
Lecture Notes 10
36-705

Let F be a set of functions and recall that

∆n(F) = sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− E[f ]

∣∣∣∣∣ .
Let us also recall the Rademacher complexity measures

R(x1, . . . , xn) = Eε

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εif(xi)

∣∣∣∣∣
]

and

Rn(F) = EεEX

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εif(Xi)

∣∣∣∣∣
]

where ε1, . . . , εn are Rademacher random variables. We have already shown that

E[∆n(F)] ≤ 2Rn(F).

1 Rademacher Complexity of a Finite Class

Suppose that we have a finite collection of functions F = {f1, . . . , fN}, which are bounded
i.e. ‖fi‖∞ ≤ b then we have the following bound on the Rademacher complexity.

Finite Class Bound: The Rademacher complexity for a finite class,

R(F) ≤ 2b

√
log(2N)

n
.

Proof: Define,

Θ := EX,ε

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εif(Xi)

∣∣∣∣∣
]
.

For convenience let us augment the class F with the negative of every function, i.e. we take
F̃ = F ∪ (−F), so that there are now 2N functions. Then,

Θ ≤ EX,ε

[
sup
f∈F̃

1

n

n∑
i=1

εif(Xi)

]
.
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Note that,

exp(tΘ) ≤ exp

(
tEX,ε

[
sup
f∈F̃

1

n

n∑
i=1

εif(Xi)

])

≤ EX,ε exp

(
t

[
sup
f∈F̃

1

n

n∑
i=1

εif(Xi)

])

≤ EX,ε
2N∑
j=1

n∏
i=1

exp

(
tεifj(Xi)

n

)

=
2N∑
j=1

n∏
i=1

EX,ε exp

(
tεifj(Xi)

n

)
.

Since ‖fj‖∞ ≤ b we can use the argument we used in the proof of Hoeffding’s inequality to
obtain that,

exp(tΘ) ≤ 2N exp

(
4t2b2

n

)
,

so we obtain that,

Θ ≤ log(2N)

t
+

4tb2

n
,

where t is a free parameter that is > 0. Choosing, t =
√
n log(2N)/(4b2) we obtain,

Θ ≤ 2b

√
log(2N)

n
.

2 Using the Rademacher Theorem to obtain the VC

theorem

The Rademacher theorem in a very straightforward way implies the VC theorem. We’ll
sketch the proof here. Our class of functions just corresponds to the indicators arising from
the set system. These functions are upper bounded by b = 1. We can get a high-probability
statement as in the initial section so we only need to deal with R(F).

We follow an identical argument to the one we did in the previous section,

exp(tΘ) ≤ EX,ε exp

(
t

[
sup
f∈F̃

1

n

n∑
i=1

εif(Xi)

])
,
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where the class F̃ just contains the set indicators and their negations.

The key point is to note here is the following: suppose we think of the vectors (f(X1), . . . , f(Xn))

for each function in F̃ and ask how many different such vectors are there? Each set in A
picks out some subset of the points (and assigns them the value +1). Even though there
are possibly infinitely many sets in A there are at most only twice (because we included the
negations) the shattering number of different vectors.

The shattering number is precisely the (maximum) number of different vectors (f(X1), . . . , f(Xn))
we can induce using our collection of sets.

With this insight in hand we can just repeat the previous argument to conclude that,

Θ ≤
√

4 log(2s(A, n))

n
,

and putting this together with the high-probability bound from before we have that with
probability at least 1− δ,

Θ ≤
√

4 log(2s(A, n))

n
+

√
2 ln(2/δ)

n

≤
√

4 log(4s(A, n)/δ)

n
,

which is precisely the VC theorem (again always ignore constants).
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