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e Introduction to Shards
o
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What are Shards?

Source: odysseyseaglass.com, nsudino, the RuneScape Wiki
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What are Shards?

@ Shards: small regions with high density.

Data: Massive Blackhole-2 Simulation
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@ Shards are sets, whose parameters space has infinite dimensions.
@ Making inference for sets is very tough.

@ There are many estimation methods but very few of them mentioned
statistical inference.
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@ Shards are sets, whose parameters space has infinite dimensions.
@ Making inference for sets is very tough.

@ There are many estimation methods but very few of them mentioned
statistical inference.
@ — In this talk, we will see how one can make inference for sets.

Yen-Chi Chen (CMU-Stats) Inference for Shards May 27, 2015 7 /48



(]
o Density Level Set
o
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Example: Climate Data

2008 Surface Temperature Anomaly ('C)

-3.5 25 -1.5 -1 -06 -0.2 0.2 06 1 1.5 25 35

Source: NASA-GISS

Yen-Chi Chen (CMU-Stats) Inference for Shards May 27, 2015



Example: Neuro Image

' hﬂ'l..’l'?l'!““\&“

y uu..m!n)!!.'},\“i\\v -

f

o

Source: http://neuroncyto.bii.a-star.edu.sg/
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Density Level Set

@ Density Level Set: The collection of points where the density is
exactly at certain level.
@ Applications: clustering, anomaly detection, classification, two-sample

comparison
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Formal Definition for Density Level Set

Let p be the probability density function.
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Formal Definition for Density Level Set

Let p be the probability density function.

@ The A-level set is
D = {x: p(x) = A}
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Example for Level Set

f(z)
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Example for Level Set

f(z)
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Example for Level Set
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Plug-in Estimator

Our estimator: a plug-in from the Kernel Density Estimator (KDE).
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Plug-in Estimator

Our estimator: a plug-in from the Kernel Density Estimator (KDE).
e The KDE p,

~ 1 a X—X,'
Pn(X):nhdZK< h )
i=1
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Plug-in Estimator

Our estimator: a plug-in from the Kernel Density Estimator (KDE).
e The KDE p,

1 < x — X;
p, = — K .
pn(X) nhd ; < h )
@ The corresponding estimators

Dy = {x: Pu(x) = A}.
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Example: Level Set Estimator
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Smoothed Level Set

In particular, we focus on making inference for the smoothed version of
the density, denoted as py:

Pr(x) = P& Kn() = E(B(x),  Kn() = 15K (%),

where ® denotes the convolution.

o We define Dy, as the level set using py.

Yen-Chi Chen (CMU-Stats) Inference for Shards May 27, 2015 16 / 48



Smoothed Level Set

In particular, we focus on making inference for the smoothed version of
the density, denoted as py:

Pr(x) = P& Kn() = E(B(x),  Kn() = 15K (%),

where ® denotes the convolution.

o We define Dy, as the level set using py.
@ The advantages for focusing on Dy:

o Always well-defined.

e Topologically similar.

o Asymptotically the same.
o Fast rate of convergence.
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Smoothed Level Set

In particular, we focus on making inference for the smoothed version of
the density, denoted as py:

Pr(x) = P& Kn() = E(B(x),  Kn() = 15K (%),

where ® denotes the convolution.

o We define Dy, as the level set using py.
@ The advantages for focusing on Dy:

o Always well-defined.

e Topologically similar.

o Asymptotically the same.
o Fast rate of convergence.

@ One can always slightly undersmooth so that inference for Dy, is
asymptotically valid for D.
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Useful Metric: Hausdorff Distance

We introduce a useful metric—the Hausdorff distance for sets:

Haus(A, B) = max {sup d(x, B), sup d(x, A)} ,
XEA xeB

where d(x, A) = inf,ca ||x — y|| is the projection distance.
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Useful Metric: Hausdorff Distance

We introduce a useful metric—the Hausdorff distance for sets:

Haus(A, B) = max {sup d(x, B), sup d(x, A)} ,
XEA xeB

where d(x, A) = inf,ca ||x — y|| is the projection distance.

@ Haus is an £, norm for sets.
e Consistency: Haus(ﬁ,,, Dp) = op(1).
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Useful Metric: Hausdorff Distance

We introduce a useful metric—the Hausdorff distance for sets:

Haus(A, B) = max {sup d(x, B), sup d(x, A)} ,
XEA xeB

where d(x, A) = inf,ca ||x — y|| is the projection distance.

@ Haus is an £, norm for sets.
e Consistency: Haus(ﬁ,,, Dp) = op(1).
o Useful property:

A C B@Haus(A,B), B C A& Haus(A,B),

where A@ r = {x:d(x,A) <r}.
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Hausdorff Distance and Confidence Sets

@ Hausdorff distance can be applied to construct confidence sets.

Yen-Chi Chen (CMU-Stats) Inference for Shards May 27, 2015 18 / 48



Hausdorff Distance and Confidence Sets

@ Hausdorff distance can be applied to construct confidence sets.

o Let F, be the CDF for Haus(D,, Dy) and t1_ = F; (1 — &) be the
1 — « quantile.

Yen-Chi Chen (CMU-Stats) Inference for Shards May 27, 2015 18 / 48



Hausdorff Distance and Confidence Sets

@ Hausdorff distance can be applied to construct confidence sets.

o Let F, be the CDF for Haus(D,, Dy) and t1_ = F; (1 — &) be the
1 — « quantile.

@ It can be shown that
P(Dh C 5,,@1‘1,0[) >1—a.
— This follows from the property

AC B®Haus(A, B), BC A Haus(A,B).
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Hausdorff Distance and Confidence Sets

@ Hausdorff distance can be applied to construct confidence sets.

o Let F, be the CDF for Haus(D,, Dy) and t1_ = F; (1 — &) be the
1 — « quantile.

@ It can be shown that
P(DhC Dy tia)21-a.
— This follows from the property
A C B®Haus(A,B), B C A® Haus(A,B).

@ We need to find the distribution F,.
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Asymptotic Theory

It can be shown that
V'nhdHaus(D,, Dy) ~ sup {Empirical process} ~ sup {Gaussian process}.

— the last approximation follows from [Chernozhukov et. al. 2014].
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Asymptotic Theory

It can be shown that
V'nhdHaus(D,, Dy) ~ sup {Empirical process} ~ sup {Gaussian process}.

— the last approximation follows from [Chernozhukov et. al. 2014].

Theorem

Under regularity condition, there exists a tight Gaussian process B defined
on a certain function space F such that

sup
t

P (\/ nh9Haus(D,, D) < t) = P( sup|B(f)[ < t>
feF

-o((=2)").
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The Bootstrap

@ Good news: we have the asymptotic behavior.

o Bad news: the asymptotic behavior is complicated.
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The Bootstrap

@ Good news: we have the asymptotic behavior.
o Bad news: the asymptotic behavior is complicated.

@ A solution: the bootstrap.
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The Bootstrap Consistency

@ Bootstrap sample = bootstrap level set 5,’;.
e Compute Haus(ﬁ;,k, 5,,) to get a CDF estimator F,,.

@ Choose t;_,, be the 1 — quantile for I?,,.
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The Bootstrap Consistency

Bootstrap sample = bootstrap level set 5,’;.
Compute Haus(ﬁ;,k, 5,,) to get a CDF estimator F,.
Choose t;_,, be the 1 — quantile for I?,,.

It can be shown that

VnhdHaus(D?, D,)) ~ sup {Gaussian process} ~ V'nhdHaus(D,, D).
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The Bootstrap Consistency

Bootstrap sample = bootstrap level set 5,’;.
Compute Haus(ﬁ;,k, 5,,) to get a CDF estimator F,.
Choose t;_,, be the 1 — quantile for I?,,.

It can be shown that

VnhdHaus(D?, D,)) ~ sup {Gaussian process} ~ V'nhdHaus(D,, D).

Under regularity condition,

~ log” n 1/8
P<DhCDn@tl—a>:1—C¥+O<( nhd) >
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Example: Confidence Sets
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Example: Confidence Sets
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Properties for the Confidence Sets

@ Blue: confidence sets for Dy,
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@ Blue: confidence sets for Dy,

(2] . every point above A
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Properties for the Confidence Sets

@ Blue: confidence sets for Dy,
(2] . every point above A

© Green: every point below A
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Properties for the Confidence Sets

@ Blue: confidence sets for Dy,
(2] . every point above A
© Green: every point below A

o +Blue: confidence sets for
upper level set
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Properties for the Confidence Sets

@ Blue: confidence sets for Dy,
(2] . every point above A
© Green: every point below A

o +Blue: confidence sets for
upper level set

@ Green+Blue: confidence sets for
lower level set
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o
o Density Ridges
o
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Example: Cosmology

Credit: Millennium Simulation
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Example: Neuroscience

Image courtesy Eswar P. R. lyer.
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Density Ridges

@ In the above examples, we see curve-like structure with high density.

@ This structure can be captured by the density ridges.
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Density Ridges

@ In the above examples, we see curve-like structure with high density.
@ This structure can be captured by the density ridges.

@ Data: the Sloan Digital Sky Survey.
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Example: Ridges in Mountains

Image @ 2011\Dig
© 2011 EuropalTec!

Imagery|Date-12/31/2005 @\ 2005

Credit: Google
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Example: Ridges in Smooth Functions
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Ridges: Local Modes in Subspace

@ A generalized local mode in a
specific ‘subspace’.
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Formal Definition of Density Ridges

@ p(x): a density function.
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@ (Aj(x), vj(x)): jth eigenvalue/vector of H(x) = VVp(x).

Yen-Chi Chen (CMU-Stats) Inference for Shards May 27, 2015 32 /48



Formal Definition of Density Ridges

@ p(x): a density function.
@ (Aj(x), vj(x)): jth eigenvalue/vector of H(x) = VVp(x).
o V(x) = [wva(x),- -, vg(x)]: matrix of 2nd to last eigenvectors
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Formal Definition of Density Ridges

@ p(x): a density function.
@ (Aj(x), vj(x)): jth eigenvalue/vector of H(x) = VVp(x).
o V(x) = [wva(x),- -, vg(x)]: matrix of 2nd to last eigenvectors

e V(x)V(x)T: a projection
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Formal Definition of Density Ridges

@ p(x): a density function.

@ (Aj(x), vj(x)): jth eigenvalue/vector of H(x) = VVp(x).

o V(x) = [wva(x),- -, vg(x)]: matrix of 2nd to last eigenvectors
e V(x)V(x)T: a projection

o Ridges:

R = Ridge(p) = {x : V(x)V(x)"Vp(x) = 0, A2(x) < 0},
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Formal Definition of Density Ridges

@ p(x): a density function.

@ (Aj(x), vj(x)): jth eigenvalue/vector of H(x) = VVp(x).

o V(x) = [wva(x),- -, vg(x)]: matrix of 2nd to last eigenvectors
e V(x)V(x)T: a projection

o Ridges:

R = Ridge(p) = {x : V(x)V(x)"Vp(x) = 0, X2(x) < 0},
@ Local modes:

Mode(p) = {x : Vp(x) =0, A\1(x) < 0}.
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Estimator and Algorithm

We use the plug-in estimate:
R, = Ridge(pn).

where p, is the KDE.
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Estimator and Algorithm

We use the plug-in estimate:
R, = Ridge(pn).

where p, is the KDE.

@ In general, finding ridges from a given function is hard.
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Estimator and Algorithm

We use the plug-in estimate:
R, = Ridge(pn).

where p, is the KDE.

@ In general, finding ridges from a given function is hard.

® The Subspace Constraint Mean Shift (SCMS; Ozertem2011)
algorithm allows us to find R, the ridges of the KDE.
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Example for Estimated Density Ridges
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Example for Estimated Density Ridges

Yen-Chi Chen (CMU-Stats) Inference for Shari




Asymptotic Theory and Statistical Inference

@ Can we derive asymptotic theory and make statistical inference for
density ridges?
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@ Can we derive asymptotic theory and make statistical inference for
density ridges?

@ Yes! We can make it by the similar trick to the level sets.
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Asymptotic Theory and Statistical Inference

@ Can we derive asymptotic theory and make statistical inference for
density ridges?

@ Yes! We can make it by the similar trick to the level sets.

Theorem

Under regularity condition,
o Vnh¥+2Haus(R,, R) ~ supscr |B(f)| for certain function space F.

° I/?\,, @ t1_o is an asymptotic valid confidence set for Ry,

o Note: R, =Ridge(ppn) is the ridges for smoothed density py,.
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Confidence Sets
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Example for Confidence Sets
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o
o
o Modal Regression
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Motivating Examples for Modal Regression

=== Local Regression
| w==Modal Regression

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

-0.4

This is a joint work with Ryan J. Tibshirani
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Definition for Modal Regression

We assume x € K, a compact support.

@ Regression function—the conditional mean:

m(x) = B(Y|X = x) = / yp(y|x)dy-
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Definition for Modal Regression

We assume x € K, a compact support.

@ Regression function—the conditional mean:

m(x) = B(Y|X = x) = / yp(y|x)dy-

@ Modal function—the conditional (local) modes:

2
M(x) = Mode(Y1X =) = {1+ £ p(y1x) = 0. 2 ply1x) < 0}.
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Definition for Modal Regression

We assume x € K, a compact support.

@ Regression function—the conditional mean:

m(x) = B(Y|X = x) = / yp(y|x)dy-

@ Modal function—the conditional (local) modes:

2
M(x) = Mode(Y1X =) = {1+ £ p(y1x) = 0. 2 ply1x) < 0}.

o Equivalently,

2
M(X) = {y : (.;i/p(x7y) = 0766}/2P(X7y) < 0}
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Definition for Modal Regression

We assume x € K, a compact support.

@ Regression function—the conditional mean:
m(x) =B(YIX =x) = [ yplylx)dy.
@ Modal function—the conditional (local) modes:
M(x) = Mode(Y1X = x) = { : Lp(y}) = 0,041 < 0
= =x)= - —p(y|x) =0,— .
x ode v g Pl 2PV
o Equivalently,
0 0?
M(X) = {y : 87yp(x7y) = 0767}/2P(X7y) < 0} .

e M(x) is a multi-value function.
@ M is called modal manifolds (curves).
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Conditional Local Modes
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Conditional Local Modes
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Estimator for Modal Regression

@ Our estimator is the plug-in from the KDE:

. d 9%
Ma(x) = ¥ 1 5-Pn(x,¥) = 0, 55 P(x,y) <0p.
dy dy

Yen-Chi Chen (CMU-Stats) Inference for Shards May 27, 2015 41 / 48



Estimator for Modal Regression

@ Our estimator is the plug-in from the KDE:

_ o 0%
Mn(x) = qy: afypn(x,y) =0, afyzp(x,y) <0;.

@ Finding conditional local modes is hard in general.
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Estimator for Modal Regression

@ Our estimator is the plug-in from the KDE:

) = Ly L pniy) = 0,2 Bxoy) < 0
n(x) = g, Pl ) = 0. 55P00y :
@ Finding conditional local modes is hard in general.

e Partial mean shift: a simple algorithm for computing I\7/,,(x), the
plug-in estimator of the KDE, from the data (Einbeck et. al. 2006).
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Modal Regression
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Modal Regression
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Confidence Sets

o Let M) be the modal manifolds for pj.
@ Define a uniform metric A, = sup, Haus(Mn(x), Mp(x)).
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Confidence Sets

o Let M) be the modal manifolds for pj.
@ Define a uniform metric A, = sup, Haus(l\//\l,,(x), Mp(x)).

Theorem

Under regularity condition,
o Vnhd+3A, ~ supsc = |B(f)| for certain function space F.
o The set R
{(x,y) fy € My(X) D t_g,x € K}

is an asymptotic valid confidence set for M.
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Example for Confidence Sets
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Example for Confidence Sets
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Applications for Modal Regression

@ A compact prediction sets.
@ Bandwidth selection via minimizing the size of prediction sets.

Size of 95% Prediction interval

= Modal Regression
= Modal R ; v | == | ocal Regression
=== Modal Regression 2. T oo pS amoaal
Local Regression e, > 95% PS, Local
@ Optimal h o ° . :
E
D=
i
c &
8
=
o
R > 8
s
—
5 ~\ 1
(]
N, | X
(n - e |
3
w 4
3
e 4
3
T T T T T T T T T T T
0.00 0.05 0.10 0.15 0.20 0.0 0.2 0.4 0.6 0.8 10
h X
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Applications for Modal Regression

@ A compact prediction sets.
@ Bandwidth selection via minimizing the size of prediction sets.
@ Regression clustering.
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Outline

o Summary
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Summary

@ We consider three types of Shards: level sets, ridges and conditional
local modes.
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Summary

@ We consider three types of Shards: level sets, ridges and conditional
local modes.

@ We derive asymptotic theory and propose confidence sets.

@ Set estimation — Set inference.
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Thank you!
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Asymptotic Theory
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Asymptotic Theory

© Thus, the projection distance ~ a
stochastic process.
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Asymptotic Theory

© Thus, the projection distance ~ a
stochastic process.
@ This stochastic process ~
empirical process. E
o n
© Haus(D,, Dy) =

sup{projection distance} ~ RN /'\/\ /
sup{Empirical process}. \wg D \/
h

Yen-Chi Chen (CMU-Stats) Inference for Shards May 27, 2015 51 / 48



Error Measurement

@ To measure the errors, we apply a local Hausdorff distance

An(x) = Haus(Mn(x), M(x)).

This is like a pointiwise distance.
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Error Measurement

@ To measure the errors, we apply a local Hausdorff distance

An(x) = Haus(Mn(x), M(x)).

This is like a pointiwise distance.

o Generalized to L-type error:

A, = sup An(x) = sup Haus(M,(x), M(x)).
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Asymptotic Theory

The pointwise errors and L.-type errors obey the common nonparametric
rate:
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Asymptotic Theory

The pointwise errors and L.-type errors obey the common nonparametric
rate:

Theorem

Under regularity condition,

A,,(x>=0(h2)+oﬂ»< ! )

nhd—+3

A,,:O(hz)—i-O]p( 'Og”>.

nhd—+3

Yen-Chi Chen (CMU-Stats)

Inference for Shards May 27, 2015 53 / 48



Asymptotic Theory

The pointwise errors and L.-type errors obey the common nonparametric
rate:

Theorem

Under regularity condition,

A,,(x>=0(h2)+oﬂ»< ! )

nhd—+3

A,,:O(hz)—i-O]p( 'Og”>.

nhd—+3

Rate = Bias + Variance.
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Prediction Sets

e Goal: to construct a set P1_, C RY x R such that

P((X,Y)€Pio)>1—a.
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Prediction Sets

e Goal: to construct a set P1_, C RY x R such that
P((X,Y)€Pi_a)>1—q.

@ A simple approach—pick r;_,, such that

Pla = {(X,y) Ly € Mp(x) B F_a,x € K}.
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Prediction Sets

e Goal: to construct a set P1_, C RY x R such that
P((X,Y)€Pia)>1-a.
@ A simple approach—pick ri_, such that
Pra={(xy) 1y € Ma(x) & Fia,x €K}

@ We can choose 1;_,, by cross-validation.
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Example: Prediction Sets

== Modal Regression
o | = Local Regression
©® === 95% PS, Modal
95% PS, Local
=
2
]
F-
> 24
w
=
e
=
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Bandwidth Selection

@ We can choose smoothing parameter h via minimizing the size of
prediction set.
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Bandwidth Selection

@ We can choose smoothing parameter h via minimizing the size of
prediction set.

@ Namely, we choose

h* = arhgg('l)inVol <731,a) .
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Example: Bandwidth Selection

Size of 95% Prediction interval
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Mixture Inference versus Modal Inference

Mixture-based Mode-based
Density estimation Gaussian mixture Kernel density estimate
Clustering K-means Mean-shift clustering
Regression Mixture regression Modal regression
Algorithm EM Mean-shift
Complexity parameter || K (number of components) | h (smoothing bandwidth)
Type Parametric model Nonparametric model

Table: Comparison for methods based on mixtures versus modes.
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Modal Regression VS Density Ridges
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Mixture Regression

A general mixture model:

K(x

)
plylx) = Y m(x)e(y: pi(x), o7 (x)),
j=1

where each ¢;(y; pj(x), af(x)) is a density function, parametrized by a
mean fj(x) and variance af(x).
Common assumptions:

(MR1) K(x) =K,

(MR2) 7j(x) = m; for each j,
(MR3) pj(x) = B/ x for each j,
(MR4) JJ?(X) = af for each j, and
(MR5) ¢j(x) is Gaussian for each j.
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