Practice Questions for Midterm 10/36-702

(1) Let $X_1, \ldots, X_n \sim \text{Unif}(0, 1)$. Compute the bias and variance of the histogram density estimator with binwidth h for this distribution. Show that the optimal value of h is h = 1.

(2) Let $X_1, \ldots, X_n \sim P$ where p has a density p on \mathbb{R} . Assume that p(x) > 0 for each $x \in \mathbb{R}$. Given $c_1, \ldots, c_k \in \mathbb{R}$, the population k-means risk is

$$R(k) = \inf_{c_1,\dots,c_k} \mathbb{E}\left(\min_{j=1,\dots,k} |X - c_j|^2\right).$$

Show that R(k) is strictly decreasing in k.

(3) Let $(X_1, Y_1), \ldots, (X_n, Y_n)$ be iid. Suppose that $X_1, \ldots, X_n \sim P$ has a density p on [0, 1] where $0 < c \le p(x) \le C < \infty$ for all $x \in [0, 1]$. Assume that the density p is known. Assume that

$$Y_i = m(X_i) + \epsilon_i$$

where $\epsilon_1, \ldots, \epsilon_n$ are iid with mean 0 and variance σ^2 . Assume that m, m', m'', m''', p, p', p'', p''' are bounded and continuous functions. Let $x \in (0, 1)$ and define

$$\widehat{m}(x) = \frac{\frac{1}{n} \sum_{i=1}^{n} Y_i \frac{1}{h} K\left(\frac{x - X_i}{h}\right)}{p(x)}$$

where K is a smooth, symmetric, kernel with bounded support. Show that

$$\mathbb{E}[\widehat{m}(x)] = m(x) + Ch^2 + O(h^3).$$

(4) Let $(X_1, Y_1), \ldots, (X_n, Y_n)$ be iid. Suppose that $Y_i \in \{0, 1\}$ and $X_i \in [0, 1]$. Let $\theta = P(Y_i = 1)$. Assume that $0 < \theta < 1$. Suppose that

$$X_i \mid Y_i = 1 ~\sim~ p_1$$

and

$$X_i \mid Y_i = 0 ~\sim ~ p_0$$

where p_0 and p_1 are densities on [0, 1]. Assume that, for some constants, c and C,

$$0 < c \le p_j(x) \le C < \infty$$

for all $x \in [0, 1]$ and j = 0, 1.

Let \hat{p}_0 be an estimate of p_0 and let \hat{p}_1 be an estimate of p_1 . Define

$$\widehat{h}(x) = \begin{cases} 1 & \text{if } \widehat{m}(x) \ge 1/2\\ 0 & \text{if } \widehat{m}(x) < 1/2 \end{cases}$$

where

$$\widehat{m}(x) = \frac{\widehat{\theta}\,\widehat{p}_1(x)}{\widehat{\theta}\,\widehat{p}_1(x) + (1 - \widehat{\theta})\,\widehat{p}_0(x)}$$

 $\widehat{\theta} = n^{-1} \sum_{i=1}^{n} Y_i,$

Suppose that

$$\sup_{x} |\widehat{p}_{0}(x) - p_{0}(x)| \xrightarrow{P} 0, \quad \text{and} \quad \sup_{x} |\widehat{p}_{1}(x) - p_{1}(x)| \xrightarrow{P} 0$$

Show that

$$\mathbb{P}(Y \neq \widehat{h}(X)) - \mathbb{P}(Y \neq h_*(X)) \xrightarrow{P} 0$$

as $n \to \infty$, where h_* is the Bayes classifier, and \mathbb{P} is probability with respect to X and Y, but not with respect to \hat{h} .

(5) Let p be a bounded continuous density defined on a bounded subset $S \subset \mathbb{R}$. Assume further that p has bounded, continuous first and second derivatives. Let $Y_1, \ldots, Y_n \sim p$ and let

$$\widehat{p}_h(y) = \frac{1}{n} \sum_{i=1}^n \frac{1}{h} K\left(\frac{y-Y_i}{h}\right).$$

Let $p_h(x) = \mathbb{E}[\widehat{p}_h(x)].$

(a) Show that, for any t > 0, $\mathbb{P}(|\hat{p}_h(x) - p_h(x)| > t) \to 0$ as long as $nh \to \infty$.

(b) Let $C_h = \{x : p_h(x) > \lambda\}$ and let $\widehat{C}_h = \{x : \widehat{p}_h(x) > \lambda\}$. Show that \widehat{C}_h is a consistent estimator of C_h in the following sense: (i) if $p_h(x) > \lambda$ then $\mathbb{P}(x \in \widehat{C}_h) \to 1$ and (ii) if $p_h(x) < \lambda$ then $\mathbb{P}(x \notin \widehat{C}_h) \to 1$.

(6) Let $Y_i = \beta^T X_i + \epsilon_i$ where $Y_i \in \mathbb{R}$, $X_i \in \mathbb{R}^d$ and $\epsilon_i \sim N(0, \sigma^2)$. Recall that the ridge estimator is

$$\widehat{\beta} = (\mathbb{X}^T \mathbb{X} + \lambda I)^{-1} \mathbb{X}^T Y,$$

where $\mathbb{X} \in \mathbb{R}^{n \times d}$, $Y = (Y_1, \ldots, Y_n)$ and $\lambda \geq 0$. Find $\mathbb{E}[\widehat{\beta}|X_1, \ldots, X_n]$ and $\operatorname{Var}[\widehat{\beta}|X_1, \ldots, X_n]$. Show that $\operatorname{Var}[\widehat{\beta}|X_1, \ldots, X_n] \to 0$ as $\lambda \to \infty$. Show that the bias tends to 0 as $\lambda \to 0$ if d < n.

(7) Let $(X, Y) \sim P$, and consider predicting the value of Y from X. That is, consider choosing a function f to minimize

$$\mathbb{E}\big[\big(Y - f(X)\big)^2\big].$$

Show that the function minimizing this is given by

$$f(x) = \frac{\int y \cdot p_{X,Y}(x,y) \, dy}{p_X(x)},$$

where $p_{X,Y}$ is the joint density of (X, Y), and p_X is the density of X.