Statistical Inference for Shards

Yen-Chi Chen

Christopher R. Genovese Larry Wasserman

Department of Statistics Carnegie Mellon University

May 27, 2015

Outline

- Introduction to Shards
- Density Level Set
- Density Ridges
- Modal Regression
- Summary

Outline

- Introduction to Shards
- Density Level Set
- Density Ridges
- Modal Regression
- Summary

Source: odysseyseaglass.com, nsudino, the RuneScape Wiki

• Shards: small regions with high density.

• Shards: small regions with high density.

• Shards: small regions with high density.

- Shards are sets, whose parameters space has infinite dimensions.
- Making inference for sets is very tough.
- There are many estimation methods but very few of them mentioned statistical inference.

- Shards are sets, whose parameters space has infinite dimensions.
- Making inference for sets is very tough.
- There are many estimation methods but very few of them mentioned statistical inference.
- ullet \rightarrow In this talk, we will see how one can make inference for sets.

Outline

- Introduction to Shards
- Density Level Set
- Density Ridges
- Modal Regression
- Summary

Example: Climate Data

Source: NASA-GISS

Example: Neuro Image

 $Source: \ http://neuroncyto.bii.a-star.edu.sg/$

Density Level Set

- Density Level Set: The collection of points where the density is exactly at certain level.
- Applications: clustering, anomaly detection, classification, two-sample comparison

Formal Definition for Density Level Set

Let p be the probability density function.

Formal Definition for Density Level Set

Let p be the probability density function.

• The λ -level set is

$$D = \{x : p(x) = \lambda\}.$$

Plug-in Estimator

Our estimator: a plug-in from the Kernel Density Estimator (KDE).

Plug-in Estimator

Our estimator: a plug-in from the Kernel Density Estimator (KDE).

• The KDE \widehat{p}_n

$$\widehat{p}_n(x) = \frac{1}{nh^d} \sum_{i=1}^n K\left(\frac{x - X_i}{h}\right).$$

Plug-in Estimator

Our estimator: a plug-in from the Kernel Density Estimator (KDE).

• The KDE \widehat{p}_n

$$\widehat{p}_n(x) = \frac{1}{nh^d} \sum_{i=1}^n K\left(\frac{x - X_i}{h}\right).$$

• The corresponding estimators

$$\widehat{D}_n = \{x : \widehat{p}_n(x) = \lambda\}.$$

Example: Level Set Estimator

Example: Level Set Estimator

Example: Level Set Estimator

Smoothed Level Set

In particular, we focus on making inference for the smoothed version of the density, denoted as p_h :

$$p_h(x) = p \otimes K_h(x) = \mathbb{E}\left(\widehat{p}_n(x)\right), \quad K_h(x) = \frac{1}{h^d}K\left(\frac{x}{h}\right),$$

where \otimes denotes the convolution.

• We define D_h as the level set using p_h .

Smoothed Level Set

In particular, we focus on making inference for the smoothed version of the density, denoted as p_h :

$$p_h(x) = p \otimes K_h(x) = \mathbb{E}\left(\widehat{p}_n(x)\right), \quad K_h(x) = \frac{1}{h^d}K\left(\frac{x}{h}\right),$$

where \otimes denotes the convolution.

- We define D_h as the level set using p_h .
- The advantages for focusing on D_h :
 - Always well-defined.
 - Topologically similar.
 - Asymptotically the same.
 - Fast rate of convergence.

Smoothed Level Set

In particular, we focus on making inference for the smoothed version of the density, denoted as p_h :

$$p_h(x) = p \otimes K_h(x) = \mathbb{E}\left(\widehat{p}_n(x)\right), \quad K_h(x) = \frac{1}{h^d}K\left(\frac{x}{h}\right),$$

where \otimes denotes the convolution.

- We define D_h as the level set using p_h .
- The advantages for focusing on D_h :
 - Always well-defined.
 - Topologically similar.
 - Asymptotically the same.
 - Fast rate of convergence.
- One can always slightly undersmooth so that inference for D_h is asymptotically valid for D.

Useful Metric: Hausdorff Distance

We introduce a useful metric—the Hausdorff distance for sets:

$$\mathsf{Haus}(A,B) = \max \left\{ \sup_{x \in A} d(x,B), \sup_{x \in B} d(x,A) \right\},\,$$

where $d(x, A) = \inf_{y \in A} ||x - y||$ is the projection distance.

Useful Metric: Hausdorff Distance

We introduce a useful metric-the Hausdorff distance for sets:

$$\mathsf{Haus}(A,B) = \max \left\{ \sup_{x \in A} d(x,B), \sup_{x \in B} d(x,A) \right\},\$$

where $d(x, A) = \inf_{y \in A} ||x - y||$ is the projection distance.

- \bullet Haus is an \mathcal{L}_{∞} norm for sets.
- Consistency: Haus $(\widehat{D}_n, D_h) = o_{\mathbb{P}}(1)$.

Useful Metric: Hausdorff Distance

We introduce a useful metric-the Hausdorff distance for sets:

$$\mathsf{Haus}(A,B) = \max \left\{ \sup_{x \in A} d(x,B), \sup_{x \in B} d(x,A) \right\},\$$

where $d(x, A) = \inf_{y \in A} ||x - y||$ is the projection distance.

- Haus is an \mathcal{L}_{∞} norm for sets.
- Consistency: Haus $(\widehat{D}_n, D_h) = o_{\mathbb{P}}(1)$.
- Useful property:

$$A \subset B \oplus \mathsf{Haus}(A, B), \quad B \subset A \oplus \mathsf{Haus}(A, B),$$

where $A \oplus r = \{x : d(x, A) \le r\}$.

Hausdorff Distance and Confidence Sets

• Hausdorff distance can be applied to construct confidence sets.

Hausdorff Distance and Confidence Sets

- Hausdorff distance can be applied to construct confidence sets.
- Let F_n be the CDF for Haus (\widehat{D}_n, D_h) and $t_{1-\alpha} = F_n^{-1}(1-\alpha)$ be the $1-\alpha$ quantile.

Hausdorff Distance and Confidence Sets

- Hausdorff distance can be applied to construct confidence sets.
- Let F_n be the CDF for Haus (\widehat{D}_n, D_h) and $t_{1-\alpha} = F_n^{-1}(1-\alpha)$ be the $1-\alpha$ quantile.
- It can be shown that

$$\mathbb{P}\left(D_h\subset\widehat{D}_n\oplus t_{1-\alpha}\right)\geq 1-\alpha.$$

→ This follows from the property

$$A \subset B \oplus \mathsf{Haus}(A, B), \quad B \subset A \oplus \mathsf{Haus}(A, B).$$

Hausdorff Distance and Confidence Sets

- Hausdorff distance can be applied to construct confidence sets.
- Let F_n be the CDF for Haus (\widehat{D}_n, D_h) and $t_{1-\alpha} = F_n^{-1}(1-\alpha)$ be the $1-\alpha$ quantile.
- It can be shown that

$$\mathbb{P}\left(D_h\subset\widehat{D}_n\oplus t_{1-\alpha}\right)\geq 1-\alpha.$$

 \rightarrow This follows from the property

$$A \subset B \oplus \mathsf{Haus}(A, B), \quad B \subset A \oplus \mathsf{Haus}(A, B).$$

• We need to find the distribution F_n .

Asymptotic Theory

It can be shown that

$$\sqrt{nh^d}$$
 Haus $(\widehat{D}_n, D_h) \approx \sup \{\text{Empirical process}\} \approx \sup \{\text{Gaussian process}\}.$

 \rightarrow the last approximation follows from [Chernozhukov et. al. 2014].

Asymptotic Theory

It can be shown that

$$\sqrt{nh^d}$$
 Haus $(\widehat{D}_n, D_h) \approx \sup \{\text{Empirical process}\} \approx \sup \{\text{Gaussian process}\}.$

ightarrow the last approximation follows from [Chernozhukov et. al. 2014].

Theorem

Under regularity condition, there exists a tight Gaussian process $\mathbb B$ defined on a certain function space $\mathcal F$ such that

$$\sup_t \left| \mathbb{P}\left(\sqrt{nh^d} \mathsf{Haus}(\widehat{D}_n, D_h) < t \right) - \mathbb{P}\left(\sup_{f \in \mathcal{F}} |\mathbb{B}(f)| < t \right) \right| = O\left(\left(\frac{\log^7 n}{nh^d} \right)^{1/8} \right).$$

The Bootstrap

- Good news: we have the asymptotic behavior.
- Bad news: the asymptotic behavior is complicated.

The Bootstrap

- Good news: we have the asymptotic behavior.
- Bad news: the asymptotic behavior is complicated.
- A solution: the bootstrap.

The Bootstrap Consistency

- Bootstrap sample \Longrightarrow bootstrap level set \widehat{D}_n^* .
- Compute Haus $(\widehat{D}_n^*, \widehat{D}_n)$ to get a CDF estimator \widehat{F}_n .
- Choose $\hat{t}_{1-\alpha}$ be the $1-\alpha$ quantile for \hat{F}_n .

The Bootstrap Consistency

- Bootstrap sample \Longrightarrow bootstrap level set \widehat{D}_n^* .
- Compute Haus $(\widehat{D}_n^*, \widehat{D}_n)$ to get a CDF estimator \widehat{F}_n .
- Choose $\hat{t}_{1-\alpha}$ be the $1-\alpha$ quantile for \hat{F}_n .
- It can be shown that

 $\sqrt{nh^d}\mathsf{Haus}(\widehat{D}_n^*,\widehat{D}_n) \approx \sup{\{\mathsf{Gaussian process}\}} \approx \sqrt{nh^d}\mathsf{Haus}(\widehat{D}_n,D).$

The Bootstrap Consistency

- Bootstrap sample \Longrightarrow bootstrap level set \widehat{D}_n^* .
- Compute $\operatorname{Haus}(\widehat{D}_n^*, \widehat{D}_n)$ to get a CDF estimator \widehat{F}_n .
- Choose $\hat{t}_{1-\alpha}$ be the $1-\alpha$ quantile for \hat{F}_n .
- It can be shown that

$$\sqrt{nh^d}\mathsf{Haus}(\widehat{D}_n^*,\widehat{D}_n) \approx \sup{\{\mathsf{Gaussian process}\}} \approx \sqrt{nh^d}\mathsf{Haus}(\widehat{D}_n,D).$$

Theorem

Under regularity condition,

$$\mathbb{P}\left(D_h \subset \widehat{D}_n \oplus \widehat{t}_{1-\alpha}\right) = 1 - \alpha + O\left(\left(\frac{\log^7 n}{nh^d}\right)^{1/8}\right).$$

Example: Confidence Sets

Example: Confidence Sets

1 Blue: confidence sets for D_h

- **1** Blue: confidence sets for D_h
- 2 Yellow: every point above λ

- **1** Blue: confidence sets for D_h
- 2 Yellow: every point above λ
- **3** Green: every point below λ

- **1** Blue: confidence sets for D_h
- 2 Yellow: every point above λ
- **3** Green: every point below λ
- Yellow+Blue: confidence sets for upper level set

- **1** Blue: confidence sets for D_h
- 2 Yellow: every point above λ
- **3** Green: every point below λ
- Yellow+Blue: confidence sets for upper level set
- Green+Blue: confidence sets for lower level set

Outline

- Introduction to Shards
- Density Level Set
- Density Ridges
- Modal Regression
- Summary

Example: Cosmology

Example: Neuroscience

Image courtesy Eswar P. R. Iyer.

Density Ridges

- In the above examples, we see curve-like structure with high density.
- This structure can be captured by the *density ridges*.

Density Ridges

- In the above examples, we see curve-like structure with high density.
- This structure can be captured by the density ridges.

Data: the Sloan Digital Sky Survey.

Density Ridges

- In the above examples, we see curve-like structure with high density.
- This structure can be captured by the density ridges.

Data: the Sloan Digital Sky Survey.

Example: Ridges in Mountains

Credit: Google

Example: Ridges in Smooth Functions

Example: Ridges in Smooth Functions

Ridges: Local Modes in Subspace

 A generalized local mode in a specific 'subspace'.

Ridges: Local Modes in Subspace

 A generalized local mode in a specific 'subspace'.

Ridges: Local Modes in Subspace

 A generalized local mode in a specific 'subspace'.

• p(x): a density function.

- p(x): a density function.
- $(\lambda_j(x), v_j(x))$: jth eigenvalue/vector of $H(x) = \nabla \nabla p(x)$.

- p(x): a density function.
- $(\lambda_j(x), v_j(x))$: jth eigenvalue/vector of $H(x) = \nabla \nabla p(x)$.
- $V(x) = [v_2(x), \dots, v_d(x)]$: matrix of 2nd to last eigenvectors

- p(x): a density function.
- $(\lambda_j(x), v_j(x))$: jth eigenvalue/vector of $H(x) = \nabla \nabla p(x)$.
- $V(x) = [v_2(x), \dots, v_d(x)]$: matrix of 2nd to last eigenvectors
- $V(x)V(x)^T$: a projection

- p(x): a density function.
- $(\lambda_j(x), v_j(x))$: jth eigenvalue/vector of $H(x) = \nabla \nabla p(x)$.
- $V(x) = [v_2(x), \dots, v_d(x)]$: matrix of 2nd to last eigenvectors
- $V(x)V(x)^T$: a projection
- Ridges:

$$R = \text{Ridge}(p) = \{x : V(x)V(x)^T \nabla p(x) = 0, \lambda_2(x) < 0\},\$$

- p(x): a density function.
- $(\lambda_j(x), v_j(x))$: jth eigenvalue/vector of $H(x) = \nabla \nabla p(x)$.
- $V(x) = [v_2(x), \dots, v_d(x)]$: matrix of 2nd to last eigenvectors
- $V(x)V(x)^T$: a projection
- Ridges:

$$R = \text{Ridge}(p) = \{x : V(x)V(x)^T \nabla p(x) = 0, \lambda_2(x) < 0\},\$$

Local modes:

$$Mode(p) = \{x : \nabla p(x) = 0, \lambda_1(x) < 0\}.$$

Estimator and Algorithm

We use the plug-in estimate:

$$\widehat{R}_n = \mathsf{Ridge}(\widehat{p}_n),$$

where \widehat{p}_n is the KDE.

Estimator and Algorithm

We use the plug-in estimate:

$$\widehat{R}_n = \mathsf{Ridge}(\widehat{p}_n),$$

where \widehat{p}_n is the KDE.

• In general, finding ridges from a given function is hard.

Estimator and Algorithm

We use the plug-in estimate:

$$\widehat{R}_n = \mathsf{Ridge}(\widehat{p}_n),$$

where \widehat{p}_n is the KDE.

- In general, finding ridges from a given function is hard.
- The Subspace Constraint Mean Shift (SCMS; Ozertem2011) algorithm allows us to find \widehat{R}_n , the ridges of the KDE.

Asymptotic Theory and Statistical Inference

 Can we derive asymptotic theory and make statistical inference for density ridges?

Asymptotic Theory and Statistical Inference

- Can we derive asymptotic theory and make statistical inference for density ridges?
- Yes! We can make it by the similar trick to the level sets.

Asymptotic Theory and Statistical Inference

- Can we derive asymptotic theory and make statistical inference for density ridges?
- Yes! We can make it by the similar trick to the level sets.

Theorem

Under regularity condition,

- $\sqrt{nh^{d+2}}$ Haus $(\widehat{R}_n, R_h) \approx \sup_{f \in \mathcal{F}} |\mathbb{B}(f)|$ for certain function space \mathcal{F} .
- $\widehat{R}_n \oplus \widehat{t}_{1-\alpha}$ is an asymptotic valid confidence set for R_h .
- Note: $R_h = Ridge(p_h)$ is the ridges for smoothed density p_h .

Example for Confidence Sets

Example for Confidence Sets

Outline

- Introduction to Shards
- Density Level Set
- Density Ridges
- Modal Regression
- Summary

Motivating Examples for Modal Regression

This is a joint work with Ryan J. Tibshirani

We assume $x \in \mathbb{K}$, a compact support.

• Regression function—the conditional **mean**:

$$m(x) = \mathbb{E}(Y|X = x) = \int yp(y|x)dy.$$

We assume $x \in \mathbb{K}$, a compact support.

• Regression function-the conditional mean:

$$m(x) = \mathbb{E}(Y|X=x) = \int yp(y|x)dy.$$

Modal function—the conditional (local) modes:

$$M(x) = \operatorname{Mode}(Y|X = x) = \left\{ y : \frac{d}{dy} p(y|x) = 0, \frac{d^2}{dy^2} p(y|x) < 0 \right\}.$$

We assume $x \in \mathbb{K}$, a compact support.

• Regression function-the conditional mean:

$$m(x) = \mathbb{E}(Y|X=x) = \int yp(y|x)dy.$$

Modal function—the conditional (local) modes:

$$M(x) = \operatorname{Mode}(Y|X = x) = \left\{ y : \frac{d}{dy} p(y|x) = 0, \frac{d^2}{dy^2} p(y|x) < 0 \right\}.$$

Equivalently,

$$M(x) = \left\{ y : \frac{\partial}{\partial y} p(x, y) = 0, \frac{\partial^2}{\partial y^2} p(x, y) < 0 \right\}.$$

We assume $x \in \mathbb{K}$, a compact support.

• Regression function-the conditional mean:

$$m(x) = \mathbb{E}(Y|X=x) = \int yp(y|x)dy.$$

Modal function—the conditional (local) modes:

$$M(x) = \text{Mode}(Y|X = x) = \left\{ y : \frac{d}{dy} p(y|x) = 0, \frac{d^2}{dy^2} p(y|x) < 0 \right\}.$$

Equivalently,

$$M(x) = \left\{ y : \frac{\partial}{\partial y} p(x, y) = 0, \frac{\partial^2}{\partial y^2} p(x, y) < 0 \right\}.$$

- M(x) is a multi-value function.
- M is called modal manifolds (curves).

Estimator for Modal Regression

• Our estimator is the plug-in from the KDE:

$$\widehat{M}_n(x) = \left\{ y : \frac{\partial}{\partial y} \widehat{p}_n(x, y) = 0, \frac{\partial^2}{\partial y^2} \widehat{p}(x, y) < 0 \right\}.$$

Estimator for Modal Regression

• Our estimator is the plug-in from the KDE:

$$\widehat{M}_n(x) = \left\{ y : \frac{\partial}{\partial y} \widehat{p}_n(x, y) = 0, \frac{\partial^2}{\partial y^2} \widehat{p}(x, y) < 0 \right\}.$$

• Finding conditional local modes is hard in general.

Estimator for Modal Regression

• Our estimator is the plug-in from the KDE:

$$\widehat{M}_n(x) = \left\{ y : \frac{\partial}{\partial y} \widehat{p}_n(x, y) = 0, \frac{\partial^2}{\partial y^2} \widehat{p}(x, y) < 0 \right\}.$$

- Finding conditional local modes is hard in general.
- Partial mean shift: a simple algorithm for computing $\widehat{M}_n(x)$, the plug-in estimator of the KDE, from the data (Einbeck et. al. 2006).

Example for Modal Regression

Example for Modal Regression

Confidence Sets

- Let M_h be the modal manifolds for p_h .
- Define a uniform metric $\Delta_n = \sup_x \operatorname{Haus}(\widehat{M}_n(x), M_h(x))$.

Confidence Sets

- Let M_h be the modal manifolds for p_h .
- Define a uniform metric $\Delta_n = \sup_x \operatorname{Haus}(\widehat{M}_n(x), M_h(x))$.

Theorem

Under regularity condition,

- $\sqrt{nh^{d+3}}\Delta_n \approx \sup_{f \in \mathcal{F}} |\mathbb{B}(f)|$ for certain function space \mathcal{F} .
- The set

$$\left\{ (x,y) : y \in \widehat{M}_n(x) \oplus \widehat{t}_{1-\alpha}, x \in \mathbb{K} \right\}$$

is an asymptotic valid confidence set for M_h .

Example for Confidence Sets

Example for Confidence Sets

Applications for Modal Regression

A compact prediction sets.

Applications for Modal Regression

- A compact prediction sets.
- Bandwidth selection via minimizing the size of prediction sets.

Applications for Modal Regression

- A compact prediction sets.
- Bandwidth selection via minimizing the size of prediction sets.
- Regression clustering.

Outline

- Introduction to Shards
- Density Level Set
- Density Ridges
- Modal Regression
- Summary

Summary

• We consider three types of Shards: level sets, ridges and conditional local modes.

Summary

- We consider three types of Shards: level sets, ridges and conditional local modes.
- We derive asymptotic theory and propose confidence sets.

Summary

- We consider three types of Shards: level sets, ridges and conditional local modes.
- We derive asymptotic theory and propose confidence sets.
- Set estimation → Set inference.

Thank you!

reference

- Chen, Yen-Chi, Christopher R. Genovese, and Larry Wasserman. "Density Level Sets: Asymptotics, Inference, and Visualization." Submitted to the Journal of American Statistical Association. arXiv preprint arXiv:1504.05438 (2015).
- Chen, Yen-Chi, Christopher R. Genovese, and Larry Wasserman. "Asymptotic theory for density ridges." To appear in the Annals of Statistics. arXiv preprint arXiv:1406.5663 (2014).
- Chen, Yen-Chi, Christopher R. Genovese, Ryan J. Tibshirani, and Larry Wasserman. "Nonparametric Modal Regression." Under review of the Annals of Statistics. arXiv preprint arXiv:1412.1716 (2014).
- Chernozhukov, Victor, Denis Chetverikov, and Kengo Kato. "Gaussian approximation of suprema of empirical processes." The Annals of Statistics 42, no. 4 (2014): 1564-1597.
- Chernozhukov, Victor, Denis Chetverikov, and Kengo Kato. "Anti-concentration and honest, adaptive confidence bands." The Annals of Statistics 42, no. 5 (2014): 1787-1818.
- 6. Einbeck, Jochen, and Gerhard Tutz. "Modelling beyond regression functions: an application of multimodal regression to speedflow data." Journal of the Royal Statistical Society: Series C (Applied Statistics) 55, no. 4 (2006): 461-475.
- 7. Genovese, Christopher R., et al. "Nonparametric ridge estimation." The Annals of Statistics 42.4 (2014): 1511-1545.
- Ozertem, Umut, and Deniz Erdogmus. "Locally defined principal curves and surfaces." The Journal of Machine Learning Research 12 (2011): 1249-1286.

• Thus, the projection distance \approx a stochastic process.

- Thus, the projection distance ≈ a stochastic process.
- 2 This stochastic process \approx empirical process.

- Thus, the projection distance ≈ a stochastic process.
- ② This stochastic process ≈ empirical process.
- Haus $(\widehat{D}_n, D_h) =$ sup{projection distance} \approx sup{Empirical process}.

Error Measurement

• To measure the errors, we apply a local Hausdorff distance

$$\Delta_n(x) = \operatorname{Haus}(\widehat{M}_n(x), M(x)).$$

This is like a pointiwise distance.

Error Measurement

• To measure the errors, we apply a local Hausdorff distance

$$\Delta_n(x) = \operatorname{Haus}(\widehat{M}_n(x), M(x)).$$

This is like a pointiwise distance.

• Generalized to \mathcal{L}_{∞} -type error:

$$\Delta_n = \sup_x \Delta_n(x) = \sup_x \mathsf{Haus}(\widehat{M}_n(x), M(x)).$$

The pointwise errors and \mathcal{L}_{∞} -type errors obey the common nonparametric rate:

The pointwise errors and \mathcal{L}_{∞} -type errors obey the common nonparametric rate:

Theorem

Under regularity condition,

$$\Delta_n(x) = O(h^2) + O_{\mathbb{P}}\left(\sqrt{\frac{1}{nh^{d+3}}}\right)$$
$$\Delta_n = O(h^2) + O_{\mathbb{P}}\left(\sqrt{\frac{\log n}{nh^{d+3}}}\right).$$

The pointwise errors and \mathcal{L}_{∞} -type errors obey the common nonparametric rate:

Theorem

Under regularity condition,

$$\Delta_n(x) = O(h^2) + O_{\mathbb{P}}\left(\sqrt{\frac{1}{nh^{d+3}}}\right)$$
$$\Delta_n = O(h^2) + O_{\mathbb{P}}\left(\sqrt{\frac{\log n}{nh^{d+3}}}\right).$$

Rate = Bias + Variance.

Prediction Sets

ullet Goal: to construct a set $\mathcal{P}_{1-\alpha}\subset\mathbb{R}^d\times\mathbb{R}$ such that

$$\mathbb{P}\left((X,Y)\in\mathcal{P}_{1-\alpha}\right)\geq 1-\alpha.$$

Prediction Sets

• Goal: to construct a set $\mathcal{P}_{1-\alpha} \subset \mathbb{R}^d \times \mathbb{R}$ such that

$$\mathbb{P}((X,Y)\in\mathcal{P}_{1-\alpha})\geq 1-\alpha.$$

• A simple approach–pick $\hat{r}_{1-\alpha}$ such that

$$\widehat{\mathcal{P}}_{1-\alpha} = \left\{ (x,y) : y \in \widehat{M}_n(x) \oplus \widehat{r}_{1-\alpha}, x \in \mathbb{K} \right\}.$$

Prediction Sets

ullet Goal: to construct a set $\mathcal{P}_{1-\alpha}\subset\mathbb{R}^d\times\mathbb{R}$ such that

$$\mathbb{P}((X,Y)\in\mathcal{P}_{1-\alpha})\geq 1-\alpha.$$

• A simple approach–pick $\hat{r}_{1-\alpha}$ such that

$$\widehat{\mathcal{P}}_{1-\alpha} = \left\{ (x,y) : y \in \widehat{M}_n(x) \oplus \widehat{r}_{1-\alpha}, x \in \mathbb{K} \right\}.$$

• We can choose $\hat{r}_{1-\alpha}$ by cross-validation.

Example: Prediction Sets

Example: Prediction Sets

Bandwidth Selection

• We can choose smoothing parameter *h* via minimizing the size of prediction set.

Bandwidth Selection

- We can choose smoothing parameter *h* via minimizing the size of prediction set.
- Namely, we choose

$$h^* = \underset{h>0}{\operatorname{argmin}} \operatorname{Vol}\left(\widehat{\mathcal{P}}_{1-lpha}\right).$$

Example: Bandwidth Selection

Clustering-Exploring Hidden Structure

Mixture Inference versus Modal Inference

	Mixture-based	Mode-based
Density estimation	Gaussian mixture	Kernel density estimate
Clustering	K-means	Mean-shift clustering
Regression	Mixture regression	Modal regression
Algorithm	EM	Mean-shift
Complexity parameter	K (number of components)	h (smoothing bandwidth)
Туре	Parametric model	Nonparametric model

Table: Comparison for methods based on mixtures versus modes.

Modal Regression VS Density Ridges

Mixture Regression

A general mixture model:

$$p(y|x) = \sum_{j=1}^{K(x)} \pi_j(x) \phi_j(y; \mu_j(x), \sigma_j^2(x)),$$

where each $\phi_j(y; \mu_j(x), \sigma_j^2(x))$ is a density function, parametrized by a mean $\mu_j(x)$ and variance $\sigma_j^2(x)$.

(MR1)
$$K(x) = K$$
,

(MR2)
$$\pi_i(x) = \pi_i$$
 for each j ,

(MR3)
$$\mu_j(x) = \beta_i^T x$$
 for each j ,

(MR4)
$$\sigma_i^2(x) = \sigma_i^2$$
 for each j, and

(MR5)
$$\phi_i(x)$$
 is Gaussian for each j .