
Tutorial on the R package TDA

Jisu Kim
Brittany T. Fasy, Jisu Kim, Fabrizio Lecci, Clément Maria, Vincent Rouvreau

Abstract

I present a short tutorial and introduction to using the R package TDA, which provides
tools for Topological Data Analysis. Given data, the sailent topological features of underly-
ing space can be quantified with persistent homology. TDA package provides a function for
the persistent homology of the Rips filtration, and a function for the persistent homology
of sublevel sets (or superlevel sets) of arbitrary functions evaluated over a grid of points.
Some common choice of functions for the latter case, such as the distance function, the
distance to a measure, the kNN density estimator, the kernel density estimator, and the
kernel distance, are implemented in the TDA package. The R package TDA also provides a
function for computing the confidence band that determines significance of the features in
the resulting persistence diagrams.

Keywords: Topological Data Analysis, Persistent Homology.

1. Introduction

R(http://cran.r-project.org/) is a programming language for statistical computing and
graphics.

R has several good properties: R has many packages for statistical computing. Also, R is easy
to make (interactive) plots. R is a script language, and it is easy to use. But, R is slow. C or
C++ stands on the opposite end: C or C++ also has many packages(or libraries). But, C or
C++ is difficult to make plots. C or C++ is a compiler language, and is difficult to use. But, C
or C++ is fast. In short, R has short development time but long execution time, and C or C++
has long development time but short execution time.

Several libraries are developed for Topological Data Analysis: for example, GUDHI(Maria
2014)(https://project.inria.fr/gudhi/software/), Dionysus(Morozov 2007)(http://www.
mrzv.org/software/dionysus/), and PHAT(Bauer, Kerber, and Reininghaus 2012)(https:
//code.google.com/p/phat/). They are all written in C++, since Topological Data Analysis
is computationally heavy and R is not fast enough.

R package TDA(http://cran.r-project.org/web/packages/TDA/index.html) bridges be-
tween C++ libraries(GUDHI, Dionysus, PHAT) and R. TDA package provides an R interface
for the efficient algorithms of the C++ libraries GUDHI, Dionysus and PHAT. So by using
TDA package, short development time and short execution time can be both achieved.

R package TDA provides tools for Topological Data Analysis. You can compute several different
things with TDA package: you can compute common distance functions and density estimators,
the persistent homology of the Rips filtration, the persistent homology of sublevel sets of a
function over a grid, the confidence band for the persistence diagram, and the cluster density
trees for density clustering.

http://cran.r-project.org/
https://project.inria.fr/gudhi/software/
http://www.mrzv.org/software/dionysus/
http://www.mrzv.org/software/dionysus/
https://code.google.com/p/phat/
https://code.google.com/p/phat/
http://cran.r-project.org/web/packages/TDA/index.html

2 Tutorial on the R package TDA

2. Setting up

Obviously, you should download R first. R of version at least 3.1.0 is recommended:

http://cran.r-project.org/bin/windows/base/ (for Windows)

http://cran.r-project.org/bin/macosx/ (for (Mac) OS X)

R is part of many Linux distributions, so you should check with your Linux package management
system.

You can use whatever IDE that you would like to use(Rstudio, Eclipse, Emacs, Vim...). R itself
also provides basic GUI or CUI. I personally use Rstudio:

http://www.rstudio.com/products/rstudio/download/

Before installing R package TDA, Four packages are needed to be installed: parallel, FNN,
igraph, and scales. parallel is included when you install R, so you need to install FNN, igraph,
and scales by yourself. You can install them by following code (or pushing ’Install R packages’
button if you use Rstudio).

##

installing required packages

##

if (!require(package = "FNN")) {

install.packages(pkgs = "FNN")

}

if (!require(package = "igraph")) {

install.packages(pkgs = "igraph")

}

if (!require(package = "scales")) {

install.packages(pkgs = "scales")

}

After that, you can install R package TDA as in the following code (or pushing ’Install R
packages’ button if you use Rstudio).

##

installing R package TDA

##

if (!require(package = "TDA")) {

install.packages(pkgs = "TDA")

}

Once installation is done, R package TDA should be loaded as in the following code, before
using the package functions.

##

loading R package TDA

##

library(package = "TDA")

http://cran.r-project.org/bin/windows/base/
http://cran.r-project.org/bin/macosx/
http://www.rstudio.com/products/rstudio/download/

Jisu Kim 3

3. Sample on manifolds, Distance Functions, and Density Estimators

3.1. Uniform Sample on manifolds

A set of n points X = {x1, . . . , xn} ⊂ Rd has been sampled from some distribution P .

• n sample from the uniform distribution on the circle in R2 with radius r.

##

uniform sample on the circle

##

circleSample <- circleUnif(n = 400, r = 1)

plot(circleSample)

●

●

●

●●

●
●

●
●

● ●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●
● ●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●●
●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●● ●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

● ●

●●

●
●

●

●
●

● ●●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●
●

●

●

●

●

−1.0 0.0 0.5 1.0

−
1.

0
0.

0
1.

0

x1

x2

• n sample from the uniform distribution on the sphere Sd in Rd+1 with radius r.

##

uniform sample on the sphere

##

sphereSample <- sphereUnif(n = 10000, d = 2, r = 1)

if (!require(package = "rgl")) {

install.packages(pkgs = "rgl")

}

library(rgl)

plot3d(sphereSample)

• n sample from the uniform distribution on the torus in R3 with small radius a and large
radius b.

##

uniform sample on the torus

##

4 Tutorial on the R package TDA

torusSample <- torusUnif(n = 10000, a = 1.8, c = 5)

if (!require(package = "rgl")) {

install.packages(pkgs = "rgl")

}

library(rgl)

plot3d(torusSample)

3.2. Distance Functions, and Density Estimators

We compute distance functions and density estimators over a grid of points. Suppose a set of
points X = {x1, . . . , xn} ⊂ Rd has been sampled from some distribution P . The following code
generates a sample of 400 points from the unit circle and constructs a grid of points over which
we will evaluate the functions.

##

uniform sample on the circle, and grid of points

##

X <- circleUnif(n = 400, r = 1)

Xlim <- c(-1.6, 1.6)

Ylim <- c(-1.7, 1.7)

by <- 0.065

Xseq <- seq(from = Xlim[1], to = Xlim[2], by = by)

Yseq <- seq(from = Ylim[1], to = Ylim[2], by = by)

Grid <- expand.grid(Xseq, Yseq)

• The distance function is defined for each y ∈ Rd as ∆(y) = infx∈X ‖x− y‖2.

##

distance function

##

distance <- distFct(X = X, Grid = Grid)

par(mfrow = c(1,2))

plot(X, xlab = "", ylab = "", main = "Sample X")

persp(x = Xseq, y = Yseq,

z = matrix(distance, nrow = length(Xseq), ncol = length(Yseq)),

xlab = "", ylab = "", zlab = "", theta = -20, phi = 35, scale = FALSE,

expand = 3, col = "red", border = NA, ltheta = 50, shade = 0.5,

main = "Distance Function")

Jisu Kim 5

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●●

●

●

●

●

●
●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●
●

●

●●

●

●●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●
●●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●
●●

●

●

●

●●

●

●

●
●●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

−1.0 0.0 0.5 1.0

−
1.

0
0.

0
1.

0

Sample X Distance Function

• Given a probability measure P , the distance to measure (DTM) is defined for each y ∈ Rd
as

dm0(y) =

√
1

m0

∫ m0

0
(G−1y (u))2du,

where Gy(t) = P (‖X − y‖ ≤ t) and 0 < m0 < 1 is a smoothing parameter. The DTM
can be seen as a smoothed version of the distance function. For more details see Chazal,
Cohen-Steiner, and Mérigot (2011).

Given X = {x1, . . . , xn}, the empirical version of the DTM is

d̂m0(y) =

√√√√1

k

∑
xi∈Nk(y)

‖xi − y‖2,

where k = dm0ne and Nk(y) is the set containing the k nearest neighbors of y among
x1, . . . , xn.

##

distance to measure

##

m0 <- 0.1

DTM <- dtm(X = X, Grid = Grid, m0 = m0)

par(mfrow = c(1,2))

plot(X, xlab = "", ylab = "", main = "Sample X")

persp(x = Xseq, y = Yseq,

z = matrix(DTM, nrow = length(Xseq), ncol = length(Yseq)),

xlab = "", ylab = "", zlab = "", theta = -20, phi = 35, scale = FALSE,

expand = 3, col = "red", border = NA, ltheta = 50, shade = 0.5,

main = "DTM")

6 Tutorial on the R package TDA

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●●

●

●

●

●

●
●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●
●

●

●●

●

●●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●
●●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●
●●

●

●

●

●●

●

●

●
●●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

−1.0 0.0 0.5 1.0

−
1.

0
0.

0
1.

0

Sample X DTM

• The k Nearest Neighbor density estimator, for each y ∈ Rd, is defined as

δ̂k(y) =
k

n vd r
d
k(y)

,

where vn is the volume of the Euclidean d dimensional unit ball and rdk(x) is the Euclidean
distance form point x to its kth closest neighbor among the points of X.

##

k nearest neighbor density estimator

##

k <- 60

kNN <- knnDE(X = X, Grid = Grid, k = k)

par(mfrow = c(1,2))

plot(X, xlab = "", ylab = "", main = "Sample X")

persp(x = Xseq, y = Yseq,

z = matrix(kNN, nrow = length(Xseq), ncol = length(Yseq)),

xlab = "", ylab = "", zlab = "", theta = -20, phi = 35, scale = FALSE,

expand = 3, col = "red", border = NA, ltheta = 50, shade = 0.5,

main = "kNN")

Jisu Kim 7

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●●

●

●

●

●

●
●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●
●

●

●●

●

●●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●
●●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●
●●

●

●

●

●●

●

●

●
●●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

−1.0 0.0 0.5 1.0

−
1.

0
0.

0
1.

0

Sample X kNN

• The Gaussian Kernel Density Estimator (KDE), for each y ∈ Rd, is defined as

p̂h(y) =
1

n(
√

2πh)d

n∑
i=1

exp

(
−‖y − xi‖22

2h2

)
.

where h is a smoothing parameter.

##

kernel density estimator

##

h <- 0.3

KDE <- kde(X = X, Grid = Grid, h = h)

par(mfrow = c(1,2))

plot(X, xlab = "", ylab = "", main = "Sample X")

persp(x = Xseq, y = Yseq,

z = matrix(kNN, nrow = length(Xseq), ncol = length(Yseq)),

xlab = "", ylab = "", zlab = "", theta = -20, phi = 35, scale = FALSE,

expand = 3, col = "red", border = NA, ltheta = 50, shade = 0.5,

main = "KDE")

8 Tutorial on the R package TDA

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●●

●

●

●

●

●
●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●
●

●

●●

●

●●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●
●●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●
●●

●

●

●

●●

●

●

●
●●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

−1.0 0.0 0.5 1.0

−
1.

0
0.

0
1.

0

Sample X KDE

• The Kernel distance estimator, for each y ∈ Rd, is defined as

κ̂h(y) =

√√√√ 1

n2

n∑
i=1

n∑
j=1

Kh(xi, xj) +Kh(y, y)− 2
1

n

n∑
i=1

Kh(y, xi),

where Kh(x, y) = exp
(
−‖x−y‖22

2h2

)
is the Gaussian Kernel with smoothing parameter h.

##

kernel distance

##

h <- 0.3

Kdist <- kernelDist(X = X, Grid = Grid, h = h)

par(mfrow = c(1,2))

plot(X, xlab = "", ylab = "", main = "Sample X")

persp(x = Xseq, y = Yseq,

z = matrix(Kdist, nrow = length(Xseq), ncol = length(Yseq)),

xlab = "", ylab = "", zlab = "", theta = -20, phi = 35, scale = FALSE,

expand = 3, col = "red", border = NA, ltheta = 50, shade = 0.5,

main = "Kernel Distance")

Jisu Kim 9

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●●

●

●

●

●

●
●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●
●

●

●●

●

●●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●
●●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●
●●

●

●

●

●●

●

●

●
●●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

−1.0 0.0 0.5 1.0

−
1.

0
0.

0
1.

0

Sample X Kernel Distance

3.3. Bootstrap Confidence Bands

(1 − α) confidence band can be computed for a function using the bootstrap algorithm, which
we briefly describe using the kernel density estimator:

1. Given a sample X = {x1, . . . , xn}, compute the kernel density estimator p̂h;

2. Draw X∗ = {x∗1, . . . , x∗n} from X = {x1, . . . , xn} (with replacement), and compute θ∗ =√
n‖p̂∗h(x)− p̂h(x)‖∞, where p̂∗h is the density estimator computed using X∗;

3. Repeat the previous step B times to obtain θ∗1, . . . , θ
∗
B;

4. Compute qα = inf
{
q : 1

B

∑B
j=1 I(θ∗j ≥ q) ≤ α

}
;

5. The (1− α) confidence band for E[p̂h] is
[
p̂h − qα√

n
, p̂h + qα√

n

]
.

Fasy, Lecci, Rinaldo, Wasserman, Balakrishnan, and Singh (2014) and Chazal, Fasy, Lecci,
Michel, Rinaldo, and Wasserman (2014a) prove the validity of the bootstrap algorithm for
kernel density estimators, distance to measure, and kernel distance, and use it in the framework
of persistent homology.

bootstrapBand computes (1 − α) bootstrap confidence band, with the option of parallelizing
the algorithm (parallel=TRUE). The following code computes a 90% confidence band for E[p̂h].

##

bootstrap confidence band

##

band <- bootstrapBand(X = X, FUN = kde, Grid = Grid, B = 100,

parallel = FALSE, alpha = 0.1, h = h)

print(band[["width"]])

90%

0.06426617

10 Tutorial on the R package TDA

4. Persistent Homology

4.1. Persistent Homology Over a Grid

gridDiag function computes the persistent homology of sublevel (and superlevel) sets of the
functions. The function gridDiag evaluates a given real valued function over a triangulated
grid (in arbitrary dimension), constructs a filtration of simplices using the values of the func-
tion, and computes the persistent homology of the filtration. The user can choose to compute
persistence diagrams using either the Dionysus library (library = "Dionysus") or the PHAT
library (library = "PHAT") .

The following code computes the persistent homology of the superlevel sets
(sublevel = FALSE) of the kernel density estimator (FUN = kde, h = 0.3) using the point
cloud stored in the matrix X from the previous example. The other inputs are the features of
the grid over which the kde is evaluated (lim and by), and a logical variable that indicates
whether a progress bar should be printed (printProgress).

##

persistent homology of a function over a grid

##

Diag <- gridDiag(X = X, FUN = kde, lim = cbind(Xlim, Ylim), by = by,

sublevel = FALSE, library = "Dionysus", printProgress = FALSE, h = 0.3)

The function plot plots persistence diagram for objects of the class "diagram". 8th line
of the following command produces the third of the following plot. The option band = 2 *

band[["width"]] produces a pink confidence band for the persistence diagram, using the con-
fidence band constructed for the corresponding kernel density estimator in the previous section.

##

plotting persistence diagram

##

par(mfrow = c(1,3))

plot(X, main = "Sample X")

persp(x = Xseq, y = Yseq,

z = matrix(KDE, nrow = length(Xseq), ncol = length(Yseq)),

xlab = "", ylab = "", zlab = "", theta = -20, phi = 35, scale = FALSE,

expand = 3, col = "red", border = NA, ltheta = 50, shade = 0.9,

main = "KDE")

plot(x = Diag[["diagram"]], band = 2 * band[["width"]], main = "KDE Diagram")

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Sample X

x1

x2

KDE KDE Diagram

●
●

●
●

●●●
●

0.00 0.05 0.10 0.15 0.20 0.25

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Death

B
ir

th

Jisu Kim 11

The function plot for the class "diagram" provide the options of rotating the diagram (rotated
= TRUE), drawing the barcode in place of the diagram (barcode = TRUE).

##

other options for plotting persistence diagram

##

par(mfrow = c(1,3))

plot(Diag[["diagram"]], band = 2 * band[["width"]], main = "KDE Diagram")

plot(Diag[["diagram"]], rotated = TRUE, band = band[["width"]],

main = "Rotated Diagram")

plot(Diag[["diagram"]], barcode = TRUE, main = "Barcode")

KDE Diagram

●
●

●
●

●●●
●

0.00 0.05 0.10 0.15 0.20 0.25

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Death

B
ir

th

Rotated Diagram

 ●

●

●
●

●●●●

0.00 0.05 0.10 0.15 0.20 0.25

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

(Death+Birth)/2

(B
ir

th
−

D
ea

th
)/

2

Barcode

0.00 0.05 0.10 0.15 0.20 0.25
time

4.2. Rips Diagrams

The Vietoris-Rips complex R(X, ε) consists of simplices with vertices in
X = {x1, . . . , xn} ⊂ Rd and diameter at most ε. The ripsDiag function computes the per-
sistence diagram of the Rips filtration built on top of a point cloud. The user can choose
to compute the Rips persistence diagram using either the C++ library GUDHI (library =

"GUDHI") , or Dionysus (library = "Dionysus") .

The following code generates 60 points from two circles, as in the following figure:

##

generating samples from two circles

##

Circle1 <- circleUnif(n = 60)

Circle2 <- circleUnif(n = 60, r = 2) + 3

Circles <- rbind(Circle1, Circle2)

par(mfrow = c(1,1))

plot(Circles, xlab="", ylab="")

12 Tutorial on the R package TDA

●

●

●

●●

●●
●

●●
● ●

●●

●

●

●

●
●

●
●

●

●
●●

●

●

●●

●
●

●●

●●●

●●

●●●●

●

●

●
● ●

●
●

●
●

●

●
●

●

●●

●

●●

●

●
●

●

●

●

●

●
● ●

●

●● ●●

●
●

● ●
●●

●

●

●

●
● ●

●

●● ●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●●

●

●

●

●
●

●
●

−1 1 2 3 4 5
−

1
1

3
5

We specify the limit of the Rips filtration(maxscale = 5) and the max dimension(maxdimension
= 1) of the homological features we are interested in (0 for components, 1 for loops, 2 for voids,
etc.). Then we plot the data and the diagram.

##

Rips persistence diagram

##

Diag <- ripsDiag(X = Circles, maxdimension = 1, maxscale = 5,

library = "GUDHI", printProgress = FALSE)

par(mfrow=c(1,2))

plot(Circles, xlab="", ylab="")

plot(Diag[["diagram"]])

●

●

●

●●

●●
●

●●
● ●

●●

●

●

●

●
●

●
●

●

●
●●

●

●

●●

●
●

●●

●●●

●●

●●●●

●

●

●
● ●

●
●

●
●

●

●
●

●

●●

●

●●

●

●
●

●

●

●

●

●
● ●

●

●● ●●

●
●

● ●
●●

●

●

●

●
● ●

●

●● ●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●●

●

●

●

●
●

●
●

−1 1 2 3 4 5

−
1

1
3

5

●

●
●●

0 1 2 3 4 5

0
2

4

Birth

D
ea

th

4.3. Bottleneck and Wasserstein Distances

Standard metrics for measuring the distance between two persistence diagrams are the bot-
tleneck distance and the pth Wasserstein distance (Edelsbrunner and Harer 2010). The TDA

Jisu Kim 13

package includes the functions bottleneck and wasserstein, which are R wrappers of the
functions “bottleneck distance” and “wasserstein distance” of the C++ library Dionysus.

We generate two persistence diagrams of the Rips filtrations built on top of the two (separate)
circles of the previous example, and we compute the bottleneck distance and the 2nd Wasserstein
distance between the two diagrams. The option dimension = 1 specifies that the distances
between diagrams are computed using only one dimensional features (loops).

Diag1 <- ripsDiag(X = Circle1, maxdimension = 1, maxscale = 5)

Diag2 <- ripsDiag(X = Circle2, maxdimension = 1, maxscale = 5)

print(bottleneck(Diag1 = Diag1[["diagram"]], Diag2 = Diag2[["diagram"]],

dimension = 1))

[1] 1.389126

print(wasserstein(Diag1 = Diag1[["diagram"]], Diag2 = Diag2[["diagram"]],

p = 2, dimension = 1))

[1] 2.184218

4.4. Landscapes and Silhouettes

Persistence landscapes and silhouettes are real-valued functions that further summarize the
information contained in a persistence diagram. They have been introduced and studied in
Bubenik (2012), Chazal, Fasy, Lecci, Rinaldo, and Wasserman (2014c), and Chazal, Fasy, Lecci,
Michel, Rinaldo, and Wasserman (2014b).

Landscape. The persistence landscape is a collection of continuous, piecewise linear func-
tions λ : Z+ × R→ R that summarizes a persistence diagram. Consider the set of functions
created by tenting each point p = (x, y) =

(
b+d
2 , d−b2

)
representing a birth-death pair (b, d) in

the persistence diagram D as follows:

Λp(t) =

t− x+ y t ∈ [x− y, x]

x+ y − t t ∈ (x, x+ y]

0 otherwise

=

t− b t ∈ [b, b+d2]

d− t t ∈ (b+d2 , d]

0 otherwise.

(1)

We obtain an arrangement of piecewise linear curves by overlaying the graphs of the func-
tions {Λp}p; see Figure 1 (left). The persistence landscape of D is the collection of functions

λ(k, t) = kmax
p

Λp(t), t ∈ [0, T], k ∈ N, (2)

where kmax is the kth largest value in the set. see Figure 1 (middle).

Silhouette. Consider a persistence diagram with N off diagonal points {(bj , dj)}Nj=1. For every
0 < p <∞ we define the power-weighted silhouette

φ(p)(t) =

∑N
j=1 |dj − bj |pΛj(t)∑N

j=1 |dj − bj |p
.

see Figure 1 (right).

landscape evaluates the landscape function over a one-dimensional grid of points tseq. In
the following code, we use the rips persistence diagram in previous example to construct the
corresponding landscape for one-dimensional features (dimension = 1). The option KK = 1

specifies that we are interested in the 1st landscape function. landscape return a real valued
vector, which can be simply plotted with plot(tseq, Land, type = "l").

14 Tutorial on the R package TDA

Triangles

0 2 4 6 8

0.
0

0.
5

1.
0

1.
5

2.
0

(Birth+Death)/2

(D
ea

th
−B

irt
h)

/2

●

●

●

●

●

●

●

●

●

●

1st Landscape

0 2 4 6 8

0.
0

0.
5

1.
0

1.
5

2.
0

Silhouette p=1

0 2 4 6 8

0.
0

0.
5

1.
0

1.
5

2.
0

Figure 1: Left: we use the rotated axes to represent a persistence diagram D. A feature
(b, d) ∈ D is represented by the point (b+d

2 , d−b
2) (pink). Middle: the blue curve is the landscape

λ(1, ·). Right: the blue curve is the silhouette φ(1)(·).

tseq <- seq(from = 0, to = 5, length = 1000) #domain

Land <- landscape(Diag = Diag[["diagram"]], dimension = 1, KK = 1, tseq = tseq)

par(mfrow=c(1,1))

plot(tseq, Land, type = "l", main = "1st Landscape, dim = 1", ylab = "",

asp = 1, col = "red", lwd = 3)

0 1 2 3 4 5

−
1.

0
0.

5
2.

0

1st Landscape, dim = 1

tseq

silhouette evaluates the silhouette function over a one-dimensional grid of points tseq. The
silhoutte is constructed on the same rips persistence diagram for one-dimensional features
(dimension = 1). The option p=1 is the power of the weights in thesilhouette function. Eval-
uated silhoutte function can be simply plotted with plot(tseq, Sil, type = "l").

tseq <- seq(from = 0, to = 5, length = 1000) #domain

Sil <- silhouette(Diag = Diag[["diagram"]], p = 1, dimension = 1, tseq = tseq)

par(mfrow=c(1,1))

plot(tseq, Sil, type = "l", main="Silhouette (p = 1), dim = 1", ylab = "",

asp = 1, col = "red", lwd = 3)

Jisu Kim 15

0 1 2 3 4 5
−

1.
0

0.
5

2.
0

Silhouette (p = 1), dim = 1

tseq

References

Bauer U, Kerber M, Reininghaus J (2012). “PHAT, a software library for persistent homology.”
https://code.google.com/p/phat/.

Bubenik P (2012). “Statistical topological data analysis using persistence landscapes.” arXiv
preprint arXiv:1207.6437.

Chazal F, Cohen-Steiner D, Mérigot Q (2011). “Geometric inference for probability measures.”
Foundations of Computational Mathematics, 11(6), 733–751.

Chazal F, Fasy BT, Lecci F, Michel B, Rinaldo A, Wasserman L (2014a). “Robust Topological
Inference: Distance-To-a-Measure and Kernel Distance.” Technical Report.

Chazal F, Fasy BT, Lecci F, Michel B, Rinaldo A, Wasserman L (2014b). “Subsampling Methods
for Persistent Homology.” arXiv preprint arXiv:1406.1901.

Chazal F, Fasy BT, Lecci F, Rinaldo A, Wasserman L (2014c). “Stochastic Convergence of
Persistence Landscapes and Silhouettes.” In Annual Symposium on Computational Geometry,
pp. 474–483. ACM.

Edelsbrunner H, Harer J (2010). Computational topology: an introduction. American Mathe-
matical Society.

Fasy BT, Lecci F, Rinaldo A, Wasserman L, Balakrishnan S, Singh A (2014). “Confidence Sets
For Persistence Diagrams.” To appear in The Annals of Statistics.

Maria C (2014). “GUDHI, Simplicial Complexes and Persistent Homology Packages.” https:

//project.inria.fr/gudhi/software/.

Morozov D (2007). “Dionysus, a C++ library for computing persistent homology.” http:

//www.mrzv.org/software/dionysus/.

https://code.google.com/p/phat/
https://code.google.com/p/phat/
https://project.inria.fr/gudhi/software/
https://project.inria.fr/gudhi/software/
https://project.inria.fr/gudhi/software/
https://project.inria.fr/gudhi/software/
http://www.mrzv.org/software/dionysus/
http://www.mrzv.org/software/dionysus/
http://www.mrzv.org/software/dionysus/
http://www.mrzv.org/software/dionysus/

16 Tutorial on the R package TDA

Affiliation:

Firstname Lastname
Affiliation
Address, Country
E-mail: name@address
URL: http://link/to/webpage/

mailto:name@address
http://link/to/webpage/

	Introduction
	Setting up
	Sample on manifolds, Distance Functions, and Density Estimators
	Uniform Sample on manifolds
	Distance Functions, and Density Estimators
	Bootstrap Confidence Bands

	Persistent Homology
	Persistent Homology Over a Grid
	Rips Diagrams
	Bottleneck and Wasserstein Distances
	Landscapes and Silhouettes

