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Abstract

Topological Data Analysis (TDA) is an emerging area of research at the intersection of
algebraic topology and computational geometry, aimed at describing, summarizing and
analyzing possibly high-dimensional data using low-dimensional algebraic representa-
tions. Recent advances in computational topology have made it possible to actually
compute topological invariants from data. These novel types of data summaries have
been used successfully in a variety of applied problems, and their potential for high-
dimensional statistical inference appears to be significant. Nonetheless, the statistical
properties of the data summaries produced in TDA and, more generally, of the usually
heuristic data-analytic methods they are part of, have remained largely unexplored by
statisticians. Our analysis involves the tools of persistent homology, the main method
of TDA for measuring the topological features of shapes and functions at different res-
olutions. A major part of our research also focuses on cluster trees and Reeb graphs,
which provide a simple yet meaningful abstraction of the input domain of a function
by means of the topological changes in its level sets.
The main goal of this thesis is to contribute to the development of a statistical theory
for TDA and to further propose new and statistically principled methodologies to im-
prove and extend the applicability of the algorithms of TDA. In particular, we will (1)
study tests of significance and confidence intervals to separate topological signal from
topological noise; (2) explore new methods for topological dimensional reduction; (3)
determine how our methods contribute to reduce computational costs, which currently
represent an obstacle in TDA.
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1 Introduction
Topological Data Analysis (TDA) refers to a collection of methods for finding topological
structure in data (Carlsson, 2009). Recent advances in computational topology have made it
possible to actually compute topological invariants from data. The input of these procedures
typically takes the form of a point cloud, regarded as possibly noisy observations from an
unknown lower-dimensional set S whose interesting topological features were lost during
sampling. The output is a collection of data summaries that are used to estimate the
topological features of S.

These novel types of data summaries have been used successfully in a variety of applied prob-
lems, ranging from medical imaging and neuroscience (Chung et al., 2009; Pachauri et al.,
2011) to cosmology (Sousbie, 2011; van de Weygaert et al., 2011; Cisewski et al., 2014),
sensor networks (de Silva and Ghrist, 2007) landmark-based shape data analyses (Gamble
and Heo, 2010), and cellular biology (Kasson et al., 2007). Nonetheless, the statistical prop-
erties of the data summaries produced in TDA and, more generally, of the usually heuristic
data-analytic methods they are part of, have remained largely unexplored by statisticians.

One approach to TDA is persistent homology (Edelsbrunner and Harer, 2010), a method
for studying the homology at multiple scales simultaneously. More precisely, it provides a
framework and efficient algorithms to quantify the evolution of the topology of a family of
nested topological spaces. Given a real-valued function f , persistent homology describes
how the topology of the lower level sets {x : f(x) ≤ t} (or upper level sets {x : f(x) ≥ t})
change as t increases from −∞ to ∞ (or decreases from ∞ to −∞). This information is
encoded in the persistence diagram, a multiset of points in the plane, each corresponding
to the birth and death of a homological feature that existed for some interval of t. Thanks
to their stability properties (Cohen-Steiner et al., 2007; Chazal et al., 2012), persistence
diagrams provide relevant multi-scale topological information about the data. One of the
key challenges is persistent homology is to find a way to isolate the points of the persistence
diagram representing the topological noise. In Fasy et al. (2013) and Chazal et al. (2013b)
we propose several statistical methods to construct confidence sets for persistence diagrams
and other summary functions that allow us to separate topological signal from topological
noise. The research objective of this proposal is to develop new theories and methods to
improve and extend the applicability of the algorithms of persistent homology.

A second sect of research activities pertains to the related task of clustering in high dimen-
sions. Density clustering allows us to identify and visualize the spatial organization of the
data, without specific knowledge about the data generating mechanism and in particular
without any a priori information about the number of clusters. We will consider the sublevel
set tree as a topological descriptor and study its properties, including the notion of distance
between trees that will lead to the definition of inferential procedures. We will also try to
extend the results to a related descriptor, the Reeb graph, which encodes information on the
level sets of a function and on the topology of the input domain (Biasotti et al., 2008).
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2 Persistent Homology
We provide an informal description of the methods of homology and persistent homology.
For rigorous expositions, the reader is referred to the textbooks Munkres (1984); Zomorodian
(2005); Edelsbrunner and Harer (2010) and the introductory reviews Edelsbrunner and Harer
(2008); Chazal et al. (2012).

2.1 Background

Homology is a mathematical formalism used to summarize the overall connectivity of a
topological space. The homology of a space S is a collection of abelian groups of different
dimensions, the pth dimensional group encoding the pth dimensional “holes” in S. The pth
homology group Hp(S) is the set of equivalence classes of loops enclosing the pth dimensional
holes, and its rank βp is called the pth Betti number. Roughly speaking, the pth Betti number
βp is the number of pth dimensional holes in S, so that β0 is the number of connected
components of S, β1 is the number of loops, β2 is the number of enclosed voids and so on.
See Figure 1.

Figure 1: The circle has one connected component and one 1-dimensional hole: β0 =
1, β1 = 1. A sphere in R3 has one connected component and one 2-dimensional hole (void):
β0 = 1, β1 = 0, β2 = 1. The torus has one connected component, two 1-dimensional holes
(the two non equivalent circles in red) and one enclosed void: β0 = 1, β1 = 2, β2 = 1.

Persistent Homology is the main tool of TDA for measuring the scale or resolution of topo-
logical features. Given a function f : X → R, defined for a triangulable subspace of RD,
persistent homology describes the changes in the topology of the lower (or upper) level sets
of f . For example, consider the lower level sets Lt = {x ∈ X : f(x) ≤ t}. The index t can be
seen as a scale parameter leading to a filtration of subspaces, such that Lt ⊆ Ls for all t ≤ s.
Such a filtration induces a family {H(Lt) : t ∈ R} of homology groups and the inclusions
Lt ↪→ Ls induce a family of homomorphisms H(Lt)→ H(Ls). Persistent homology describes
f with the persistence diagram, a multiset of points in the plane, each corresponding to the
birth and death of a homological feature that existed for some interval of t. The point (s, t)
in the diagram represents a distinct topological feature that existed in H(Lr) for r ∈ [s, t).

In the following we focus on the persistent homology of distance functions and density
functions, providing more details on the construction of the persistence diagrams and a few
clarifying examples.
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2.1.1 Persistent Homology of the distance function

First, we consider the case where f is the distance function. Let S be a compact subset of
RD and let dS : RD → R be the distance function to S:

dS(x) = inf
y∈S
‖y − x‖2.

Consider the sub-level set Lt = {x : dS(x) ≤ t}; note that S = L0. As t varies from 0 to
∞, the set Lt changes. Persistent homology summarizes how the topological features of Lt
change as a function of t. Key topological features of a set include the connected components
(the zeroth order homology), the tunnels (the first order homology), voids (second order
homology), etc. These features can appear (be born) and disappear (die) as t increases. For
example, connected components of Lt die when they merge with other connected components.
Each topological feature has a birth time b and a death time d. In general, there will be a
set of features with birth and death times (b1, d1), . . . , (bm, dm). These points can be plotted
on the plane, resulting in a persistence diagram P . We view the persistence diagram as a
topological summary of the input function or data.

�����
�����

��

Figure 2: Left: 30 data points S30 sampled from the circle of radius 2. Middle left:
sub-levels set L̂0.5 = {x : dS30 ≤ 0.5}; for t = 0.5 the sub-level set consists of two connected
components and zero loops. Middle right: sub-levels set L̂0.8 = {x : dS30 ≤ 0.8}; as
we keep increasing t we assist at the birth and death of topological features; at t = 0.8
one of the connected components dies (is merged with the other one) and a 1-dimensional
hole is formed; this loop will die at t = 2, when the pink balls representing the distance
function will touch each other in the center of the circle. Right: the empirical persistence
diagram summarizes the topological features of the sampled points. The black dots repre-
sent the connected components: 30 connected components are present at t = 0 and they
progressively die as t increases, leaving only one connected component that persists for
large values of t. The red triangle represent the unique 1-dimensional hole that is formed
at t = 0.8 and dies at t = 2.

Given data points Sn = {X1, . . . , Xn}, we are interested in understanding the homology of
the d-dimensional compact topological space S ⊂ RD from which the data were sampled. If
our sample is dense enough then L̂t = {x : dSn(x) ≤ t} has the same homology of S for an
interval of values of t. Choosing the right t is a difficult task: small t will have the homology
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of n points and large t will have the homology of a single point. Using persistent homology,
we avoid choosing a single t by assigning a persistence value to each non-trivial topological
feature that is realized for some non-negative t. As t varies, we summarize birth and death
of topological features of Sn using the empirical persistence diagram P̂ . We treat P̂ as an
estimate of the unobserved persistence diagram P of the underlying space S. Points near
the diagonal in the persistence diagram have short lifetimes and are considered “topological
noise”. In most applications we are interested in features that we can distinguish from noise;
that is, those features that persist for a large range of values of t. Figure 2 shows an example
that clarifies the concepts described above.

Despite the seemingly geometric nature of homology invariants, they are in fact purely com-
binatorial quantities, which are computed by triangulating a topological space with simplicial
complexes (Zomorodian and Carlsson, 2005). In some practical applications, the number of
simplices can be so large that the exact computation of the persistent homology becomes
prohibitive. Efficient approaches for approximating the persistent homology will be useful
only if combined with statistical guarantees.

2.1.2 Persistent Homology of the density function.

Most of the literature on computational topology focuses on the distance function. Alter-
natively, one can use the data to construct a smooth density estimator and then find the
persistence diagram defined by a filtration of the upper level sets of the density estimator.
This strategy is discussed in detail in Fasy et al. (2013), where it is shown that the density-
based method is very insensitive to outliers. A different approach to smoothing based on
diffusion distances is discussed in Bendich et al. (2011).

Figure 3: Left: 500 data points sampled from the circle of radius 1. Middle left: Gaus-
sian kernel density estimator with bandwidth h = 0.3. Middle right: upper-levels set
Û0.1 = {x : p̂h ≤ 0.1}. Right: the empirical density persistence diagram summarizes the
topological features of upper level sets of the kernel density estimator. The black dots
represent the connected components: 2 connected components appear around t = 0.27,
but one of them immediately dies (is merged to the other one). The red triangle represent
the unique 1-dimensional hole that is formed at t = 0.12 and dies at t = 0.01.
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Let X1, . . . , Xn
i.i.d.∼ P , where Xi ∈ RD. We assume that the support of P is d-dimensional

compact manifold M. Define

ph(x) =

∫
M

1

hD
K

(
||x− u||

h

)
dP (u). (1)

Then ph is the density of the probability measure Ph which is the convolution Ph = P ?Kh

where Kh(A) = h−DK(h−1A) and K(A) =
∫
A
K(t)dt. That is, Ph is a smoothed version of

P . The standard estimator for ph is the kernel density estimator

p̂h(x) =
1

n

n∑
i=1

1

hD
K

(
||x−Xi||

h

)
. (2)

It is easy to see that E(p̂h(x)) = ph(x).

Our target of inference is Ph, the persistence diagram of the upper level sets {x : ph(x) ≥ t}.
We estimate Ph using the empirical diagram P̂h of the upper level sets {x : p̂h(x) ≥ t}. See
Figure 3 for an example.

Ph is of interest for several reasons. First, the upper level sets of a density are of intrinsic
interest in statistics and machine learning. The connected components of the upper level
sets are often used for clustering. The homology of these upper level sets provides further
structural information about the density. Second, under appropriate conditions, the upper
level sets of ph may carry topological information about a set of interest M. To see this,
suppose that p is the density of P with respect to Hausdorff measure on M. If p is smooth
and bounded away from 0, then there is an interval [a,A] such that {x : p(x) ≥ t} ∼= M for
some a ≤ t ≤ A.

In the language of computational topology, Ph can be considered a topological simplification
of P , the persistence diagram of the upper level sets {x : p(x) ≥ t}. Ph may omit subtle
details that are present in P but is much more stable.

2.1.3 Persistence Diagrams and Stability

We say that the persistence diagram is stable if a small change in the input function produces
a small change in the persistence diagram. There are many variants of the stability result
for persistence diagrams, as we may define different ways of measuring distance between
functions or distance between persistence diagrams. We are interested in using the L∞-
distance between functions and the bottleneck distance between persistence diagrams, that
we define through the notion of matching.

A matching between A ⊂ R2 and B ⊂ R2 is a set of edges (a, b), with a ∈ A and b ∈ B,
such that no vertex is incident to two edges. A matching is perfect if every vertex is incident
on exactly one edge. We want to find a matching between the points of two persistence
diagrams P1 and P2 that minimizes the cost associated with the matching. Let the L∞
distance between two points a, b ∈ R be

d∞(a, b) = max{|ax − bx|, |ay − by|},
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where (ax, ay) and (bx, by) are the coordinates of a and b. To resolve the issue where the
number of off-diagonal points in both diagrams is not equal, we allow an off-diagonal point
to be matched to a point on the diagonal y = x. Given a matching M , the cost of a matching
is

C(M) = max
(a,b)∈M

d∞(a, b)

The bottleneck distance between persistence diagrams P1 and P2 is

W∞(P1,P2) = min
M

C(M)

where the minimum is over all the perfect matching between P1 and P2. The set D of
persistence diagrams is equipped with the the bottleneck metric W∞ and its completion
D is Polish, i.e. complete and separable, which makes it amenable to probability theory
(Blumberg et al., 2012; Mileyko et al., 2011).

We can upper bound the bottleneck distance between two persistence diagrams by the L∞-
distance between the corresponding functions:

Theorem 1 (Bottleneck Stability). Let X be finitely triangulable, and let f, g : X → R be
continuous. Then, the bottleneck distance between the corresponding persistence diagrams is
bounded from above by the L∞-distance between them:

W∞(Dgmf ,Dgmg) ≤ ||f − g||∞. (3)

The bottleneck stability theorem is one of the main requirements for our methods to work, as
we will see in Section 2.2. We refer the reader to Cohen-Steiner et al. (2007) and to Chazal
et al. (2012) for proofs of this theorem.

2.1.4 Persistence Landscapes

Bubenik (2012) introduced another representation called the persistence landscape, which
is in one-to-one correspondence with persistence diagrams. A persistence landscape is a
continuous, piecewise linear function λ : Z+ × R→ R. The advantage of landscapes and,
more generally, of any function-valued summaries of persistent homology is that we can
analyze them using existing techniques and theories from nonparametric statistics.

To define the persistence landscape function, we first consider the persistence diagram with
a different set of coordinates. Each point, representing a feature born at b and dead at
d, is plotted with coordinates (x, y) =

(
b+d
2
, b−d

2

)
. Then we replace each persistence point

p = (x, y) with the triangle function

tp(z) =


z − x+ y z ∈ [x− y, x]

x+ y − z z ∈ (x, x+ y]

0 otherwise

=


z − d z ∈ [d, b+d

2
]

b− z z ∈ ( b+d
2
, b]

0 otherwise.
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Figure 4: Left: a persistence diagrams with coordinates (birth, death). Right: the same
persistence diagram with coordinates ((birth+death)/2, (death-birth)/2). The red curve
is the landscape λ(1, ·).

Notice that p is itself on the graph of tp(z). We obtain an arrangement of curves by overlaying
the graphs of the functions {tp(z)}p∈P ; see Figure 4.

The persistence landscape is defined formally as a walk through this arrangement:

λP(k, z) = kmax
p∈P

tp(z), (4)

where kmax is the kth maximum value in the set; in particular, 1max is the usual maxi-
mum function. Observe that λP(k, z) is 1-Lipschitz.

For a fixed k ≥ 1 we define λ(·) := λ(k, ·). Let P be a probability distribution on the space
of persistence landscapes upper bounded by T/2, for some T > 0. Let λ1, . . . , λn ∼ P . We
define the mean landscape as

µ(t) = E[λi(t)], t ∈ [0, T ].

The mean landscape is an unknown function that we would like to estimate. We estimate µ
with the sample average

λn(t) =
1

n

n∑
i=1

λi(t), t ∈ [0, T ].

Note that since E(λn(t)) = µ(t), we have that λn is a point-wise unbiased estimator of the
unknown function µ. Bubenik (2012) showed that λn converges pointwise to µ and that the
pointwise Central Limit Theorem holds.

2.2 Research Plan

Several recent attempts have been made, with different approaches, to study persistence
diagrams from a statistical point of view. See for example Turner et al. (2012); Robinson
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and Turner (2013); Munch et al. (2013); Chazal et al. (2013c). In the following we describe
the first results that we obtained in the study of persistence diagrams and other summary
functions, as well as the open questions that we propose to address.

2.2.1 Preliminary Work

In Fasy et al. (2013), Chazal et al. (2013a) and Chazal et al. (2013b), we have taken the first
steps towards a rigorous statistical analysis of persistent homology.

In particular, we have derived confidence sets for persistence diagrams that allow us to
separate topological signal from topological noise. An asymptotic 1 − α confidence set for
the bottleneck distance W∞(P̂ ,P) is an interval [0, cn] such that

lim inf
n→∞

P
(
W∞(P̂ ,P) ∈ [0, cn]

)
≥ 1− α. (5)

We can visualize the confidence interval by centering a box of side length 2cn at each point
p on the persistence diagram. The point p is considered indistinguishable from noise if the
corresponding box, formally defined as {q ∈ R2 : d∞(p, q) ≤ cn}, intersects the diagonal.
The union of boxes forms the confidence set for the unobserved persistence diagram P .
Alternatively, we can visualize the confidence set by adding a band of width

√
2cn around

the diagonal of the persistence diagram P̂ . The interpretation is this: points in the band
are not significantly different from noise. Points above the band can be interpreted as
representing a significant topological feature. This leads to the diagrams shown in Figure 5.
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Figure 5: First, we obtain the confidence interval [0, cn] for W∞(P̂,P). If a box of side
length 2cn around a point in the diagram hits the diagonal, we consider that point to be
noise. By putting a band of width

√
2cn around the diagonal, we need only check which

points fall inside the band and outside the band. The plots show the two different ways to
represent the confidence interval [0, cn]. For this particular example cn = 0.5.
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In Fasy et al. (2013) we proposed several methods for the construction of asymptotic confi-
dence intervals for W∞(P̂ ,P). The general strategy is as follows.

When f is the distance function (see Section 2.1.1), from the stability theorem (Theorem 1),
we know that W∞(P , P̂) ≤ ‖dM − dSn‖∞. Hence, it suffices to find cn such that

lim inf
n→∞

P
(
‖dM − dSn‖∞ ∈ [0, cn]

)
≥ 1− α (6)

to conclude that
lim inf
n→∞

P
(
W∞(P , P̂) ∈ [0, cn]

)
≥ 1− α. (7)

Similarly when f is the density function ph (see Section 2.1.2), it suffices to find cn such that

lim inf
n→∞

P
(
‖ph − p̂h‖∞ ∈ [0, cn]

)
≥ 1− α (8)

to conclude that
lim inf
n→∞

P
(
W∞(Ph, P̂h) ∈ [0, cn]

)
≥ 1− α. (9)

In the example of Figure 6 we use the bootstrap technique to construct an asymptotic 95%
confidence set for the persistence diagram of the uniform density over the torus. We described
this method in details in Chazal et al. (2013a).

Figure 6: We embed the torus S1×S1 in R3 and we use the rejection sampling algorithm of
Diaconis et al. (2012) (R = 1.5, r = 0.8) to sample 10, 000 points uniformly from the torus.
Then, we compute the persistence diagram P̂h using the Gaussian kernel with bandwidth
h = 0.25 and use the bootstrap to construct the 0.95% confidence interval [0 , 0.01] for
W∞(P̂h,Ph). Note that the confidence set correctly captures the topology of the torus.
That is, only the points representing real features of the torus are significantly far from
the diagonal.

In Chazal et al. (2013b) we derived similar results for the landscape function, described
in Section 2.1.4). We showed that the average persistence landscape converges weakly to
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a Gaussian process and we constructed 95% confidence bands for the average landscape
using the multiplier bootstrap. A pair of functions `n, un : R → R is an asymptotic (1− α)
confidence band for µ if, as n→∞,

P
(
`n(t) ≤ µ(t) ≤ un(t) for all t

)
≥ 1− α, (10)

Confidence bands are valuable tools for statistical inference, as they allow to quantify and
visualize the uncertainty about the mean persistence landscape function µ and to screen out
topological noise. See Figure 7 for an example.

Figure 7: The plot on the left shows 8000 epicenters of earthquakes in the latitude/longitude
rectangle [−75, 75]× [−170, 10] of magnitude greater than 5.0 recorded between 1970 and
2009 (USGS data). We randomly sampled m = 400 epicenters and computed the approxi-
mated persistence diagram of the distance function (Betti 1). We repeated this procedure
n = 30 times and computed the empirical average landscape λn. Using the multiplier
bootstrap described in Chazal et al. (2013b), we obtained a uniform 95% confidence band
for the average landscape µ(t) (right).

2.2.2 Research Aim

We will continue to study the objects and tools of persistent homology from a statistical
point of view. Our work will result in various non-parametric inferential procedures based on
persistence diagrams and summary functions such as persistence landscapes. These methods
will partially solve the important practical issue of approximating the persistent homology
in cases where exact computations are prohibitive.
An immediate application of the confidence sets described above will be the formalization of
hypothesis tests that will be able to discriminate sampling artifacts (the topological noise)
from the true topological features. More generally, we will treat diagrams as non-parametric
test statistics and, given two separate samples, we will study the power of tests that reject the
null hypothesis of population homogeneity solely based on homological features. Preliminary
results on hypothesis tests for persistent homology are presented in Bubenik (2012) and
Robinson and Turner (2013), although they are mainly based on permutation tests and
they do not provide a rigorous statistical analysis of the power of these procedures. We

13



will consider two non-parametric tests that have shown good performance in preliminary
experiments: the Rosenbaum test (Rosenbaum, 2005) and Kernel Tests (Gretton et al.,
2012). Tests of this kind will be extremely useful for instance in the medical imaging (Chung
et al., 2009; Pachauri et al., 2011) and cosmology (Sousbie, 2011; van de Weygaert et al.,
2011; Cisewski et al., 2014).

Much of the literature on computational topology focuses on using the distance function to
the data. As discussed in Bendich et al. (2011), such methods are quite sensitive to the
presence of outliers. In Fasy et al. (2013) we showed that density-based methods are more
robust: we can use the data to construct a smooth density estimator and then find the
persistence diagram defined by a filtration of the upper level sets of the density estimator.
Another promising idea in this direction is the concept of distance of a measure to a
set (Chazal et al., 2010). These functions share many properties with classical distance
functions, which makes them suitable for inference purposes.

Another summary function for persistence diagrams can be obtained by modelling the dia-
gram as a point process on the plane (see e.g. Daley and Vere-Jones, 2002). As described in
Edelsbrunner et al. (2012) one can construct the empirical function on the plane φ : R2 → R,
whose integral over every region A ⊂ R2 is the expected number of points in A. Alterna-
tively, one can construct an intensity function, that is a smooth 2-dimensional density
estimation of the process on the plane. See Figure 8. We will derive a rigorous statistical
analysis to prove the convergence in distribution of the average intensity function and to
measure the significance of topological properties encoded in the corresponding persistence
diagram.

Figure 8: We embed the torus S1 × S1 in R3 and we use the rejection sampling algorithm
of Diaconis et al. (2012) (R = 5, r = 1.8) to sample 10,000 points uniformly from the
torus. Then we link it with a circle of radius 5, from which we sample 1,800 points. These
N = 11, 800 points constitute the sample space (left). We randomly sample m = 600 of
these points, estimate the corresponding persistence diagram (Betti 1) (middle left) and
the corresponding intensity function, using a Gaussian kernel with bandwidth h = 0.1
(middle right). We repeat this procedure n = 30 times to construct the average intensity
function (right).

Finally we will implement all the methods described above in a publicly available R package.
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3 Density Clustering
The other set of research objectives of this proposal pertains to the classic data-analytic task
of clustering in high dimensions. Suppose we observe a collection of points Sn = {X1, . . . , Xn}
in RD. Density clustering allows us to identify and visualize the spatial organization of Sn,
without specific knowledge about the data generating mechanism and in particular without
any a priori information about the number of clusters.

3.1 Background

3.1.1 Level Set Trees

Let f be the density of the probability distribution P generating the observed sample Sn.
For a threshold value λ > 0, the corresponding (super) level set of f is Lf (λ) := cl({x ∈
RD : f(x) > λ}), and its D-dimensional subsets are called high-density regions. The λ
high-density clusters of P are the maximal connected subsets of Lf (λ) (see Figure 9). The
statistical literature addressing the problem of estimating the high density regions corre-
sponding to a fixed λ under a variety of metrics is extensive. See, e.g., Cuevas et al. (2001);
Azzalini and Torelli (2007); Rigollet and Vert (2009); Rinaldo and Wasserman (2010). In
these works, the level set is estimated non-parametrically either by selecting an element
from a carefully chosen class of sets of manageable complexity, or, more frequently, as the
level set of a non-parametric estimate of f itself. These methods often come with minimax
guarantees that hold only under strong regularity conditions on λ, f or P that are typically
not verifiable in practice.

Figure 9: Left: a density function and two high-density clusters (red intervals) correspond-
ing to the density level λ = 0.09 (green line). Right: the density tree, indexed by both the
density level λ (left vertical axis) and by the probability content α (right vertical axis).

A more fundamental approach to clustering and data visualization is to consider not just
one level set of P at a time, but all the level sets simultaneously. This naturally leads to the
notion of the cluster density tree of P (see, e.g., Hartigan (1981)), defined as the collection
of sets T := {Lf (λ), λ ≥ 0}, which satisfies the tree property: A,B ∈ T implies that A ⊂ B

15



or B ⊂ A or A ∩ B = ∅. We will refer to this construction as the λ-tree. Alternatively, in
Rinaldo et al. (2012) the authors re-parametrize the depth of the tree by a probability content
parameter α ∈ (0, 1), and re-define the density α-tree as {L(α), α ∈ (0, 1)} where L(α) :=
L(λα) with λα := sup{λ, P (Lf (λ)) ≥ α}. More recently, Kent et al. (2013) introduced
the cluster κ-tree, which facilitates the interpretation of the tree by precisely encoding the
probability content of each tree branch rather than density level. This new descriptor further
improves the interpretability and generality of level set trees.
While the cluster density tree has long been known to be the most informative representation
of P for the purposes of clustering, only very recently have statisticians and mathematicians
begun to analyze it thoroughly (see, e.g., Stuetzle and Nugent (2010); Carlsson and Mémoli
(2010); Chaudhuri and Dasgupta (2010); Kpotufe and von Luxburg (2011); Rinaldo et al.
(2012)), and much work remains to be done in order to understand the statistics of density
trees.

3.2 Research Plan

The notion of density tree offers a principled way for visualizing a distribution in arbitrary
dimensions and is clearly important for clustering. Many results have been published about
clustering at a fixed density levels, but the first strong results about the accuracy of estima-
tors for the entire level set tree appeared only recently (see Chaudhuri and Dasgupta (2010);
Kpotufe and von Luxburg (2011); Rinaldo et al. (2012)). However a great deal of work re-
mains to quantify the statistical properties of these methods. For example, the consistency
results in Chaudhuri and Dasgupta (2010) and Kpotufe and von Luxburg (2011) are based
on the λ-tree. Since there is a one-to-one map between the levels of the λ-tree and those of
the α-tree, it is likely that the α-tree is also consistent. We will also analyze the theoretical
properties of the κ-tree, whose statistical consistency has never been studied before.

The cluster density tree can be seen as a topological descriptor. In order to study the
stability of this object and to use it for statistical inference it is important to define a
distance between two trees. In Morozov et al. (2013) the authors define the interleaving
distance, based on continuous maps between the trees, which leads to a stability results, but
whose cost of computation is prohibitive. Several definitions of distance are also presented
in Kent (2013). One of the most promising is the paint mover distance, which is based
on the Wasserstein metric and can be easily computed by solving a linear program. We
will analyze the statistical properties of the paint mover distance and we will use it to
construct an average tree that will lead to a rigorous definition of inferential procedures.
A first step in this direction will consist in borrowing the concept of landscape function
from persistent homology. The idea is to summarize the information contained in the level
set tree using a continuous real valued function and then take advantage of its simplicity
for statistical inference. This procedure automatically defines a map from a d-dimensional
density to an unnormalized 1-dimensional density that preserves the critical value of the
original function. As done for the persistence landscape, we will construct an average
tree landscape and a confidence band, using appropriate bootstrapping procedure, which
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Figure 10: We simulate 30 datasets, each of them formed by 300 points sampled from three
2d-Gaussian distributions. The plot on the left shows one of these dataset. The plot in the
middle shows the cluster tree and corresponding tree landscape function (piecewise linear
curve). The plot on the right shows the empirical average landscape (black curve) obtained
as a pointwise average of the 30 Landscape functions. The pink band is a 95% confidence
band for µ(t), the mean Landscape associated to the sampling scheme. It is obtained using
the multiplier bootstrap.

will lead to the formalization of hypothesis tests. See Figure 10 for a toy example with
preliminary results.

We will also try to extend these statistical techniques to a similar topological descriptor, the
Reeb graph. Given a continuous function f : X→ R defined on a triangulable topological
space X we consider the level set f−1(t) = {x ∈ X : f(x) = t}, for t ∈ R. Each level
set may contain several connected components. We say that two points x, y ∈ f−1(t) are
equivalent, denoted by x ∼ y, if they are in the same connected component. The Reeb
graph of the function f is the quotient space X/ ∼, which is the set of equivalence classes
equipped with the quotient topology induced by this equivalence relation. Beside the level
sets of the function, the Reeb graph provides information on the topological space on which
the function is defined. Even though the Reeb graph loses aspects of the original topological
structure, it can reflect the 1-dimensional connectivity of the space in some cases (Biasotti
et al., 2008; Edelsbrunner and Harer, 2010; Bauer et al., 2013). See Figure 11 for an example.

Finally, a critical factor in the usefulness of a data analysis method is computational speed
and memory efficiency. As in persistent homology, a rigorous statistical analysis of level set
trees and Reeb graphs will allow us to approximate their construction in cases where exact
computations are prohibitive.
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Figure 11: Reeb graph of the height function of the torus.
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