# **Smooth Post-Stratification for Capture-Recapture**

## Problem

Given several incomplete lists of population units, how can you estimate the number of units missed by all of the lists? Examples:

• Census coverage accuracy, given a post-enumeration survey + IRS data.

• The number of bird species in a region based on several annual surveys.

• The number of errors in a body of computer code, after several reviewers compile error lists.

### **Some intuition: Peterson estimates**

|            |     | List L <sub>1</sub>    |                       |
|------------|-----|------------------------|-----------------------|
|            |     | yes                    | nc                    |
| List $L_2$ | yes | <i>c</i> <sub>11</sub> | <i>c</i> <sub>0</sub> |
|            | no  | <i>c</i> <sub>10</sub> | <i>c</i> <sub>0</sub> |

Under list independence, the odds ratio is one, giving the Petersen estimator.

**Traditional log-linear model** 

With three lists, there are 8 possible capture patterns. A generalization of the Petersen estimator comes from assuming that any two layers of the 2x2x2 classification array have the same odds ratio:

 $c_{10}c_{01}$ 

 $\hat{c}_{00} =$ 

*C*<sub>111</sub>*C*<sub>010</sub>*C*<sub>100</sub>*C*<sub>001</sub> \_ C000C110C101C011

Alternatively, this can be derived as the MLE for a saturated log-linear model.

Let **y** denote the capture pattern for an arbitrary unit. Hence  $\mathbf{y}_i = 1$  if the unit is on list *j*, and 0 otherwise. Let  $p(\mathbf{y}) := P(Y = y)$ , the probability that a random unit has capture pattern y. A saturated log-linear model is then

$$p(\mathbf{y}) = u + u_1\mathbf{y}_1 + u_2\mathbf{y}_2 + u_3\mathbf{y}_3 + u_{12}\mathbf{y}_1\mathbf{y}_2 + u_{13}\mathbf{y}_1\mathbf{y}_3 + u_{23}\mathbf{y}_2\mathbf{y}_3$$

Here the *u*-terms are parameters to be estimated (i.e., maximize the multinomial likelihood).

Zachary Kurtz (zkurtz@stat.cmu.edu) Department of Statistics, Carnegie Mellon University

# **Big Idea**

## A problematic assumption is that of homogeneity:

(A1) Multinomial sampling probabilities are constant across units.

Heterogeneity (when A1 fails) has two facets:

- A priori capture probabilities may vary across units.
- List interactions may vary across units.

#### Heterogeneous capture behavior may be explained by a unit-level covariate x.

Post-stratification is a crude way to control for x, by dividing the observed population into S different poststrata according to some partition of the covariate space. Imputing the number of missing units on each post-stratum separately, followed by aggregation, can reduce heterogeneity-induced bias.

## **Big Idea:** Find a smooth (unit-level) generalization of post-stratification.

Other basic assumptions:

- (A2) Units can be cross-tabulated across lists.
- (A3) Population units act independently of one another.
- (A4) The missing data is missing at random (MAR).

(A5) The population is closed (no births, deaths, or migration)

## **Smooth post-stratification**

Let  $\pi(\mathbf{y}, x) = P(\mathbf{Y} = \mathbf{y}|x)/P(\mathbf{Y} \neq 0|x).$ 

(1) Find  $\pi(\mathbf{y}, x)$  for  $\mathbf{y} \neq 0$  using a nonparametric conditional density estimator.

(2) Impute  $\pi(\mathbf{0}, x_i)$  using a log-linear model.

(3) Apply Horvitz-Thompson (reformatted):

$$\hat{c}_{\mathbf{0}} = \sum_{i} \hat{\pi}(\mathbf{0}, x_{i})$$

where  $c_0$  is the number of missing units and *i* ranges over all of the observed units.

## **Example:** Prevalence of multiple sclerosis in the Lorraine region, France

Three data sources (LR, RHIS, MRD) included a total of 4001 people diagnosed with multiple sclerosis in the Lorraine region of France:

|             |                      | In $LR$            | Not in LR   |
|-------------|----------------------|--------------------|-------------|
| In RHIS     | In $MRD$             | 474                | 42          |
|             | Not in MRD           | 1342               | 199         |
| Not in RHIS | In $MRD$             | 393                | 64          |
|             | Not in MRD           | 1486               | $c_0$       |
| Not in RHIS | In MRD<br>Not in MRD | $\frac{393}{1486}$ | 64<br>$c_0$ |

**Smooth post-stratification on age and sex:** We compute nonparametric density estimates for the observable capture patterns as a function of age and sex, and fit log-linear models *locally*.

Define the *age order* from youngest to oldest, so age order = 1 for the youngest subject, and age order = 4001 for the oldest subject.

The npcdens command in the np package in R uses cross-validation for bandwidth selection in a nonparametric conditional density estimator.



## **Traditional analysis:** Adssi et. al. (2012) selected a log-linear model by AIC:

#### Model

Indepen Interacti Interacti Interaction Interacti Interacti Interacti

### **Local log-linear modeling:**

Let x denote the covariate vector (age order, sex). For each subject, we select a submodel of

```
\pi(\mathbf{y},
```

For the *i*th subject, the *local* data is the cross-classification array

|                                                    | n (95% confidence interval) | AIC   |
|----------------------------------------------------|-----------------------------|-------|
| lent sources                                       | 4197.2 (4173.9–4223.8)      | 13.20 |
| on RHIS* MRD                                       | 4206.0 (4181.0–4234.5)      | 6.89  |
| on MRD* LR                                         | 4208.9 (4179.5–4243.3)      | 13.55 |
| on RHIS* LR                                        | 4214.2 (4166.0–4276.4)      | 14.69 |
| on (RHIS*MRD) and (MRD*LR)                         | 4221.2 (4189.1–4258.7)      | 6.59  |
| on (RHIS*MRD) and (RHIS*LR)                        | 4242.9 (4185.9–4317.7)      | 7.10  |
| on (MRD*LR) and (RHIS*LR)                          | 4304.2 (4201.6-4459.4)      | 11.76 |
| on (RHIS*MRD), (MRD*LR) and (RHIS*LR)ª             | 4405.7 (4261.5–4629.7)      | 0     |
| on (RHIS*MRD), (MRD*LR) and (RHIS*LR) <sup>a</sup> | 4405.7 (4261.5–4629.7)      | 0     |

$$x) = u(x) + u_1(x)\mathbf{y}_1 + u_2(x)\mathbf{y}_2 + u_3(x)\mathbf{y}_3 + u_{12}(x)\mathbf{y}_1\mathbf{y}_2 + u_{23}(x)\mathbf{y}_2\mathbf{y}_3$$

$$C_i = \{\hat{\pi}(\mathbf{y}, x_i)\}_{\mathbf{y}\neq \mathbf{0}}$$

As an approximation, the scaled up and rounded array round( $\lambda C_i$ ) may be treated as multinomial data, facilitating parameter estimation.

Suitable modifications of the AIC and BIC are relevant for model selection.

Rasch model

#### **Results:**



#### Acknowledgements

The author thanks William F. Eddy (adviser), Stephen Fienberg, Cosma Shalizi, and Rebecca Steorts for providing valuable suggestions. This work was supported in part by NSF grant SES1130706.