Department of Statistics Unitmark
Dietrich College of Humanities and Social Sciences

Consistency of Posterior Distributions for Neural Networks

Publication Date

May, 1998

Publication Type

Tech Report


Herbert Lee


In this paper we show that the posterior distribution for feedforward neural networks is asymptotically consistent. This paper extends earlier results on universal approximation properties of neural networks to the Bayesian setting. The proof of consistency embeds the problem in a density estimation problem, then uses bounds on the bracketing entropy to show that the posterior is consistent over Hellinger neighborhoods. It then relates this result back to the regression setting. We show consistency in both the setting of the number of hidden nodes growing with the sample size, and in the case where the number of hidden nodes is treated as a parameter. Thus we provide a theoretical justification for using neural networks for nonparametric regression in a Bayesian framework.