼ Benoulii(p(Xi, β)). The likelihood function is

L(β) =
∏
i

p(Xi, β)Yi(1− p(Xi, β))1−Yi .

The log-likelihood is strictly concave. So we have find the maximizer β̂ easily. It is
easy to check that the classifier I(px,β̂ > 1/2) is linear.
(c) SVM (support vector machine). Code Y as +1 or −1. We can write the classifier
as hβ(x) = sign(ψβ(x)) where ψβ(x) = xTβ. As we said above, the loss can be written
as I(Y 6= h(X)) = I(Y ψ(X) < 0). Now replace the nonconvex loss I(Y ψ(X) < 0)
with the hinge-loss [1− Yiψβ(Xi)]+. We minimize the regularized loss

n∑
i=1

[1− Yiψβ(Xi)]+ + λ||β||2.

6. The SVM is an example of the general idea of replacing the true loss with a surrogate
loss that is easier to minimize. Replacing I(Y ψ(X) < 0) with

L(Y, ψ(X)) = log(1 + exp(−Y ψ(X)))

gives back logistic regression. The adaboost algorithm uses

L(Y, ψ(X)) = exp(−Y ψ(X)).

And, as we said above, the SVM uses the hinge loss

L(Y, ψ(X)) = [1− Y ψ(X)]+.
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