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Existing record linkage methods often use ad hoc weights, thresholds, and decision rules that may produce

systematic errors in the results. We use a unique set of 98,762 labeled inventor records (records for which

we know the true identification of the individual or entity) obtained from 824 United States Patent and

Trademark Office (USPTO) optoelectronics inventors to evaluate the accuracy of these existing methods.

We then develop and evaluate a new algorithm based on the Random Forests classification method to

predict whether or not pairs of USPTO inventor records match. Our new Conditional Forest of Random

Forests approach reduces false positive and false negative error rates by 84.5% and 92.7% respectively,

over existing algorithms. Additionally, our errors do not occur systematically. This substantial reduction in

disambiguation errors and their systematic occurrence suggests that research using the results of existing

disambiguation methods should be revisited, as systematic bias in the errors may affect the conclusions of

these and subsequent studies.
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1. Introduction

Disambiguation, or the process of linking records of unique individuals or entities within a single

data source, is a subset of the broader “Record Linkage” field, which is generally used to link

records of unique individuals or entities across multiple data sources. In 1969, Ivan Fellegi and

Alan Sunter introduced the first mathematical model for record linkage; this model is still the basis

for many of the most common approaches to record linkage used today. In the field of technol-

ogy, innovation, and entrepreneurship (TIE), record linkage and disambiguation are used to link

records of assignees (the companies, organizations, individuals, or government agencies to which

a patent is assigned) and inventors in the United States Patent and Trademark Office (USPTO)
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database. However, current USPTO approaches fail to take advantage of recent methodological

advancements in statistics, such as adaptations of the Fellegi-Sunter approach for record linkage.

More importantly, many existing USPTO inventor disambiguation algorithms often use ad hoc

weights, thresholds, and decision rules to determine matching record pairs instead of incorporating

information from labeled records during disambiguation. Building models without using informa-

tion from “labeled inventor records,” or USPTO inventor records for which the true identify of the

inventor is known, may cause prevalent and systematic errors in the disambiguation results.

Using a set of 98,762 labeled inventor records, we (1) evaluate existing inventor disambiguation

algorithms to determine the rates of false positive and false negative errors in the disambiguation

results, and (2) build and evaluate statistical classification models for inventor disambiguation

using information from the labeled inventor records to inform the algorithm. We first evaluate

the disambiguation efficacy for several different standard classification models. We then develop

and implement a new variant of the most effective classification algorithm to further improve the

disambiguation results.

Our results from evaluating existing inventor disambiguation algorithms show that even one

of the most sophisticated USPTO inventor disambiguation algorithms (and one of the few that

publicly posts both the algorithm and results for broader use) may be susceptible to high rates

of false positive or false negative errors. We find that these errors systematically occur due to

features of the existing algorithms, such as not accounting for typographical errors and using ad hoc

matching thresholds which may allow too many or too few matches. Consequently, the algorithms

systematically overestimate (in the first case) or underestimate (in the second case) important

metrics such as inventor mobility (when an inventor moves to a new organization and/or location)

or the total number of unique inventors in the USPTO database.

We next evaluate the results of our alternative classification approaches. We find that the Ran-

dom Forests classification model, introduced by Leo Breiman in 2001, performs best according

to our evaluation metrics. We then show that our variant method, “Conditional Forest of Ran-

dom Forests,” further reduces and balances the rates of false positive and false negative errors. In

particular, our method reduces false positive and false negative error rates by 84.5% and 92.7% ,

respectively, over the publicly available inventor disambiguation algorithm described in Lai et al

(2009).

Given (1) the potential issues with the existing inventor disambiguation algorithms and (2) the

improvements that classification models that incorporate information from labeled inventor records

yield, we recommend that research conclusions derived from disambiguation results of existing

algorithms be reexamined to ensure that they have not been confounded or overly influenced by

systematic errors inherent in these algorithms. Additionally, our results suggest that future record
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linkage and disambiguation algorithms used in TIE, statistics, and other contexts should make

greater efforts to incorporate information from labeled records during the linkage or disambiguation

process to improve the accuracy of the results. Finally, it is imperative that TIE papers leveraging

disambiguated data publish the algorithm used to create their data, and discuss the potential biases

introduced therewith for the theory derived from their results.

2. Background

To review, record linkage refers to the process of linking records of unique entities across two or

more data sources, while disambiguation refers to the process of linking records within a single

database. Fellegi and Sunter proposed the first mathematical model for linking records across two

databases, or “bipartite record linkage” (1969). Typically, bipartite record linkage assumes that all

records within a single data source each correspond to unique entities, and that these records can

be linked to no more than one record from a secondary data source.

Record linkage and disambiguation are key components of any research study that involves

linking information across multiple data sources or within a single data source. For example, gov-

ernment databases such as those maintained by the US Census Bureau often have two or more

records of the same individual that should be reduced (using record linkage) to a single record for

measurement purposes (Winkler 1988; Jaro 1989). Mauricio Sadinle and Stephen Fienberg extends

Fellegi and Sunter’s record linkage methodology to link information on crimes in Colombia across

three criminal records databases (2013). Disambiguation methods have been applied to biblio-

graphic databases such as MEDLINE (Torvik and Smalheiser 2009) to determine which papers

and articles belong to which unique authors. Hall et al (2002) disambiguates assignee names in

the USPTO database, and Zucker et al (2011) extends this by linking records of a disambiguated

database of USPTO assignees to sources outside of the USPTO, such as Compustat. Finally, Lai et

al (2009; 2011a) use disambiguation algorithms to create databases of inventors of USPTO patents.

Methodologically, there are some key differences between disambiguation and record linkage.

Since disambiguation involves the use of only one database, all records being compared share the

same fields. In record linkage, this may not be true – one data source might list an individual’s first

name and birthday, while another data source might list an individual’s full name and address.

Additionally, the distributions of values in each field may differ across data sources for record

linkage. In record linkage, it is often assumed that each record in one data source can be linked to

no more than one record from another data source. In disambiguation, this such assumption does

not exist – there can be one, two, ten, or any other number of occurrences of each unique individual

in the single data source. As such, the Fellegi-Sunter model for bipartite record linkage may not

be applicable to many disambiguation problems. In both record linkage and disambiguation, the
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key operations are comparisons of two or more records. The Fellegi-Sunter model, for example,

compares pairs of records from each data source. Typically, when pairwise comparisons are made,

the result of interest is whether each pair of records belongs to the same unique individual (“match”)

or to two different individuals (“non-match”).

One feature that existing USPTO disambiguation algorithms have in common is that they usu-

ally do not incorporate information from labeled records during the linkage or disambiguation

process. The approach we introduce here utilizes an extensive database of labeled records during

the actual disambiguation process. Our algorithm uses information from these labeled records to

identify which features of the record-pairs (e.g. the similarity of last names are across two records)

best determine a match, rather than using subjective and potentially incorrect decision rules to

determine which record-pairs match. In summary, we build statistical classification models that

can predict whether pairs of inventor records match each other using a database of labeled inventor

records.

2.1. Previous Work: Statistical Record Linkage

The Fellegi-Sunter model is the mathematical formalization of the record linkage approach pre-

viously described (qualitatively, not mathematically) by Howard Newcombe (1959, 1962). Using

Newcombe’s ideas, Fellegi and Sunter introduce and prove a theorem for finding the optimal linkage

rule and provide two corollaries that make the theorem a practical working tool for record linkage

applications (Fellegi and Sunter 1969).

Within a decade of Fellegi and Sunter’s mathematical formalization, computer implementations

of their record linkage methodology became common, and authors began analyzing the linkage

accuracy and effectiveness of computers versus humans. Matthew Jaro led the computerized record

linkage movement, creating “UNIMATCH,” a computer system for implementing the Fellegi-Sunter

record linkage model under conditions of uncertainty for applications to the US Census Bureau

(Jaro 1978). Newcombe and Smith (1975) showed that purely computerized duplicate detection

can more accurately identify duplicates than methods involving both computerized procedures and

manual review by trained humans by using distributional information from the data (e.g. relative

commonness or rarity of names or locations) that humans cannot easily compute. William Winkler

later showed that computerized record linkage procedures can significantly reduce the resources

needed for identifying duplicates over primarily manual record linkage methods (Winkler 1995).

In addition to direct implementations, several authors have published advances to the Fellegi-

Sunter methodology. Winkler demonstrated that the expectation maximization (EM) algorithm

can improve the calculation of weights in the Fellegi-Sunter model (1988). Using a linear weighting

approach for the Fellegi-Sunter decision rules, Jaro also used the EM algorithm for the efficient
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calculation of weight parameters, applying his work to the 1985 Census of Tampa, Florida (1989).

Winkler introduced new string comparison metrics which allow for better handling of typographical

errors across fields (1990). More recently, Rob Hall and Stephen Fienberg introduced probability

models for record linkage which allow for valid statistical inference and enable the use of confidence

intervals on the linkage results (Hall and Fienberg 2011). Finally, Sadinle and Fienberg introduce

an extension of the Fellegi-Sunter model for linking multiple (three or more) data files and offer a

theoretical framework for solving situations in which bipartite record linkage struggles due to the

lack of transitivity of pairwise matches across databases (2013).

The Fellegi-Sunter approach for record linkage and its many extensions also have several weak-

nesses. First, it is difficult to apply to problems with three or more data sources due to violations

of transitivity of matching (e.g., if the algorithm says that record A matches record B, record B

matches record C, but record C does not match record A, transitivity of matching is violated).

Sadinle and Fienberg’s proposed extension of the Fellegi-Sunter model to situations with three or

more databases addresses this (2013), but may be computationally unstable in a large database dis-

ambiguation scenario. Similarly, the standard Fellegi-Sunter model may not be appropriate to use

in disambiguation problems since it assumes that each record from one data source can be linked

to at most one record from another data source. Alternative statistical methods are needed to sove

these issues. Additionally, it should be noted that the Fellegi-Sunter model does not explicitly use

labeled records during the record linkage process.

As mentioned above, the Fellegi-Sunter model may not be appropriate for disambiguation appli-

cations. Specifically, since there can be any number of occurrences of each unique individual in the

single data source used for disambiguation, the Fellegi-Sunter model is not applicable since it is

designed specifically for situations where there can be at most one match across the compared data

sources. Vetle Torvik and Neil Smalheiser deviate from the Fellegi-Sunter model while introducing

several statistical concepts in their disambiguation of authors in MEDLINE, a database of medical

journal articles (2009). In particular, they use logistic regression within a Bayesian framework to

calculate pairwise matching probabilities, a weighted least squares algorithm to correct transitivity

violations, and a maximum likelihood approach for detecting clusters of author-records that repre-

sent unique MEDLINE authors. One important step in this algorithm involves generating sets of

pairwise comparisons of author-records that are either “very likely” to be matches or are known to

be non-matches. They do this by splitting the comparison field space into two independent subsets

of comparison fields, then defining conditions on each set to identify pairs of records that are “very

likely” matches or known non-matches. Then, using their assumption of independence between

the two sets, they have multiple sets of (assumed) unbiased training data. Note that this method

approximates labeled data. Torvik and Smalheiser use these training sets of pseudo-labeled author
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records to implement a supervised learning classification algorithm, which they then use to predict

the labels (match vs. non-match) of record-pairs in MEDLINE. While this approach is innovative,

there are some potential flaws. First, the independence of the two sets of fields and the unbiasedness

of the training data sets needs further evaluation, as the assumption was not validated. Errors in

the label approximation may be propagated in the classification model, if the model is trained on

erroneously labeled records.

2.2. Previous Work: Record Linkage and Disambiguation in TIE

As discussed, record linkage and disambiguation are crucial in TIE. The USPTO maintains an

online database of all patents issued in the US. In addition to identifying information about the

patent, the database contains each patents’ list of inventors and “assignees,” the companies, orga-

nizations, individuals, or government agencies to which the patent is assigned. Researchers in the

field seek to study the patenting characteristics of these inventors and assignees in order to make

informed decisions and draw conclusions about TIE in the US and internationally. However, inven-

tors and assignees in the USPTO database are not given unique identification numbers, making it

difficult to track inventors and assignees across their patents or link their information to other data

sources. As a result, methods for disambiguating inventors and assignees in the USPTO database

are needed. The National Science Foundation has funded several projects involving linking patent

data to other data sources (e.g. USPTO assignees to Compustat in Zucker et al 2011). However,

as discussed below in Sections 2.2.1 and 2.2.2, the record linkage and disambiguation methods

applied in TIE are often different from the statistical record linkage methods discussed in Section

2.1. That is, the methods described below often involve ad hoc weighting schemes, thresholds, or

decision rules. Additionally, many of these methods have not been evaluated for accuracy or bias in

the results, except on small hand-disambiguated sets of labeled records in inventor disambiguation

(Lai et al 2011a). We discuss this issue in further detail in Sections 5 and 4.5.

2.2.1. Ad Hoc Assignee Disambiguation and Record Linkage. One topic of interest

for the TIE literature is record linkage related to USPTO assignees. Assignee record linkage allows

researchers to more accurately examine the patenting and innovation trends and behaviors of

public and private firms, organizations, and government agencies. Assignee record linkage methods

to-date have two main branches: (1) record linkage of assignees within the USPTO database, or

“assignee disambiguation,” and (2) record linkage of assignees to other data sources (i.e. linking

USPTO assignees to non-USPTO data), or “cross-database assignee record linkage.”

The most notable work in USPTO assignee disambiguation is that of Bronwyn Hall et al (2002)

for the National Bureau of Economic Research (NBER), who published a database of standardized

USPTO assignee names for use within the TIE and other research communities. Bessen (2007)
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formalizes the disambiguation and matching procedures used in this work, documents the algo-

rithm, and posts all code and related files. To perform the disambiguation, the authors designed an

algorithm that used computerized routines (name cleaning and standardization operations, a word

frequency algorithm, similarity score assignment, etc) combined with manual review of potentially

matching assignee records. Like most assignee disambiguation algorithms, the approach does not

incorporate any Fellegi-Sunter like approaches, modern statistical methods, or labeled comparisons

of assignee records during the disambiguation process.

Other widely-used USPTO assignee disambiguation algorithms involve an extensive amount of

(both computerized and by-hand) cleaning operations rather than advanced statistical record link-

age methods. The USPTO itself released a set of files created to partially disambiguate assignee

names in its database, in an effort to correct typographical and data scanning errors (2005). Simi-

larly, only the results (and not the methods used) were published. The USPTO acknowledged that

even with its own data-cleaning, many issues still were present: “No attempt has been made to

combine data based on subsidiary relationships ... While every effort is made to accurately identify

all organizational entities and associate patents with a single harmonized organizational name,

achievement of a totally clean record is not expected, particularly in view of the many variations

that may occur in corporate identifications (USPTO 2005).” Additionally, the Organisation for

Economic Co-operation and Development (OECD) used more than 4000 cleaning operations to

create a “harmonised” (i.e. cleaned or disambiguated) database of European patents (2000). The

OECD post this database for public use, and they match the cleaned patent data with other data

sources (e.g. patent assignee data to business registers). Note that the OECD methods involve

both assignee disambiguation (within the USPTO database) and assignee record linkage (outside

of the USPTO database). The record linkage methods used here are not published. This failure

to publish the disambiguation methods used is common to many databases in the field (e.g. Lim

2012). Additionally, because the methods are unknown, it is impossible to determine how errors

in the disambiguation results propagate throughout subsequent research based on these results.

Finally, while some cleaning operations are necessary to assignee disambiguation and record linkage

due to the systematic changes in assignee names across records or data sources, cleaning opera-

tions alone will not solve all issues related to assignee disambiguation. Given that the choice of

disambiguation methods can dramatically influence the accuracy of the disambiguation results and

likely biases therein, the lack of method documentation for smaller and author-specific databases

is likewise concerning for accurate interpretation of subsequent research results. In particular, if a

disambiguation algorithm is susceptible to any type of systematic errors, the conclusions of studies

using these results may not be accurate.
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Record linkage of USPTO assignees to other data sources is central to several areas of TIE

research. Bronwyn Hall, Adam Jaffe, and Manuel Trajtenberg developed and made available a

database of US patents and citations. The authors used a record linkage procedure to match the

assignee information to Compustat, a database of all firms traded on the US stock market (2001).

Similarly, Zucker et al linked assignee information across several sources of data, including US

patents (granted and applications), grants, Thomson Reuters Web of Knowledge, and US doctoral

dissertations. In the same work, assignee information from US patents was linked to ticker codes

for public firms and other major databases with information about public firms. This linkage

method primarily involves several data cleaning operations (e.g. correcting for misspellings, name

variations, location changes) specific to this task (Zucker et al 2011) and does not use any of the

statistical approaches discussed in Section 2.1. Similarly, this method does not use labeled assignee

records during the disambiguation process.

In general, published databases of assignee disambiguation or record linkage results (and research

using these results) have at least one (and often both) of the following two characteristics: (1) the

disambiguation and/or record linkage methods used are not published, making it impossible to tell

how potential disambiguation errors propagate in subsequent research, and (2) the disambiguation

and/or record linkage methods used do not incorporate the modern statistical approaches (e.g. the

Fellegi-Sunter model, probability-based linkage, supervised learning on labeled records) discussed

previously.

2.2.2. Inventor Disambiguation. Our focus in this paper is on inventor disambiguation.

In large-scale applications, disambiguation is usually done at least partially with an automated

algorithm; the full USPTO database contains more than 8 million patents, each of which can

have multiple inventors. The primary goal of any inventor disambiguation algorithm is to identify

all records of all unique inventors in the database with a minimal number of non-systematically

occurring errors1.

USPTO inventor disambiguation algorithms in TIE currently follow three different branches: (1)

simple data cleaning operations, exact string matching, and if-else decision-making to determine

if record-pairs match; (2) thresholding linear combinations of comparison field similarity scores to

determine if record-pairs match; and (3) implementation of the Torvik-Smalheiser (2009) approach

described in Section 2.1. Although parts of these algorithms (e.g. linear combinations of similarity

scores) are used in statistical record linkage, most of the previous inventor disambiguation work

includes ad hoc methods for linking inventors across their patents.

1 Many existing algorithms have errors that occur systematically. For example, any time an inventor changes organi-
zations and/or locations (inventor mobility) many existing algorithms will systematically create two separate inventor
IDs, one for each organization/location at which the inventor worked.
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The first branch involves simple data-cleaning and exact matching techniques for disambiguation.

Fleming et al’s 2007 algorithm (Fleming, King III, Juda 2007) falls under the first branch of

inventor disambiguation algorithms, as does the inventor disambiguation work done by the OECD,

to harmonize inventors in Europe. The Fleming et al (2007) algorithm is described in detail in

Section 3.3.1. Jasjit Singh uses an approach involving exact string matching on comparison fields

(e.g. last name and location) and if-else decision-making to determine matching record pairs (2005).

Benjamin F. Jones uses a similar approach (2005). Other researchers have used their own inventor

disambiguation algorithms (e.g. Azoulay 2009 and Lim 2012), but their methodologies and results

were not published. Finally, Fleming et al use a similar approach, incorporating information about

the assingee and location of the inventors (Fleming, King III, Juda 2007). In all cases, these inventor

disambiguation results were not posted for public use.

The second branch involves incorporating methods such as similarity scores and matching thresh-

olds into disambiguation. In 2006, Francesco Lissoni, Bulat Sanditov, and Gianluca Tarasconi

designed a method that incorporated more advanced disambiguation methods, such as similarity

scores and thresholds for determining pairwise matches (Lissoni et al 2006). Trajtenberg et al use

the SoundEx system to group names that are similar phonetically, then use similarity scores and

matching thresholds to determine pairwise matches (2006). Fleming and his collaborators used a

similar approach, calculating linear combinations of the similarity scores of each comparison field

and using thresholds to determine pairwise matches (Lai et al 2009). These authors were the first

to post a version of the USPTO inventor-patent database with disambiguated inventors for use in

the research community. It is important to note that without Lai et al 2009 having made their

algorithm and results public, our paper would not be possible. The Lai et al (2009) inventor disam-

biguation algorithm is described in further detail in Section 3.3.1.The linear weighting approach is

similar to that of Winkler (1988, 1989a) and Jaro (1989), although the Lai et al (2009) algorithm

does not use the EM algorithm for weight-calculation. In Section 4.2, we show that small changes

to these hand-chosen weights and thresholds can substantially change the disambiguation results.

The third branch involves statistical approaches and the Torvik and Smalheiser approach (Section

2.1). Most recently, Lai et al (2011a) implemented an adaptation of the Torvik & Smalheiser

approach for disambiguating authors in the MEDLINE database (2009). The Lai et al (2011a)

algorithm marked the first time that an approach similar to supervised learning was used in inventor

disambiguation, although it should be noted that the algorithm does not use actual labeled inventor

records in the disambiguation process, only generated labels that are “highly likely” to be correct

(see Section 2.1 for more details on the Torvik & Smalheiser approach). Lai et al (2011a) do

not post the code and data for generating these labels, which would be necessary to mimic their

algorithm and compare it against other algorithms. As with Lai et al (2009), the authors do post
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the results of the Lai et al (2011a) algorithm online for use within the research community (Lai et

al 2011b). We thus expect these results again to become widely used in current TIE research. Lai

et al (2011a) use a set of labeled inventor records corresponding to 95 US-based academic inventors

to test the results of their algorithm. We give our own evaluation of the results of this algorithm

(along with those of Fleming et al 2007 and Lai et al 2009) in Section 4.1. Nicolas Carayol and

Lorenzi Cassi use a Bayesian approach for disambiguating inventors of European patents (2009).

They use a large benchmark dataset to minimize a linear combination of false positive and false

negative errors in the results. Interestingly, the authors choose to use the benchmark dataset solely

for evaluating their algorithm’s disambiguation results instead of for building statistical models

that could be used to minimize the error in the disambiguation results, as we do in this paper.

The improvements that the Lai et al (2009; 2011a) algorithms make in disambiguation, such as

using statistical record linkage approaches like linear combinations of similarity scores, probability-

based matching, and semi-supervised learning, cannot be understated. These algorithms set a new

standard for disambiguation in the field of TIE, and the posted disambiguation results have helped

further the frontiers of TIE research on inventors and innovation. Still, these algorithms do not use

information from labeled records during the disambiguation process. Lai et al (2009) depends on

ad hoc weights, thresholds, and decision rules, while Lai et al (2011a) uses only approximations of

labeled records to train semi-supervised learning models. Thus, possibly most importantly, Lai et

al’s public posting of their algorithms (2009) and results (2009; 2011a) has enabled other researchers

in the field to evaluate their approach and results and make improvements thereon.

2.3. Supervised Learning in Record Linkage

Torvik and Smalheiser (2009) tackle one difficult issue that plagues almost all record linkage and

disambiguation methods: How do you calibrate (train) and evaluate (test) a record linkage model

or disambiguation algorithm in the absence of a sufficient number of labeled records? Most current

record linkage methodologies suffer from the lack of sufficient amounts of training data and cannot

be accurately calibrated or evaluated in terms of the prevalence of false positive and false negative

errors in the results. Existing methods sometimes compare disambiguation results against a small

set of labeled records, but they do not incorporate the information from these labeled records

during the record linkage or disambiguation process.

The method we adopt in this paper, using supervised learning techniques for inventor disam-

biguation, is a well-documented topic in statistics (e.g. Hastie et al 2009). Typically, supervised

learning algorithms use labeled data to build statistical models for some outcome of interest (or

“response variable”). Linear regression is an example of a supervised learning algorithm used for

modeling continuous response variables, such as age, height, or income. In inventor disambigua-

tion, the response variable we seek to model, whether or not a pair of records matches, is binary
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(i.e. it has two possible outcomes, match or non-match). Supervised learning algorithms used for

modeling binary or categorical response variables are called classification models. Similar to how

a linear regression model can be used to predict a numerically continuous outcome for new data,

the final classification model can be used to predict the categorical outcome of unlabeled data. In

our case, we build classification models that determine whether or not record-pairs match using

labeled inventor records. We then can use the resulting classifier to predict whether or not pairs of

unlabeled inventor records match.

In addition to being able to predict the labels of (or classify) unlabeled record-pairs, classifi-

cation models can identify features of the inventor records that are most useful in determining

which record-pairs match. For example, classification models might tell us that an inventor’s last

name is more important in determining matching record-pairs than his/her location. Of the exist-

ing supervised learning methods used in modern statistics and machine learning, some commonly

known classification models include logistic regression, classification trees, random forests, linear

discriminant analysis, quadratic discriminant analysis, support vector machines, K nearest neigh-

bors (Hastie et al 2009). The appropriateness of each method depends on the application. For

example, logistic regression is often useful when information about the association between the

features and the response is needed; estimated coefficients can be interpreted as the change in the

log odds of the response falling into a particular category. Each of the classification models above

is designed to yield optimized results by minimizing some statistical measure of error over a set

of labeled data. Consequently, each classification method could yield different measures of error,

depending on the application.

One issue preventing researchers from applying supervised learning techniques in record linkage

and disambiguation is the lack of labeled data that can be used to train these models. Bilenko et

al introduce automated methods for record linkage in situations when training data is available

(2003). As mentioned in Section 2.2.2, Torvik and Smalheiser partially, but creatively, solve this

issue by using artificial sets of training data. Hui Han et al use two supervised learning approaches

– a naive Bayes probability model and the support vector machines classifier – to develop a model

for determining pairwise matches for name disambiguation (2004). Pucktada Treeratpituk and C.

Lee Giles extend this work and show that the use of the random forests classifier can substantially

improve the disambiguation results (2009). However, these methods suffer from a common problem:

It is difficult to obtain a large set of accurately labeled records on which to train. Recently, the

University of California, Irvine (UCI) Machine Learning Repository released a dataset of labeled

epidemiological records called the “Record Linkage Comparisons Patterns Data Set” (2012), which

provides researchers one viable dataset on which to test different record linkage and disambiguation
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algorithms. This publicly available dataset contains more than 5 million pairwise comparisons of

epidemiological records, built using 100,000 labeled epidemiological records.

Given the potential benefits of a supervised learning approach, we choose to use a classification

model to disambiguate USPTO inventors using a large set of labeled inventor records. To obtain

enough data on which to build our classification models, we hand-label a large set of inventor

records using information about inventors’ employment, patenting, and location histories using

their curricula vitae (CVs) and lists of their patents (Section 3.2.1). We convert these 98,762

labeled inventor records into a set of more than 20 million labeled pairwise comparisons of inventor

records, or measures of how similar pairs of records are according to different fields, such as name,

assignee, and location. Then, we build classification models on these labeled pairwise comparisons

and use the resulting classifier to predict whether or not pairs of unlabeled records match (Section

3.3.3). We assess the methods’ performance using cross-validated error metrics. Our large number

of labeled records is a key advantage to our methodology and yields notable improvements when

compared to other inventor disambiguation algorithms in the TIE field.

3. Methods
3.1. Research Framework

Our disambiguation methods utilize a set of 98,762 labeled inventor records corresponding to data

collected for a case study of 824 inventors in the field of Optoelectronics (OE) by Eyiwunmi

Akinsanmi et al (2012). First, we identify and label all inventor records corresponding to these 824

inventors and use these labeled records to evaluate existing inventor disambiguation algorithms.

Second, we build and evaluate standard classification models for inventor disambiguation that learn

from these labeled inventor records. Third, we design new classification models that can leverage

distributional differences across patents and that are computationally tractable for large datasets.

This process is shown in Figure 1.

We first describe the USPTO patent-inventor database, the subset of patents corresponding to

the OE industry, and the extensive set of labeled inventor records from inventor CVs in Section

3.2. Then, we give an overview of all disambiguation methods evaluated in this work, including

existing inventor disambiguation algorithms designed by Fleming et al (2007) and Lai et al (2009;

2011a) (Section 3.3.1); existing classification models applied to inventor disambiguation (Section

3.3.2); and new variants of one particular classification model empirically shown to yield the best

results in this context (Section 3.3.3). We also describe the evaluation metrics used to test the

results of each particular disambiguation method.

For the existing inventor disambiguation algorithms (Fleming et al 2007, Lai et al 2009, Lai et

al 2011a), we evaluate the results over the entire dataset of labeled inventor records. For the clas-

sification models, we use out-of-sample testing and cross-validation to evaluate the disambiguation
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Figure 1 Research Framework Using Labeled Inventor Records

results. That is, to ensure that our classification models are not trained too specifically to one set

of labeled records, we build our models using a subset of labeled inventor records, then evaluate

using different subsets of labeled inventor records.

3.2. Data

TIE research often involves the analysis of information about patents, inventors, and assignees from

the USPTO. The USPTO hosts unique webpages for all of its approximately 8 million patents,

identified by unique patent identification numbers. Each patent webpage has related information,

including the patent ID, inventor(s) and inventor location(s), assignee(s) and assignee location(s),

file and issue dates, class(es) and subclass(es), title, and abstract. As described in Lai et al (2009),

data can be collected from these patent websites into one centralized USPTO patent-inventor

database. Several authors have posted disambiguated versions of this data online for researchers

in TIE (e.g. Lim 2012); arguably the most extensive, methodologically transparent, and accessible

versions of a USPTO patent-inventor database were created by Lai et al (2009; 2011b). We utilize

both versions of the database when evaluating inventor disambiguation algorithms.

We have access to extensive inventor resume and CV data in the field of OE, as discussed

in further detail in Section 3.2.1 (Akinsanmi et al 2012). As such, we focus on a subset of the

full USPTO database corresponding to the OE industry. Patents each have multiple classes and

subclasses indicating the industry and technology categories that characterize the patent. These

classes and subclasses are denoted with one to three character alpha-numeric codes that designate,

among other information, the industry into which the patent’s technology is classified. Using a list

of classes and subclasses designated by the third author that correspond to the OE technical field,
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we initially build a database of all USPTO OE patent information and a corresponding database

of OE inventor records of all OE patents. This data is subsequently used to identify the sub-sample

for the inventor CVs collected by Akinsanmi et al (2012). Table 1 compares some statistics relevant

to inventor disambiguation for both the full USPTO database and the OE subset.

Table 1 Inventor Disambiguation Statistics: Optoelectronics vs. Full USPTO

Disambiguation Statistic Optoelectronics Full USPTO

Inventors per Patent (average) 2.33 2.21
Length of Last Name (average) 6.32 6.48
Length of First Name (average) 6.20 5.84

Percent of Missing Middle Names 62.00% 51.10%
Percent of Missing Assignees 4.08% 9.02%

Percent of United States Inventors 4.42% 5.04%
Percent of Last Names in Census Top 1000 20.40% 20.30%

Most statistics important to the disambiguation process, such as the average lengths of first and

last names, are similar across the two datasets. Note that the percent of missing middle names is

much higher in the OE subset than in the full USPTO database. This could be important to our

results, since records with missing middle names are often more difficult to disambiguate.

3.2.1. Labeled Optoelectronics Inventor Records. As indicated earlier in this section,

our labeled data comes from a study on economic downturns, inventor mobility, and technology

trajectories by Akinsanmi et al, who collect a sample of resumes and CVs corresponding to 824

inventors in the OE industry (2012). Inventors in this sample come from one of four groups: top

inventors by number of patents before 1999, top inventors by rate of patenting before 1999, all

inventors with patents in a technological sub-field of OE corresponding to USPTO subclass 385/14

(on which Akinsanmi et al (2012) were focused for their study) and a random sample of inventors

with no patents in subclass 385/14 (Table 2). For the groups corresponding to prolific inventors,

the authors identify the top 1.5% of inventors using disambiguation results from an adaptation

of the Lai et al (2009) algorithm. Note that these groups were chosen for the purposes of the

research described in Akinsanmi et al (2012), not for the purposes of inventor disambiguation. As

a given inventor can fall under more than one of each of the four inventor groups, there is some

overlap between the populations, and likewise the CV samples. In total, 132 inventors were in

two or more CV samples (most of which corresponded to a large overlap between the two prolific

inventor groups). For the purposes of this paper, the overlaps of greatest relevance are overlaps

with the group of random inventors without patents in class 385/14, since we use this group to

evaluate sample bias in Section 4.6. There was very little overlap between this group and the

other inventor groups: Only four inventors overlapped with the group of top inventors by rate of
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patenting before 1999, and only two inventors overlapped with the group of top inventors by total

patents before 1999. Finally, since nearly half of CV collection was focused on individuals from the

two prolific inventor groups our sample is potentially biased towards prolific inventors, which could

subsequently affect our models. We evaluate the potential consequences of biases in our sample in

Section 4.6.

Table 2 Description of CV Inventor Groups

Group
Description

Population
CV

Sample
Response

Rate

Top 1.5% of OE inventors
by patent total through 1999

760 233
31%

(73% of those reached)
Top 1.5% of OE inventors

by patenting rate through 1999
680 229

34%
(82% of those reached)

All OE inventors
with at least one patent

in 385/14
900 249

27%
(95% of those reached)

Random sample of
all OE inventors except those

with at least one patent in 385/14
1250 169

14%
(83% of those reached)

When contacting inventors in these groups, Akinsanmi et al request (1) the inventor’s CV and (2)

a list of all patents belonging to the inventor. After the CVs and patent lists are obtained, we create

labeled inventor records in four steps. First, we manually parse and store information including the

each inventor’s employment, location, and patenting history. Second, we automatically generate

a list of potentially matching inventor records for each of Akinsanmi et al’s CV inventors, or

“potential matches,” defined as any inventor record in the USPTO OE patent database that has a

last name similarity score of at least 0.90 with the CV inventor’s last name (see Appendix B for more

details on similarity scores). Third, we manually compare the parsed CV inventor’s information

to each of the potential matches to create labels for matching and non-matching inventor records.

Finally, we review these match vs. non-match decisions to ensure label accuracy and, after removing

duplicate records, compile the resulting labeled inventor records into a single dataset.

After the labeled inventor records were compiled, Akinsanmi et al (2012) assessed potential biases

in the sample of inventors who responded. Of those biases found, only the following is relevant in

the context of inventor disambiguation. For the second group, inventors in our sample are more

likely to be more mobile before 1999. Mobile inventors may be more difficult to link across their

patents due to changes in their location and/or assignee information. (We further evaluate the

effect of potential biases in these samples in Section 4.6.)

The final hand-disambiguated dataset has 98,762 labeled inventor records; 14,520 of these records

are matched to one of 824 unique CV inventors, and 84,242 fail to map to any of the 824 CV
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Figure 2 Example of Labeled Inventor Records

inventors. Examples of labeled inventor records are shown in Figure 2. The ID column indicates

the CV inventor to which each record was matched (a 0 ID indicates that the record did not match

any of the CV inventors). Of the 824 CV inventors in our sample, 216 have “common” last names

according to the US Census (defined as any surname which appears in the list of the 1000 most

common surnames from the 2000 US Census Bureau).

We use our labeled inventor records to (1) evaluate the results of disambiguation algorithms

(Sections 3.4 and 4), and (2) build classification models for inventor disambiguation to predict

whether pairs of unlabeled inventor records match (Sections 3.3.2 and 3.3.3).

3.2.2. Pairwise Comparisons of Labeled Inventor Records. In almost all record linkage

and disambiguation algorithms (e.g. Fellegi-Sunter, Lai et al 2009, Torvik-Smalheiser, etc), the

operation of interest is the linking of two records, or a pairwise comparison. Each pairwise compar-

ison describes the similarity of two records by a set of scores, one per shared field (see Appendix B

for more detailed information on similarity scores), and if the records are labeled, an indicator of

whether or not the pair corresponds to the same unique individual. Our final pairwise comparison

dataset is comprised of both matches and non-matches. To evaluate an algorithm’s disambiguation

results, it is just as important to understand when two records should not be linked together as

when they should.

3.3. Algorithms

Below, we provide greater detail on each of the disambiguation algorithms that we run on our OE

dataset. First, we briefly review the three inventor disambiguation algorithms designed by Fleming

et al (2007) and Lai et al (2009, 2011a), currently used widely in the field. Then, we introduce our
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choice of inventor disambiguation methods that employ classification models using labeled inventor

records.

3.3.1. Existing Inventor Disambiguation Algorithms. As discussed earlier, the first

USPTO inventor disambiguation algorithm to be described publicly is that in Fleming et al (2007).

The algorithm employs basic exact string matching and if-else decision making and allows for

extremely fast computation (albeit with some systematic errors). An updated inventor disambigua-

tion algorithm was created in 2009 by Fleming’s group, and is described in full detail in Lai et

al (2009). The Lai et al (2009) algorithm addresses the possibility of typographical errors and

name variations. It uses disambiguation techniques such as similarity scores, field weights, and

matching thresholds. In Section 4.2, we discuss the implications of slight changes to these weights

and thresholds for the algorithm’s results. Finally, the Lai et al (2011a) inventor disambiguation

algorithm is an adaptation of the MEDLINE author disambiguation algorithm described by Torvik

and Smalheiser (2009), with slight changes in the similarity scores and smoothing methods. These

adaptations are necessary due to the different types of information available for author name data

in MEDLINE versus inventor record data from the USPTO; they do not reflect any substantial

deviation from the general Torvik and Smalheiser disambiguation procedure. None of the three

existing algorithms described here use information from labeled inventor records during the dis-

ambiguation process.

We implement our own versions of the Fleming et al (2007) and Lai et al (2009) inventor

disambiguation algorithms on our OE dataset and evaluate their results against our set of labeled

OE inventor records in Section 4.1. For the Lai et al (2011a) algorithm, while most code files

associated with the algorithm are available online, code for choosing the training datasets and

training their semi-supervised logistic regression model – essential steps in the algorithm – are

not publicly available. Thus, for (2011a) we are unable to implement our own version of the Lai

et al (2011a) inventor disambiguation algorithm on our OE dataset and evaluate its results. We

therefore also evaluate the posted results for implementing both the Lai et al (2009) and Lai et

al (2011a) algorithms on the full USPTO data against our set of labeled OE inventor records. In

order to achieve a legitimate comparison, it was important that we evaluated both the Lai et al

(2009 and (2011a) algorithms implemented in the full USPTO, as any of the algorithms in this

paper would have different results when implemented on a different scale database. Based on our

direct communication with the authors, Lai et al are still finalizing the implementation of their

(2011a) algorithm and examining its disambiguation properties. As such, our evaluations of the

posted results associated with running the Lai et al (2011a) algorithm on the full USPTO against

our labeled OE inventor records, which we give in Section 4.1, may change if Lai et al subsequently

post new results.
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3.3.2. Random Forests and Other Classification Models. In inventor disambiguation,

whether or not a pair of records matches is binary (yes/no) and so can be modeled by training a

classification model on a set of labeled matches and non-matches. We can then use the resulting

classifier to predict whether pairs of unlabeled inventor records match. There are several standard

classification models that could be used for inventor disambiguation, including logistic regression,

classification trees, random forests, linear discriminant analysis, and quadratic discriminant analysis

(Hastie et al 2009). To avoid overfitting our models to the labeled inventor records dataset (so that

our model will make accurate predictions on any dataset, not just this training data), we build each

classification model using only a small, basic set of features: the similarity scores for each field (e.g.

first and last name). Lai et al (2011a) use a different, larger set of features in their semi-supervised

logistic regression models. Note that we could similarly choose a set of features by analyzing the

importance of each feature in determining a match.

In Section 4.3, we evaluate each of these classification models for our labeled OE inventor records

dataset. In doing so, we find empirically that the random forests classification model yields the

most accurate results by a relatively wide margin over other models, in terms of false positive and

false negative error rates. Random forests combine results from an ensemble of “classification trees”

to predict the class of a categorical outcome variable (here, a match or non-match). A classification

tree builds decision tree from the selected features by determining cutpoints in the features that

best separate matches from non-matches. Each classification tree in the random forest is built using

a random set of features and returns a predicted class for each pairwise comparison. The predicted

class from the random forest is the class receives the majority of the votes of the individual trees

(Breiman 2001).

Despite the empirical success of random forests in disambiguating subsets of our labeled inventor

records (Section 4.3), there are still some potential areas for improvement. First, random forests

is a computationally intensive procedure. For example, if we compare all pairs of our labeled

inventor records, we have more than 20 million pairwise comparisons. In practice, calculating a

random forests classifier using 20 million observations is computationally infeasible. As discussed

in the next section, using and combining multiple smaller random forests classifiers may provide a

more computationally feasible solution. Second, we may be able to further improve random forest

disambiguation results by conditioning on an informative feature of the records or comparisons

and subsequently building separate random forests for each of the conditional subsets. We discuss

these variants in the next section.

3.3.3. Conditional Forest of Random Forests. To alleviate the computational concerns

of applying the random forests classification algorithm to our large set of pairwise comparisons of
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labeled inventor records, we implement a variant called “Forest of Random Forests (FoRF) with

Random Subsets.” The FoRF algorithm partitions the pairwise comparisons into multiple smaller

disjoint subsets. It then builds a standard random forests classification model on each of these

subsets and aggregates the random forest classifiers during prediction. This method is implemented

using the procedure described in Appendix C.1. By using random subsets of roughly equal size

of the training data to build each individual random forest, we limit potential biases across the

forests. Since this approach is suggested only for situations where the use of a standard random

forest classifier is computationally intractable for large datasets, each individual random forest will

be built on a dataset of sufficient size to yield stable predictions.

Aside from computational issues, there are additional changes we might incorporate to improve

the accuracy of the disambiguation results. For example, a comparison of two US inventor records

may have different matching properties than a comparison of two foreign inventor records. That

is, different fields could be more or less important in determining whether two inventor records

match depending on the inventor’s country (due to name lengths, commonness of first and/or last

names, etc). Instead of building one random forest classifier on all of the labeled inventor records,

it may be helpful to build several random forests classifiers, each conditioned on a specific type

of comparison of inventor records. By allowing the random forests to vary in determining feature

importance, we may be able to enhance the accuracy of our disambiguation results.

For these situations, we implement a variant called “Conditional Forest of Random Forests.”

First, we determine a feature of the pairwise comparisons of labeled records on which to condition.

For example, we might choose presence vs. absence (“missingness”) of a middle name as our con-

ditioning feature. Different disambiguation algorithms handle missing fields (i.e. NAs) in different

ways. Instead of using ad hoc rules for handling missing data, we instead could train a classifier on

each possible missing data scenario. For example, if we conditioned on missingness in middle name,

there would be three conditional subsets: both middle names missing, one middle name missing,

and neither middle name missing. In this example, the type of missingness would be known for

unlabeled pairwise comparisons as well. Thus, after building the Conditional FoRF classifiers, we

can predict the match vs. non-match labels of any pair of unlabeled inventor records by determining

the appropriate conditional subset using the corresponding classifier. This procedure can allow the

disambiguation algorithm to give more accurate predictions by using individualized decision rules

for each conditional subset of pairwise comparisons of inventor records. This method is described

formally in Appendix C.2. We evaluate the disambiguation results of Conditional FoRF in Section

4.4 and compare them to the standard random forest method.
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3.4. Evaluation of Disambiguation Algorithms

Using our hand-disambiguated labeled OE inventor records for verification, we evaluate all

described disambiguation algorithms. There are several possible ways to quantify the accuracy of

each disambiguation algorithm. The evaluation metrics we use are described in Section 3.4.1. The

out-of-sample evaluation methods we use for the classification-based approaches are described in

Section 3.4.2.

3.4.1. Evaluation Metrics. We focus our evaluation on error metrics based on the numbers

of false positive and false negative errors in the results. Lai et al (2011a) use Torvik and Smalheiser’s

(2009) interpretation of the error metrics “splitting” and “lumping” to evaluate their algorithm’s

disambiguation results. The terms “splitting” and “lumping” are intuitive terms describing possible

errors. Lumping occurs when multiple unique inventors are given a single unique inventor ID

(“lumped” into a single ID). Splitting occurs when a single unique inventor given multiple inventor

IDs (“split” across multiple IDs). The precise mathematical definitions are given below:

For each unique inventor in a set of labeled records, let the number of split records be defined

as the number of records that the disambiguation algorithm fails to map to that inventor’s largest

cluster of records. Then (Lai et al 2011a):

Splitting =
Total # of Split Records for All Inventors

Total # of Labeled Records
(1)

For each unique inventor in a set of labeled records, let the number of lumped records be defined

as the number of records that the disambiguation algorithm incorrectly mapped to that inventor’s

largest cluster of records. Then (Lai et al 2011a):

Lumping =
Total # of Lumped Records for All Inventors

Total # of Labeled Records
(2)

We use a revised version of these metrics in our evaluation for several reasons. First, the above

metrics focus only on the largest cluster of records, ignoring thenumber and size of all the different

clusters. For example, there may be another cluster of similar size for the same inventor. Addition-

ally, this metric uses the number of incorrectly assigned inventor records as the unit of measure,

instead of the number of incorrect matches or non-matches that the algorithm makes. We instead

choose to evaluate all pairwise comparisons of inventor records made by the disambiguation algo-

rithm rather than the assignment of the records themselves. We create a contingency table of the

true labels (match or non-match) and the predicted labels and then evaluate our results in terms

of false positive and false negative pairwise comparisons.

Thus, we define the following versions of splitting and lumping:
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Splitting: A single unique inventor is “split” into multiple inventor IDs

Splitting =
# of comparisons incorrectly labeled as non-matches across all inventors

Total # of pairwise true matches

=
# of False Negatives

# of True Positives + # of False Negatives
(3)

Lumping: Multiple unique inventors are “lumped” into one inventor ID

Lumping =
# of comparisons incorrectly labeled as matches across all inventors

Total # of pairwise true matches

=
# of False Positives

# of True Positives + # of False Negatives
(4)

Thus, splitting is a measure of the prevalence of false negative matches, and lumping is a measure

of the prevalence (or rate) of false positive matches. We will use these metrics throughout the

remainder of this paper.

3.4.2. Out-of-Sample Testing for Classification Approaches. Classification models are

by definition tailored to the data on which they are trained. To avoid overfitting to our training

data, we split our set of pairwise comparisons of labeled inventor records into muliple smaller

subsets. We then evaluate how a model trained on one subset performs when applied to another

subset. This method is known as “out-of-sample testing,” and is well-documented in statistics

literature (Hastie et al 2009). We describe our out-of-sample testing procedure, which is similar to

cross-validation (Hastie et al 2009), below (results in Sections 4.3 and 4.4).

Our out-of-sample testing procedure consists of six steps. First, to construct our training data

we calculate all pairwise comparisons of labeled inventor records. This is a very computationally

intensive process, as discussed in Section 6. Second, we split the pairwise comparisons into 10

subsets of equal size, uniformly at random. Each of these subsets has more than 150,000 pairwise

comparisons, about 14% of which are true matches and about 86% of which are true non-matches.

This ratio is important, since many classification methods will not converge or will yield unstable

results if the ratio of matches to non-matches in the training data is too small. Third, we train

each classification method (e.g. logistic regression, classification trees, random forests, Conditional

FoRF) on each pairwise comparison subset. Fourth, for each subset, we use the trained classifier to

predict the match vs. non-match results for each of the nine other subsets of pairwise comparisons.

Fifth, we evaluate each set of predictions using the splitting and lumping metrics described in

Section 3.4.1. Finally, for each classification method, we average all 90 of its splitting metrics and

all 90 of its lumping metrics to calculate the overall splitting and lumping results shown for each

method in Tables 5 and 6.

Nearly half of our sample consists of prolific inventors (according to one of two definitions of

prolific: top 1.5% of OE inventors by total patents up through 1999 and top 1.5% of OE inventors
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by average patents per year up through 1999). This large proportion of prolific inventors could

cause our algorithm to perform less well at disambiguating less prolific inventors. To address this

issue, in Section 4.6, we assess the robustness of our outcomes if we instead train and evaluate

our algorithms only on the randomly chosen subset of inventors, which are, notably, also likely

more representative of records in the full USPTO database. Specifically, we train and evaluate the

performance our classification models on the subset of labeled inventor records corresponding to

the group of random OE inventors with no patents in subclass 385/14. We use the same out-of-

sample testing procedure described above but use only pairwise comparisons corresponding to the

above-described random OE labeled inventor records.

4. Results

In the results that follow, we assess the accuracy of three different categories of disambiguation

algorithms – existing inventor disambiguation algoritms, existing classification algorithms, and our

new variant classification algorithm. In each case we run and then evaluating the algorithms on our

dataset of 98,762 labeled inventor records. First, we evaluate existing, publically available USPTO

inventor disambiguation algorithms (Fleming et al (2007) and Lai et al (2009)) in Section 4.1.

Second, we analyze the sensitivity of the Lai et al (2009) disambiguation results to the algorithm’s

weight and threshold parameters (Section 4.2). Third, we evaluate disambiguation results of several

common classification models built using our pairwise comparisons of labeled inventor records

(Section 4.3). Fourth, we evaluate the performance of our new Conditional FoRF classification

method for inventor disambiguation (Section 4.4).

Given that the code for the Lai et al (2011a) algorithm is not publically available, assessing its

accuracy is largely outside the scope of this paper. Nonetheless, we wanted to shed what insights

possible, given publically available information. The evaluation results of all disambiguation algo-

rithms are dependent on the dataset being evaluated and the dataset of labeled records used for

evaluation. We are unable to implement the Lai et al (2011a) algorithm (whose code is not fully

available) on our OE dataset. It is likewise in the short term computationally infeasible to run

our methods on the full USPTO dataset. We can, however, evaluate the accuracy of the Lai et al

(2011a) posted results using our labeled OE inventor records (Section 4.5). For comparison pur-

poses, we do the same for the Lai et al (2009) posted results. (These posted results correspond to

running the Lai et al 2009 and 2011a algorithms on the full USPTO database rather than on our

smaller OE dataset.) We then compare the Lai et al (2009 and 2011a) posted results to Conditional

FoRF using these accuracy evaluations based on our labeled OE inventor records (Section 4.5).

Finally, we assess the influence of sample selection on the performance of our disambiguation

approaches (Section 4.6).



Author: disambiguation
Article submitted to Management Science; manuscript no. MS-0001-2013.?? 23

4.1. Evaluation of Existing USPTO Inventor Disambiguation Algorithms

Using the splitting and lumping metrics described in Section 3.4.1, we evaluate the disambiguation

results of two existing USPTO inventor disambiguation algorithms. In particular, we evaluate our

implementations of the Fleming et al (2007) and Lai et al (2009) algorithms. Recall that there are

98,762 labeled inventor records in our dataset.

Table 3 Evaluation of Existing Inventor Disambiguation Algorithms

Existing Algorithm Splitting (%) Lumping (%)

Fleming et al (2007) 13.50 0.68
Lai et al (2009) 8.39 4.13

The Fleming et al (2007) algorithm has a much higher splitting metric in comparison to its

lumping metric, indicating that it is more susceptible to false negative errors than false positive

errors. In these results, some inventors are not getting credit for all of their patents, as they are being

“split” into multiple inventor IDs. Consequently, lists of the most prolific inventors compiled using

the algorithm’s results may be incomplete and inaccurate. The algorithm also likely overestimates

the number of unique inventors. Finally, inventor mobility may be underestimated in the Fleming

et al (2007) results. In particular, the false negative errors in the disambiguation results often occur

systematically due to one of the algorithm’s decision rules, which requires inventors with matching

common names to also share the same assignee or location. This requirement can split a mobile

inventor with a common name into multiple inventor IDs.

The Lai et al (2009) algorithm results are a bit more complicated, since both the splitting and

lumping metrics are high, indicating a prevalence of both false negative and false positive errors.

Recall that the lumping metric (rate of false positive errors) indicates that inventors sometimes

receive credit for additional patents that do not belong to them. Unfortunately, these two types of

errors do not simply cancel each other out. Instead, they bias the disambiguation results in both

ways. Consequently, lists of the most prolific inventors compiled using the algorithm’s results are

likely incorrect, as is an estimate of the total number of unique inventors based on these results.

Finally, inventor mobility is poorly estimated using the Lai et al (2009) results. In particular, the

false positive errors in the disambiguation results can occur systematically due to a decision rule

in the algorithm that allows inventor records with similar names to match if any of their assignees,

locations, co-inventors, or classes match. This decision rule will lump groups of non-mobile inventors

who have similar names and happen to share another characteristic into a single unique inventor

ID. Similarly, the false negative errors in the disambiguation results can occur systematically if the

thresholds for determining pairwise matches are too strict.

Note that these results are based on our set of labeled OE inventor records. As discussed in

Section 4.6, these results may not reflect the disambiguation of non-OE USPTO inventor records.
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4.2. Lai et al (2009) Sensitivity Analysis

Many disambiguation approaches risk overfitting to the labeled datasets on which they are eval-

uated. Disambiguation approaches using linear weighting schemes, for example, may tune the

weights to minimize errors on a specific dataset; however, these weights may not be optimal for

other datasets. As discussed in Appendix 3.3.1, the Lai et al (2009) algorithm depends on a set of

weights and thresholds for its linear weighting scheme of similarity scores. In our implementation

of the Lai et al (2009) algorithm, we explore how changes to these weights and thresholds can affect

the disambiguation results. We run eight different versions (described in Table 4) of the algorithm

on our labeled OE inventor records. The results are summarized in Figure 3.

Table 4 Lai et al (2009) weights and thresholds used for sensitivity analysis

Version # Description Weights Thresholds

Default
Default

Lai et al (2009)

Last name = 0.40
First name = 0.40

Middle name = 0.10
Suffix = 0.05
Other = 0.05
City = 0.60

State/Country = 0.40
Assignee Name = 0.90

Name = 0.90
Location = 0.95
Assignee = 0.85

Version #
Description of Changes

(From Default)
Weight Changes
(From Default)

Threshold Changes
(From Default)

1
Shift first name weight

to last name
First = 0.20
Last = 0.60

NA

2
Shift last name weight

to first name
First = 0.60
Last = 0.20

NA

3
Stricter

name threshold
NA Name = 0.975

4
Less strict

name threshold
NA Name = 0.875

5
Less strict location

and assignee thresholds
NA

Location = 0.80
Assignee = 0.75

6
Stricter location

and assignee thresholds
NA

Location = 0.975
Assignee = 0.95

Optimal
Thresholds

Less strict name, location,
and assignee thresholds

NA
Location = 0.812
Assignee = 0.861

Name = 0.912

Although the default version of the Lai et al (2009) algorithm performs well in comparison to

other versions, minor changes in the weights and thresholds of the algorithm yield substantial

changes in the splitting and lumping results. Interestingly, changing the location and assignee

matching thresholds did not affect the results much. However, changing the name weights and

thresholds increased the number of false positive or false negative errors substantially in most
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Default Version 1 Version 2 Version 3 Version 4 Version 5 Version 6 Optimal

Lai et al (2009):  Sensitivity to Changes in Weights and Thresholds
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Figure 3 Splitting and Lumping Results for Lai et al (2009) Sensitivity Analysis

cases. Version 1, in which some weight was shifted from last name to first name similarity, yielded

a large increase in the rate of false positive errors (lumping), indicating, as expected, that last

name similarity should not be down-weighted. Versions 3 and 4 of the algorithm yielded substantial

changes in splitting and lumping, respectively. However, these versions involved only minor changes

to the overall name threshold: 0.95 to 0.975 in Version 3, and 0.95 to 0.90 in Version 4. Ideally,

disambiguation algorithms using weighting schemes would be insensitive to such small changes in

parameter values. If they are sensitive to these changes, a more robust disambiguation approach

may be necessary.

We also calculated the “optimal” thresholds (i.e. the set of thresholds which best lowers the

resulting splitting and lumping metrics) for Lai et al (2009). These optimal thresholds were cal-

culated by automatically determining the threshold in each field’s similarity score at which it is

more likely for a pair of records to be a match than a non-match. For example, we found that

the optimal location threshold should be approximately 0.812, where the location similarity score

is a weighted combination of the state/country and city similarity scores. The optimal-threshold

version of Lai et al (2009) yielded splitting and lumping metrics of 8.08% and 1.51%, respectively.

It should be noted that the default version of Lai et al (2009) performed almost as well as the

version with optimized thresholds.

4.3. Evaluation of Classification Models for Inventor Disambiguation

Using pairwise comparisons of labeled inventor records, we build and evaluate five commonly used

classification models. The results shown in Table 5 are based on out-of-sample predictions of each

classification method (Section 3.4.2). Recall that we use this out-of-sample testing to ensure that

the classification models do not overfit to the training data and will yield stable predictions on
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out-of-sample, unlabeled comparisons of inventor records. Discriminant analysis methods find a

combination of feautres that best separates two or more classes of objects or events (e.g. match

vs. non-match). Logistic regression was used in Lai et al’s (2011a) semi-supervised leang approach

and is one of the most well-known classification methods for binary responses. Classification trees

and random forests are described in Section 3.3.2. Each of these methods is described in further

detail in Hastie et al (2009).

Table 5 Evaluation of Classification Models for Inventor Disambiguation

Disambiguation Method Splitting (%) Lumping (%)

Fleming et al (2007) 13.50 0.68
Lai et al (2009) 8.39 4.13

Linear Discriminant Analysis 8.48 1.64
Quadratic Discriminant Analysis 3.19 1.62

Classification Trees 2.23 2.49
Logistic Regression 1.68 1.64

Random Forests 0.62 0.74

Note: The classification model results shown above are pre-transitivity due to computational restrictions

and to facilitate out-of-sample testing. Post-transitivity results were calculated for some classification

methods, and the results did not change substantially.

Our goal is to have low, balanced splitting and lumping metrics. By limiting and balancing

both types of errors, we hope to achieve results that yield more accurate lists of the most prolific

inventors, will better approximate the total number of unique inventors, and will give unbiased

estimates of inventor mobility. Note that low splitting and high lumping (or vice versa) could be

preferable for some specific research questions. For example, suppose we wanted to approximate

the number of unique inventors in the database, but for our particular application, it is better

to underestimate than to overestimate this quantity. In this case, having low splitting and high

lumping would be preferable, since this would inherently decrease the number of unique inventors.

For the purposes of this paper, however, we want to balance low splitting and lumping results,

with the exception of good performance regardless of the subsequent contextual application.

Given this goal, each of the classification methods perform about as well as (and, in most cases,

better than) the existing inventor disambiguation algorithms evaluated here, based on a balance

of low splitting and low lumping. Random forests outperforms other classification methods by a

relatively wide margin. Note that although the Fleming et al (2007) results have a lumping metric

similar to that of random forests, random forests performs better overall given the large disparity

between the splitting metrics. We choose to focus on developing variants of the random forest

method for improved inventor disambiguation.
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4.4. Evaluation of Conditional FoRF for Inventor Disambiguation

Recall that a Forest of Random Forests with random subsets allows us to use the random forests

classification method in computationally intractable situations. To evaluate this variant, we com-

pare its evaluation metrics to the standard random forests methods using 10-fold cross validation

on a randomly chosen subset of 1,500,000 pairwise comparisons. This subset is small enough that

10-fold cross validation with random forests is feasible, and large enough so that individual forests

in the FoRF will have enough training data. We run FoRF with 15 random subsets, so that within

each fold of the cross-validation, each random forest will have about 10,000 pairwise comparisons.

Results are shown in Table 6. As expected, the standard random forests slightly outperforms FoRF

with random subsets, indicating that the FoRF is a reasonable variant in computationally difficult

situations.

Before building and evaluating a Conditional FoRF, we must first decide which conditions to

use. In this example, we choose to condition on whether a middle name is missing for the two

records, since different combinations could change the feature importance in determining matches

and non-matches. There are three possible conditions of missingness in middle name: (1) both

middle names are missing, (2) one middle name is missing, and (3) neither middle name is missing.

(For these purposes, any record that does not list a middle name would be characterized as having a

“missing” middle name.) For example, if two records have middle names listed, then the similarity

score of these middle names should inform our decision of whether or not to match these two

records. However, if neither has a listed middle name, then the importance of the middle name

similarity will likely change. Additionally, missingness in middle name is a known feature of both

the labeled and unlabeled pairwise comparisons, meaning that once we build our Conditional FoRF

classifier on labeled pairwise comparisons, we can easily predict the match vs. non-match outcome

of unlabeled pairwise comparisons. Recall that with a Conditional FoRF and a known condition,

we use only the forest corresponding to the appropriate conditional subset when predicting the

match vs. non-match outcome of unlabeled pairwise comparisons of inventor records. We expect

that these predictions will be more accurate than the standard random forests predictions since

each forest in the Conditional FoRF is tailored specifically to the feature distribution corresponding

to its middle name missingness category. The prediction results of the Conditional FoRF are shown

in Table 6.

The Conditional FoRF improves the disambiguation results over the standard random forests

approach by reducing the lumping metric from 0.74% to 0.64%. Additionally, Conditional FoRF

reduces splitting and lumping by 92.7% and 84.5% respectively over Lai et al (2009), based on

our set of labeled OE inventor records. As discussed in Section 4.6, these results may not reflect
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Table 6 Evaluation of Conditional Forest of Random Forests

Prediction Method Splitting (%) Lumping (%)

Fleming et al (2007) 13.50 0.68
Lai et al (2009) 8.39 4.13
Random Forests 0.62 0.74

FoRF 1.06 1.05

Conditional FoRF 0.61 0.64

Note: The random forests, FoRF, and Conditional FoRF results shown above are pre-transitivity due to

computational restrictions and to facilitate out-of-sample testing. Post-transitivity results were calculated

for some classification methods, and the results did not change substantially.

the results of the disambiguation of non-OE USPTO inventor records. However, we expect that

Conditional FoRF will similarly outperform the other methods.

Additionally, we examine the variable importance statistics returned by random forests for each

of the three forests (both middle names missing, one middle name missing, neither middle name

missing) in the Conditional FoRF. These quantities measure the relative importance of each vari-

able in determining whether or not each pair of records is a match or a non-match, with more

important features having higher statistics. Note that it is not appropriate to compare the indi-

vidual importance statistics across forests; rather, we compare the variable importance statistics

across different features (last, first, and middle name similarities) within the same forest and check

their ratios relative to each other across forests. We expect the ratios of importance statistics to

change across the forests depending on the three different missingness conditions in middle name.

Table 7 Random Forests Variable Importance

Forest / Variable Last First Middle

Both Missing 113.56 2806.99 0.00
One Missing 158.16 1146.27 0.00
None Missing 743.25 8356.24 2833.54

When one or both middle names are missing, the middle name comparison score has zero impor-

tance. When both middle names are present (none missing), the middle name importance becomes

non-zero. This behavior confirms our assumption that the conditional forests will accurately reflect

any feature distributional differences in matching properties across the different subsets. Finally,

note that in this example, last name importance seems unrealistically low compared to first name.

This is simply because the labeled records corresponding to this sample generally all have very

similar last names, while their first and middle names differ substantially.

Next, it should be noted that we have taken several measures to avoid overfitting our models

to our set of pairwise comparisons of labeled inventor records. First, we use only a small set of
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explanatory variables to model the match versus non-match outcome of a pair of records. We use

the similarity scores described in Section 3.2.2 for the last, first, middle, and suffix names; assignee

name; city, state, and country locations; list of co-inventors; and lists of classes and subclasses.

Second, we use out-of-sample testing via the procedure described in Section 3.4.2 when calculating

all classifier error metrics. Third, we utilize our sample of CVs corresponding to random OE

inventors to show that our methods are not biased towards matching prolific inventors (Section

4.6). Given these approaches, our models are less likely to suffer from overfitting to the pairwise

comparisons of labeled inventor records, and more likely to give robust results.

4.5. Comparing FoRF to Lai et al (2011a)

The Lai et al (2011a) algorithm is a semi-supervised learning approach; it is statistical in nature but

relies on approximated labels during the disambiguation process. Algorithmically, there are four key

differences between our FoRF approach and the Lai et al (2011a) approach. First, our method uses

supervised learning techniques, while Lai et al (2011a) use the semi-supervised learning techniques

from Torvik and Smalheiser (2009). In particular, we use an extensive set of hand-labeled inventor

records to train our classifiers, while Lai et al (2011a) use generated sets of probable “matches”

and “non-matches” for pairs of records. Second, Lai et al (2011a) use logistic regression to classify

pairs of records as matches or non-matches, while we use random forests, shown empirically here

in Section 4.3 to have better error rates. Third, we use a more parsimonious set of features and

similarity scores, while Lai et al (2011a) use a larger feature set of similarity scores that includes

several non-linear transformations and discretizations, which may make their approach more sus-

ceptible to overfitting. Finally, Lai et al (2011a) use one classifier to predict whether or not all

pairs of records match. We explore conditioning on features of the records and similarity scores

and train classifiers on each of these conditional subsets, allowing our Conditional FoRF method to

exploit different sets of matching properties. As shown in Section 4.4, this can give more accurate

predictions in the inventor disambiguation context.

In practice, another key difference is that the Lai et al (2011a) algorithm has been used to

disambiguate the full USPTO database, while our Conditional FoRF approach has so far been

used only to disambiguate OE inventor records. Because of the size of the full USPTO database,

the Lai et al (2011a) algorithm uses computational reduction techniques such as blocking, which

strategically limits the number of comparisons the algorithm makes. Currently, the Conditional

FoRF approach does not use techniques like blocking.

These computational differences are important to keep in mind when comparing the error rates

of the two approaches, since applying either algorithm to datasets of different sizes could change

the error rates. In particular, for the Lai et al (2000 and 2011a) posted full USPTO disambiguation
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results, these algorithms are able to take advantage of more patent-inventor information to link

inventor records together, which could potentially lead to better evaluation metrics. In Lai et al

(2009), for example, some non-OE inventor record in the full USPTO database might help match

two OE inventor records which previously would not have been linked (via transitivity of matching).

In Lai et al (2011a), the algorithm may not have enough training data when used to disambiguation

smaller databases.

Our evaluations of the posted Lai et al (2009; 2011a) results are in Table 8. Note that for Lai

et al (2009 and 2011a) posted results, these metrics represent our evaluation of the authors’ full

USPTO database disambiguation results posted online, not our implementation of these algorithms

on our set of labeled OE inventor records. We extract the resulting labels from the full USPTO

disambiguation corresponding to our set of labeled OE inventor records and evaluate their error

rates.

Table 8 Comparing Conditional FoRF to Lai et al (2011a)

Disambiguation Method, Full USPTO Posted Results Splitting (%) Lumping (%)

Lai et al (2009) Posted Results, OE Subset 9.18 0.76
Lai et al (2011a) Posted Results, OE Subset 2.49 0.39

Disambiguation Method, Implemented on OE Subset Splitting (%) Lumping (%)

Lai et al (2009) 8.39 4.13
Random Forests 0.62 0.74

Conditional FoRF 0.61 0.64

Note: Lai et al (2011a) results are taken from the authors’ interim results and may not reflect the

performance of the final algorithm

While the Lai et al (2011a) posted results are better than those of Lai et al (2009) based on

a reduction in both error rates, note that the splitting metric is still relatively high. Similar to

Fleming et al (2007) and Lai et al (2009), this prevalence of false negative errors in the results

indicates that some inventors are not getting credit for all of their patents. As before, lists of

the most prolific inventors compiled using these results may be incomplete and inaccurate, the

algorithm likely overestimates the total number of unique inventors, and inventor mobility may

be underestimated, although the extent of these issues is lessened in comparison to Fleming et al

(2007) and Lai et al (2009). Table 8 still indicates that Conditional FoRF is likely to outperform

Lai et al (2011a) on both a balance and an overall reduction of false positive and false negative

errors.
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4.6. Assessing the Influence of Sample Selection on Disambiguation Performance

As mentioned in Section 3.2.1, many of the unique inventors in our set of labeled inventor records

were taken from lists of the most prolific inventors. Recall that (1) the inventor CVs were originally

collected for a separate study on economic downturns, inventor mobility, and technology trajectories

in OE (Akinsanmi et al 2012), and (2) prolific inventors by definition have the most patents,

meaning that CVs collected from these inventors will yield more labeled records (on average)

than CVs collected from a randomly chosen group of inventors. In particular, these inventor CVs

correspond to inventors who are prolific in terms of either the total number of patents in their

career or their rate of patenting. Thus, our set of labeled inventor records may be biased toward

inventors with prolific patenting careers.

Subsequently, our classification models could be similarly biased. Specifically, if comparisons of

our labeled inventor records have any characteristics unique to comparisons of prolific inventors,

then the predictions (match vs. non-match) for unlabeled comparisons of records may be appropri-

ate only comparisons of prolific inventors, a potential issue when disambiguating the full USPTO

database.

To assess this potential bias, we examine how well our methods perform for comparisons of

labeled inventors from a sample of 169 random inventors without patents in class 385/14 (RI).

The RI sample is assumed to be representative of the general OE population and thus should not

be biased towards prolific inventors. We expect to see some small changes in the resulting error

rates when our methods are applied to this sample. In particular, since randomly chosen inventors

should have fewer total patents on average than prolific inventors, we expect the algorithm to favor

predicting non-matches to matches. (Note that a dataset with a small number of matching pairs is

naturally more difficult to disambiguate, since there is less information about what characteristics

are associated with record-pairs matching.) More non-matches will likely result in lower false nega-

tive error rates (splitting %) and higher false positive error rates (lumping %). Note that this issue

– having a disproportionate ratio of one binary outcome to the other – is a common problem in

statistical literature (e.g. Hastie et al 2009). Future work will test adjustments to our classification

models to account for this potential disproportion. For the sake of comparison, we also include an

evaluation of the Lai et al (2009 and 2011a) posted disambiguation results for the set of RI records

in Table 9.

Although the overall error rates are slightly increased from those shown in Table 6, it appears

that our models still perform well at predicting matches among a random sample of OE inventors.

In particular, these out-of-sample predictions yield splitting and lumping metrics similar to those

shown in Table 5. Perhaps most importantly, Random Forests and Conditional FoRF still outper-

form the posted results from Lai et al (2009 and 2011a) by a wide margin based on a balance of
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Table 9 Assessing Disambiguation Performance on Random Inventors

Disambiguation Method, Full USPTO Posted Results Splitting (%) Lumping (%)

Lai et al (2009) Posted Results, RI Subset 15.55 0.84
Lai et al (2011a) Posted Results, RI Subset 11.60 1.33

Disambiguation Method, Implemented on RI Subset Splitting (%) Lumping (%)

Lai et al (2009) 17.41 0.38
Random Forests 1.16 2.41

Conditional FoRF 1.52 2.34

low splitting and low lumping. The RI subset happens to be particularly difficult to disambiguate

without yielding many false negative (splitting) errors. However, our classification algorithms have

relatively stable performance when used to disambiguate this subset. Because of this, we can safely

assume that with the proper training data, our methods should be able to accurately disambiguate

records from any population or database, including the full USPTO database (disregarding com-

putational issues).

Finally, there is a potential OE sample selection bias since all of our inventor records, including

the prolific inventor groups and the sample of random inventors, are taken from the general OE

subset of the full USPTO database. Note that while we cannot assess this potential bias directly

as we did with the potential prolific inventor bias above, we can compare some simple descriptive

statistics of inventor records in both populations, as shown in Table 1 (Section 3.2). We see that

important quantities relevant to our comparison of two inventor records such as length of first and

last names, proportions of missing middle names and assignees, number of co-inventors per patent,

and proportions of US (and foreign) inventors are roughly the same in the OE subset as they are

in the full USPTO population. At least in terms of these matching characteristics important in

inventor disambiguation, the OE subset is similar to the full USPTO population. This similarity

supports the notion that our models built using labeled OE records can be used to disambiguate

non-OE inventor records.

5. Discussion

Disambiguation and record linkage algorithms within and outside statistics rarely build models or,

in some cases, even evaluate results using labeled records. Instead, these algorithms often use deci-

sion rules, many of which use sets of heuristic weights and thresholds, to determine which records

should be linked. In the field of technology, innovation, and entrepreneurship, even some of the

most statistically sophisticated publically available disambiguation and record linkage algorithms

(Lai et al 2009) fail to completely leverage recent model developments in statistics and statistical

record linkage, such as the Fellegi-Sunter model for bipartite record linkage, probability models for

determining matches, or supervised learning applied to disambiguation and record linkage. More
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recent approaches have included using probability models and semi-supervised learning, but stop

short of using labeled records during the disambiguation process (Torvik and Smalheiser 2009; Lai

et al 2011a).

In this work, we leverage an unprecedented dataset of 98,762 labeled USPTO optoelectronics

(OE) inventor records (where the labels are IDs indicating the true inventor). These records are

obtained 824 inventor CVs collected for a study on economic downturns, inventor mobility, and

technology trajectories in OE (Akinsanmi et al 2012). We (1) evaluate existing inventor disambigua-

tion algorithms and (2) build and evaluate classification models for use in inventor disambiguation.

In doing so, we find that the results of existing inventor disambiguation algorithms can suffer from

systematic errors which may lead to the incorrect estimation of important metrics in TIE, such

as inventor mobility. In particular, we show that the Lai et al (2009) algorithm may tend to over-

estimate the number of patents belonging to each prolific inventor (since the algorithm may be

susceptible to false positive errors), leading to an overestimation of inventor mobility and incorrect

lists of prolific inventors. Conversely, we show that the Fleming et al (2007) algorithm may tend to

underestimate the number of patents belonging to each prolific inventor (since it may be suscep-

tible to false negative errors), leading to an underestimation of inventor mobility and incomplete

lists of prolific inventors.

To provide more accurate inventor disambiguation, we use our set of labeled OE inventor records

to build classification models that predict whether pairs of unlabeled inventor records belong to

the same inventor. We show that our approach can yield substantial improvements to the accuracy

of disambiguation results in terms of a balance of both low splitting (rate of false negative errors)

and low lumping (rate of false positive errors). In particular, the Conditional Forest of Random

Forests (FoRF) classification model reduces splitting by 92.7% and lumping by 84.5% over the Lai

et al (2009) algorithm. Additionally, although we have not yet extended Conditional FoRF to a

disambiguation of the full USPTO database, we show some evidence that Conditional FoRF will

likely outperform the Lai et al (2011a) disambiguation algorithm in our evaluation of Lai et al’s

posted disambiguation results.

Given these results, research using the disambiguation results of existing algorithms (including

Lai et al 2009 and Lai et al 2011a) should be revisited to ensure that the errors inherent to these

algorithms do not confound the subsequent conclusions or results. Additionally, future disambigua-

tion and record linkage works in both TIE and statistics should consider the use of truly labeled

records for building models during the disambiguation process, not just for evaluating results after

disambiguation is complete. In statistics, we hope that this work emphasizes the potential value

that supervised learning and, specifically, classification models can have in terms of improving the

accuracy of record linkage or disambiguation results. Additionally, we hope that improvements in
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disambiguation accuracy achieved when using a conditioning approach emphasize the power that

conditioning can have in a disambiguation or record linkage context. Such algorithmic develop-

ments have applications not only in disambiguation and record linkage contexts where training

data is available, but also in unsupervised and semi-supervised contexts. We recognize that in

many record linkage and disambiguation applications, labeled records are often extremely expen-

sive or, in some cases, impossible to attain. However, in applications where labeled records are

available, such as numerous datasets in TIE, researchers should strongly advocate for their use

during disambiguation.

6. Future Work

Our paper demonstrates the importance of transparent disambiguation methods in TIE research.

We show that existing, publically available disambiguation algorithms and their results have sys-

tematic errors that could be expected to alter the outcomes of papers subsequently published using

that data. We demonstrate that we are able to dramatically reduce these systematic errors using

a new algorithm we develop. Going forward, it would be interesting to implement our algorithm

on the full USPTO. To implement our algorithm on the full USPTO database, we would need to

overcome two main challenges: (1) a potential bias towards OE inventors in our sample of inventor

CVs, and (2) the potential computational challenges in applying our disambiguation approach to

the full USPTO database.

Assessing the Influence of Optoelectronics on Disambiguation Performance: In Sec-

tion 4.6, we show that our methods are successful at matching prolific and non-prolific inventors,

eliminating the concern that our classification models are biased towards prolific inventors. How-

ever, all of our CV inventors come from the general OE population. Thus, although our algorithm

will be effective in any setting with suitable training data (e.g. industry-specific datasets where

researchers have extensive labeled data), it is possible that the classification models we trained

using our labeled OE inventor records will be less effective at disambiguating USPTO datasets

outside the OE industry. Future work should examine this potential bias by testing how well our

classification models trained on labeled OE inventor data perform on labeled records from a set

of non-OE inventors. We have identified three potential sources for additional labeled inventor

records: (1) hand-disambiguated records corresponding to 95 US-based academic inventors (Lai

et al 2011a), (2) hand-disambiguated records corresponding to Pierre Azoulay’s work with pro-

lific bio-tech inventors (Azoulay et al 2012), and (3) hand-disambiguated records corresponding to

675 chemical patents from DataVerse. Additional labeled inventor records from these alternative

sources would be helpful for two reasons. First, they would broaden our sample to better repre-

sent the full USPTO database. Second, they would provide for testing models (on out-of-sample
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records) trained on our current set of labeled records. If our classification models trained on labeled

OE inventor records succeed at disambiguating records from these alternative sources, this would

offer evidence that our models are generalizable to a disambiguation of the full USPTO database.

Scaling Disambiguation Algorithms to Different Databases: One issue with using FoRF

methods (and classification models in general) is the substantial computation required. For FoRF to

be applied to a very large database (such as the full USPTO OE patent database or the full USPTO

patent database), we may need to implement computational and data storage reduction techniques.

While some techniques such as pre-calculating all similarity scores to remove redundant calculations

are already employed, they alone are not enough to guarantee computational feasibility. Additional

techniques such as blocking to reduce the number of pairwise comparisons and parallelization of

the out-of-sample predictions to reduce prediction run-time will likely be necessary to allow our

methods to be used feasibly for full USPTO disambiguation of about 10 million inventor records.

The central idea behind blocking is to prevent the algorithm from comparing two records that

are obviously not a match, such as a pair of records with the last names “Ventura” and “Fuchs,”

without increasing the false positive and false negative error rates. To explore this technique, we

ran some preliminary experiments and find that the use of basic parallelization techniques on only

four computer processing cores can reduce the prediction time for Conditional FoRF by about 65%.
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Appendix A: Appendix: Optoelectronics Classes and Subclasses

Class ID/Subclass ID

720/*, 356/*, 372/*, 385/*, 359/*, 398/*, 250/200-339, 250/551, 438/24, 438/25, 438/27, 353/*, 257/13,

257/21, 257/53-56, 257/59, 257/79-103, 257/113-118, 257/184-189, 257/225-234, 257/257-258, 257/290-294,

257/431-466, G9B/7

* denotes all subclasses within this class - denotes a range of subclasses within this class

Definitions for these classes and subclasses can be found at:

http://www.uspto.gov/web/patents/classification/

Appendix B: Appendix: Comparing Two Inventor Records

In disambiguation, we compare pairs of inventor records and determine if each pair is a match (the same

unique inventor) or a non-match (two non-unique inventors).

In order to make the match vs. non-match decision, we need to know how similar the pair of inventor

records is. To do this, we describe the similarity of each field with a numerical value which indicates how

closely two records match. For the purposes of this paper, we define all of these “similarity scores” as follows:

sijk represents the similarity score of inventor records i and j according to field k, where

i, j ∈ {1,2, ...,453974}
k ∈ {1,2, ...,K}

K = number of unique fields being compared

There are three different types of fields that are compared: Long strings, short strings, and lists. In the

next sections, we define similarity scores for each field in our dataset and discuss the computational issues

for large numbers of comparisons. Our choices of similarity scores are motivated by previous authors’ work in

inventor name disambiguation (Lai et al 2009), and it should be noted that changing these similarity scores

could affect the disambiguation results.

B.1. Long Text Strings: Inventor, City, and Assignee Names

Long strings such as assignee and inventor names are susceptible to typographical errors and name variations.

For example, none of “Sony Corporation,” “Sony Corporatoin,” and “Sony Corp.” will match using simple

exact matching. Similarly, “David” vs. “Dave” would not match. It is clear that more advanced string

comparison methods are necessary for long strings.

The Jaro-Winkler string comparison (JW) method takes two strings as input and compares the characters

and positions of matching characters across two strings (Winkler 1990). The result is a number (called the

JW score) between 0 and 1 (inclusive) that indicates how similar two strings are to each other. If two strings

are an exact match, their JW score will be 1. The mathematical details of the calculation of JW scores are

given in Winkler (1990).

Using this method, similarity scores for long strings have the following properties. Given two long strings

Xik and Xjk for inventors i and j and field k:

sijk ∈ [0,1]

sijk = 1 if Xik =Xjk

sijk = 0 if none of the characters in Xik are also in Xjk
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For our dataset, the long string fields are first name, last name, middle name, assignee name, and inventor

city. This approach is also used by other researchers, including Lai et al (2009; 2011a). Other string compari-

son metrics, such as the Jaccard distance, Soundex, TF/IDF, etc may have advantages over Jaro-Winkler in

certain situations or for certain fields. For this research and comparison purposes, we only use Jaro-Winkler

string comparisons. However, note that our method is flexible and does not depend on a specific type of

string comparison.

B.2. Short Text Strings: State, Country, and Suffix

If field k is a short string, we define the similarity score as follows. Given two short strings Xik and Xjk for

inventors i and j and field k:

sijk ∈ 0,1

sijk = 1 if Xik =Xjk

sijk = 0 if Xik 6=Xjk

That is, we check pairs of short strings for exact matches only. Short string fields include the inventor

name suffix, inventor state, and inventor country. We use exact matching for these fields because they are

generally not susceptible to typos, and we do not want to give non-identical strings with similar characters

a non-zero weight, such as “MA” vs. “MN.”

Finally, note that the Lai et al (2009) algorithm also uses exact matching for short strings.

B.3. Lists: Co-inventors, Classes, and Subclasses

Each inventor record has two lists associated with it: (1) the list of co-inventors and (2) the list of class-

subclass pairs for that particular inventor record’s patent. There are several different ways to quantify the

similarity of two lists of co-inventors or class-subclass pairs, and no one method is necessarily “best.” For

the purposes of this paper, we use the following similarity scores when comparing lists of co-inventors or

class-subclass pairs, motivated by the work of Lai et al (2009 & 2011a).

Given two lists Xik and Xjk for inventors i and j and field k:

sijk ∈ 0,1

sijk = 1 if Xik ∩Xjk 6= ∅

sijk = 0 if Xik ∩Xjk = ∅

That is, list similarity scores check if there are any shared elements across the two lists. Again, note that

other list similarity scores could be substituted here.

Appendix C: Appendix: Random Forests

Brieman (2001) includes a detailed description of the original Random Forests classification method. For

descriptions of the variants of Random Forests which we designed disambiguation, see below.

C.1. Forest of Random Forests with Random Subsets

Below is the algorithm for calculating a classifier using the “Forest of Random Forests with Random Subsets”

method:

1. Split the pairwise comparison data into multiple groups by selecting each group randomly – i.e, split

the full pairwise comparison dataset into F random subsets (random forest of random forests)
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2. Train a random forest on the pairwise comparisons in each group – F random forests in total

3. Save all random forests (i.e. the forest of random forests) for use in predicting the unlabeled pairwise

comparisons of inventor records (described in Section 3.3.3)

C.2. Conditional Forest of Random Forests

Below is the algorithm for calculating a classifier using the “Conditional Forest of Random Forests” method:

1. Split the pairwise comparison data into multiple groups based on any of the following reasons:

(Note: If any subgroup is too large, we can use the random subsets forest of random forests to make it

computationally feasible)

(a) Define each group by conditioning on some feature of the underlying inventor records used in the

comparison (e.g. inventor country, technology class, etc)

(b) Define each group by conditioning on some feature of the underlying similarity scores (e.g. by

different missingness categories, different lengths of strings, frequencies / commonness of last names, etc)

(c) Define each group by conditioning on some known feature of the labeled pairwise comparisons that

would be unknown in the unlabeled pairwise comparisons (e.g. number of patents that inventor has, whether

or not that inventor is mobile, etc.)

2. Train a random forest on the pairwise comparisons in each group

3. Save all random forests (i.e. the forest of random forests) for use in predicting the unlabeled pairwise

comparisons of inventor records (described in Section 3.3.3)


