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Introduction of the Data

® FEuropean Pro Soccer Database for 2008-2016 seasons
® Source: Kaggle (a machine learning and data science community)
e Format: SQLite (accessible in R using dbConnect function)
o Contains information of 11 leagues
o More than 25000 matches / 1000 players
o Tables: Country, League, Match, Player, player attributes, Team, team
attributes
o Our research focuses on the latest season 2015-2016



How can we best model
soccer team ratings in
European leagues?



Getting Started

e Start simple - two parametric models (GLMs)
e Ratings are based on goals
o Offensive and defensive ratings
® Response: home, away team goals (counts)
e Predictors: home, away team names (categorical)
® Let’s see how the data is distributed...



Candidate Distribution #1: Poisson

e Suggested by existing work (e.g. Karlis and Ntzoufras 2003)
® Most interpretable
o If X~ Poisson(A), then...
m X:r.v., #of event occurrences in a certain interval (goals per match)
m A: Rate parameter (mean and variance of the goals per match)

Correlation?
Overdispersion?

Zero-inflation?



Overdispersion?

e Definition:
o presence of greater variability in a data set than would be expected based on a given
statistical model
o  Often encountered when fitting simple parametric models like poisson distribution
m Poisson has one free parameter and does not allow for the variance to be adjusted
independently of the mean.
e How to check: Computed variance to mean ratio for home/away team goals
o Done over different seasons and different leagues
o Ratios were all very close to 1, which suggested we don’t need to worry about
overdispersion.



Zero-inflation?

e Zero-inflation: Observed zero
frequency > Expected

e Checking for zero-inflation
o Plot observed vs. expected Poisson
frequencies
o Conduct a chi-square
goodness-of-fit (GOF) significance
test
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Log-Likelihood Comparison



Home Team Goals

Based on fitdistr()’s log-likelihood output:

Belgium: Poisson

England: Zero Inflated Poisson
France: Negative Binomial
Germany: Negative Binomial
Italy: Zero Inflated Poisson

Netherland: Zero Inflated Poisson

Poland: Negative Binomial
Portugal: Negative Binomial
Scotland: Negative Binomial
Spain: Negative Binomial

Switzerland: Zero Inflated Poisson
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Away Team Goals

Similar log-likelihoods for each model (within +/- 1 unit)
Formula: Away goals <- home team + away team

1. Poisson, Negative Binomial
Belgium, Netherlands, Poland

2. Poisson, Negative Binomial, Zero-Inflated Poisson
England, France, Germany, Italy, Scotland, Spain, Switzerland

3. Poisson, Negative Binomial, both zero-inflated alternatives

Portugal
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Model Validation



Model Validation Procedure

e Time window based train-test split
e Difficulty: finding the earliest group stage when all teams have played
o Choose week 6 for ease of implementation
® For group stage number t, train model on group stages 1, ..., t and test on group
staget+1
e Calculate the mean squared error (MSE)
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Mean Squared Error (MSE)

-8
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England Premier League Model Holdout Error by Stage

Formula: Home Goals ~ Home Team + Away Team
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Stage

model
® negbin
® poisson

® zp

Not shown: Poisson/ZIP
stage 7 test error = 8e22 (!)
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Mean Squared Error (MSE)

England Premier League Model Holdout Error by Stage

Formula: Away Goals ~ Home Team + Away Team
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Stage

model
® negbin
® poisson

® Zp

Stage 7 negative binomial
test error is higher
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Coefficients Comparison



Coefficient Comparison for England Premier League’s Home Team Goal

Formula: home_team_goal ~ away_team_name + home_team_name
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Away Goal Model Coefficient Estimates
England Premier League
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Brier Score



Introduction to Brier Score

N is the overall number of instances of all classes. R is the number of possible classes
in which the event can fall, so in our research R = 3, because we have three possible

classes: home team wins, away team wins, a draw

f ti hereis the probability that’s forecast by our models.

O_ti here is the actual outcome of the event at instance t (0 if it doesn’t happen, 1 if
it does happen)

The lower the Brier score is for a set of predictions, the better the predictions are

calibrated.
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England Premier League as an Example

League Distribution In-Sample Multiclass Brier Score
England Premier poisson 0.1936225

Negative Binomial 0.1938776

Zero-Inflated Poisson 0.1814058

We found that zero-inflated Poisson always yielded the lowest Brier Score.
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Calibration Curve



Probability Calibration

Time window train-test split over group stage weeks 6-29

For each league, fit GLMs and store parameters

Use parameters to simulate test set matches (n = 500)

For each stage across leagues, compare observed vs. expected win probabilities
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Observed home win probability

Home Win Probability Calibration Comparison
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Observed away win probability

Away Win Probability Calibration Comparison
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Draw Probability Calibration Comparison
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Observed home win probability

Home Win Probability Calibration Comparison
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Draw Probability Calibration Comparison
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Future Work & Promising Directions

Figure out whether these results are generalizable to other European
leagues.

Calculate out of sample Multi-Class Brier Score.

Study the Time effect on rating

Consider other factors than goal count -> Use Bayesian prior

o FIFA rating

o Player injuries

o Goal type

o Expected Goals (xG) by FiveThirtyEight

Modeling goal difference instead of just home/away team goals
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