
Density-based Clustering
DeBaCl

Theoretical Analysis of DeBaCl

DeBaCl: a Density-based Clustering Algorithm
and its Properties

Alessandro Rinaldo
Department of Statistics

Carnegie Mellon University

joint work with Brian Kent and Fabrizio Lecci
Thanks to: Larry Wasserman, Bertrand Michel, Fred Chazal

and Timothy Verstynen

November 10, 2014
Department of Statistics

Rice University

A. Rinaldo DeBaCl : Density Based Clustering 1/43



Density-based Clustering
DeBaCl

Theoretical Analysis of DeBaCl

Outline

Density-based clustering.

The algorithm DeBaCland some applications.

Theoretical analysis of DeBaCl.
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Clustering

Classic problem in statistics, computer science, probability and many
other fields. Huge literature!

Abstract formulation: optimally organize a set of objects into groups, so
that objects in the same group are maximally similar and objects in
different groups are maximally dissimilar.

Goal, scope and performance of a given clustering task is in many cases
poorly or only partially defined.

Analyses of clustering procedures often focus on the algorithmic
properties, and tend to ignore the probabilistic nature of the input.
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Clustering in Euclidean spaces

In much of this talk, we are interested in clustering Xn = (X1, . . . ,Xn), an i.i.d.
sample from a probability distribution P with support S ⊂ Rd .
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Clustering in Euclidean spaces

We will try to be as agnostic as possible about P:

P has a density with respect to k -dimensional Hausdorff measure or
mixtures thereof, k = {1, . . . , d};
the dimension k = dim(S) is unknown;

the smoothness of f is unknown;

the number of clusters is unknown;

we are interested in both the algorithmic and statistical challenges of
high dimensions.

We believe that many of our results extend to clustering of functional data.
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Density-based clustering – Hartigan (1975, 1981)

Assume P has a density f . For a threshold λ > 0, the λ-upper level set
(high density region) of f is

L(λ) = {x ∈ Rd : f (x) ≥ λ}.

Definition (λ-Clusters)

A λ-cluster of P is a maximal connected component of L(λ).

More interpretable twist (see Rinaldo et al., 2012).
For α ∈ [0, 1], set λα = sup{λ : P (L(λ)) ≥ α} and L(α) = L(λα).

Definition (α-Clusters)

A α-cluster of P is maximal connected component of L(α). Minimal volume
set of prescribed probability content.
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Density-based clustering – Hartigan (1975, 1981)

Consider all thresholds simultaneously!

The family of all λ-clusters of P is called the cluster tree of P because it
has the tree property: A,B ∈ T implies that

A ⊂ B or B ⊂ A or A ∩ B = ∅.

The hierarchy of inclusions of T can be represented as a dendrogram,
with height indexed by λ or α.

Many subtle topological and measure-theoretical details: see Steinwart
(2014).
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Cluster Trees

The cluster tree T captures all the clustering properties of P
simultaneously.

The cluster tree is an algebraic structure for visualizing and encoding P.
It is largely decoupled from the geometry and dimension of P.

There is no need to choose the number of clusters.

Figure 1:

47
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Trees, branches and leaves

Partition Property

The leaves and branches of the tree partition S = supp(P).
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Issue I: Density-based clustering is statistically hard

To “estimate T consistently" using a density estimator f̂ , we need sup norm
consistency, i.e. supx |f (x)− f̂ (x)| = oP(1).

The minimax rate (attained by KDEs with vanishing bandwidth) for this
problem over Hölder classes of densities is(

log n
n

) β
2β+d

,

where β is the smoothness parameter.

This typically requires a sample size exponential in d . Consistent
estimation of T is unfeasible in high-dimensions.
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Issue II: density-based clustering is algorithmically hard

Even assuming f known, deciding whether x and y are in the same
λ-cluster of f requires finding a path ` ⊂ S between x and y such that
f (z) ≥ λ for all z ∈ `.

This computation is prohibitively difficult even in moderate dimensions.
Building T is unfeasible in high-dimensions.

Fix

Use (slightly) incorrect connectivity based on Xn.
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How to deal with curse of dimensionality in density-based clustering

So you are all about the bias...big trouble!

Statistical hardness is an unavoidable bias issue. So let’s ignore it!

Suppose P has Lebesgue density f , assumed Hölder smooth with
parameter β. Let f̂h be a KDE with bandwitdh h

f̂h(x) =
1
n

n∑
i=1

1
hd K

(‖x − Xi‖
h

)
, x ∈ Rd .

For eaxh h > 0, f̂h is an unbiased estimator of the density

fh(x) =
1
hd

∫
Rd

f (y)K
(
‖y − x‖

h

)
dx , x ∈ Rd .

fh is much easier to estimate than f !!
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How to deal with course of dimensionality

By the Hölder assumption and Gine’ and Guillon (2002):

sup
x
|f (x)− f̂h(x)| ≤ sup

x
|f (x)− fh(x)|︸ ︷︷ ︸

bias

+ sup
x
|fh(x)− f̂h(x)|︸ ︷︷ ︸

random fluctuations

= O(hβ) + OP

(√
1

nhd

)

Ignoring the bias and for fixed h fh can be well estimated with the nearly
parameric, dimension independent rate:

sup
x
|fh(x)− f̂h(x)| = O

(√
log n

n

)
,

with high probability. The dimension is in the constants!
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More on ignoring the bias

One may measure the difficulty of a clustering problem depending on
whether density clustering based on biased density estimation can be
successful.

Easy Hard

-5 0 5 -5 0 5

Another major advantage of allowing for bias is that it extends the
applicability of density-based clustering to singular P.
See, e.g., Rinaldo and Wasserman (2010).
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Very large amount of literature.

Cluster tree estimation: Koltchinksii (2000), Stuetzle and Nugent (2010).
More recently: Chaudhuri, Dasgupta, Kptufe and von Luxburg (2013),
Balakrishnan et al. (2013) and Steinwary (2014).

Support estimation: Korostelev and Tsybakov (1993), Mammen and
Tsybakov (1995), Cuevas and Fraiman (1997), Biau, Cadre and Pellettier
(2008).

Level set estimation for fixed λ: Polonik (1995), Tsybakov (1997), Walther
(1997), Scott and Nowak (2006), Cuevas, González-Menteiga and
Rodríguez-Casal (2006), Singh, Scott and Nowak (2009), Rigollet and Vert
(2010).

Some algorithms: DBSCAN, OPTICS, denpro.
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Meet DeBaCl

DeBaCl is a simple algorithm for density-based clustering.
We credit Kpotufe and von Luxburg (2011).

It is based on the k-nn density estimator.

Implementations:
pyton module DeBaCl by Brian Kent (update coming soon)

https://github.com/CoAxLab/DeBaCl

R package TDA by Fabrizio Lecci et al.
http://cran.r-project.org/web/packages/TDA/index.html
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Meet DeBaCl

For fixed p ∈ (0, 1) and each i = 1, . . . , n, set r̂i be the distance of Xi from its
k -th nearest neighbors in Xn, with k = dnpe.

Input: p ∈ (0, 1) and Xn

1. Construct the knn graph Ĝn with nodes Xn and edges (Xi ,Xj )

(i) if ‖Xi − Xj‖ ≤ max{r̂i , r̂j} (k-nn)
(ii) if ‖Xi − Xj‖ ≤ max{r̂i , r̂j} (mutual k-nn)

2. For all r ∈ R := [mini r̂i ,maxi r̂i ]

(i) set Ĝn(r) be subgraph induced by {Xi : r̂i ≤ r}.
(ii) compute the connected components of Ĝn(r).

Output {T̂n(r), r ∈ R}, the dendrogram of the connected components.
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Remarks on DeBaCl

The input to DeBaCl are the k-nn distances r̂1, . . . , r̂n that are used
both to compute level sets and to determine connectedness.

Computational complexity. The computation of all the k-nn’s has
complexity O (n log n) (using k -d trees, ball-trees and cover-trees).
The complexity of constructing all the connected components is nearly
linear in n because it relies on a modified union-find procedure (Najman
and Couprie, 2006) and never uses breadth-first search.

DeBaCl outputs a data structure.

Why k-nn and not KDE? A KDE version of DeBaCl is easy enough to
devise but we prefer k-nn...

A. Rinaldo DeBaCl : Density Based Clustering 18/43



Density-based Clustering
DeBaCl

Theoretical Analysis of DeBaCl

Remarks on DeBaCl

The input to DeBaCl are the k-nn distances r̂1, . . . , r̂n that are used
both to compute level sets and to determine connectedness.

Computational complexity. The computation of all the k-nn’s has
complexity O (n log n) (using k -d trees, ball-trees and cover-trees).
The complexity of constructing all the connected components is nearly
linear in n because it relies on a modified union-find procedure (Najman
and Couprie, 2006) and never uses breadth-first search.

DeBaCl outputs a data structure.

Why k-nn and not KDE? A KDE version of DeBaCl is easy enough to
devise but we prefer k-nn...

A. Rinaldo DeBaCl : Density Based Clustering 18/43



Density-based Clustering
DeBaCl

Theoretical Analysis of DeBaCl

Example 1: clustering endpoints of fiber tracks in the striatum

The fiber endpoint data is derived from in vivo difusion weighted brain
imaging (DWI) collected at the Scientific Imaging and Brain Research
Center at Carnegie Mellon University in 2012 for 30 neurologically
healthy controls (the CMU-30 group).

From the DWI data, deterministic fiber tractography was used to simulate
smooth 1-dimensional manifolds (with boundaries) called fiber
streamlines that represent tracks of strong water diffusion in the brain
(Hagmann et al., 2006).

10, 000 fiber streamlines were mapped from the cortex into the striatum
for a single subject. Only the teminal points of the streamlines were kept.

k = 200

Work done in collaboration with Timothy Verstynen:
http://www.psy.cmu.edu/~coaxlab/
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Example 1: clustering endpoints of fiber tracks in the striatum
3.2. CLUSTER RETRIEVAL OPTIONS 31

(a)

(b) (c)

Figure 3.1: Fiber streamlines and streamline endpoints for one subject in the CMU-
30 group. (a) 10,000 streamlines mapped from the middle frontal gyrus to the stria-
tum, with a deterministic fiber tractography algorithm, based on DWI data. (b), (c)
Striatal endpoints of the 10,000 streamlines, from two camera angles.

not-so-obvious high-density modes within each region.

3.2 Cluster retrieval options

Although the level set tree provides a great deal more information about data to-

pography than the typical clustering method, sometimes the goal is to obtain an

A. Rinaldo DeBaCl : Density Based Clustering 19/43
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32 CHAPTER 3. DATA EXPLORATION AND CLUSTERING

Figure 3.2: Interactive exploration of data subsets with the dendrogram. The top
row shows the dendrogram for the striatal endpoints in Figure 3.1, with di↵erent
branches highlighted. The data subsets corresponding to the selected branches are
illustrated in the bottom row.

unsupervised partition of the data. When this is the case, level set trees provide

several ways to define clusters. The level selection GUI tool described in Section 3.1

is based on the most obvious method; because the level set tree is a compilation of

high-density clusters over many density or mass values, it is natural to select a value

of � or ↵ of particular interest and retrieve the corresponding high-density clusters.

In fact, the level � (or ↵) provides a clustering resolution of sorts, with lower values

of � corresponding to larger and coarser clusters and higher values to smaller, more

sharply defined clusters.

In addition to its definitional nature, this level-set method conveys the most in-

tuitive sense for where the highest density data subsets are located. It also allows the

investigator to control the number of points in the clusters; choosing a low mass level

produces clusters that contain most of the data, while high mass thresholds produce

clusters with only the peaks of the data modes. Finally, this method avoids the need

to specify a priori the number of clusters, which must be chosen heuristically in

A. Rinaldo DeBaCl : Density Based Clustering 19/43
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Example 1: clustering endpoints of fiber tracks in the striatum3.2. CLUSTER RETRIEVAL OPTIONS 33

Figure 3.3: Interactive exploration of high-density clusters with the dendrogram.
The top row shows the dendrogram for the striatal endpoints in Figure 3.1, with
two di↵erent ↵ levels selected (horizontal blue line). The bottom row shows the
high-density clusters for the respective ↵ levels.

many popular clustering methods (k-means, for example).

On the other hand, if the clustering task demands a pre-set number of clusters, K,

this can be done with a level set tree by identifying the first K disjoint components

to appear in the tree as the level increases from � = 0. Unlike k-means (and related

methods), however, there is no guarantee that there will be K disjoint nodes in a

level set tree. This first-K option is illustrated for the fiber endpoint data in Figure

3.4a.

The drawback of level-set and first-K clustering is that they require an arbitrary

choice of either �, ↵, or K. All-mode clustering, which uses each leaf of a level

set tree as a cluster, automatically chooses the number of clusters and avoids the

A. Rinaldo DeBaCl : Density Based Clustering 19/43
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Example 1: clustering endpoints of fiber tracks in the striatum34 CHAPTER 3. DATA EXPLORATION AND CLUSTERING

(a) (b)

Figure 3.4: Additional options for assigning cluster labels from the level set tree.
The top row shows the dendrogram for the striatal endpoints in Figure 3.1 and the
bottom row shows the corresponding high-density clusters (color indicates corre-
spondence between dendrogram and data). (a) The first-K method, which returns
the clusters produced by the first K � 1 splits in the tree as ↵ increases from 0. (b)
The all-mode method, which designates each leaf of the cluster tree as a cluster.

arbitrary choice of a density or mass level at which to cut the tree (Azzalini and

Torelli, 2007) (see Figure 3.4b for an example). This method does remain sensitive

to the choice of smoothing and pruning parameters, however. In particular, for a

given degree of pruning, this method tends to produce more and smaller clusters

than level set clustering.

Each of these three methods assigns cluster labels to only a fraction of the

sample, and leaves the remaining background points unlabeled (see Figures 3.3 and

3.4 for examples). The fraction varies greatly depending on the choices of cluster

A. Rinaldo DeBaCl : Density Based Clustering 19/43
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Example 2: clustering individuals into populations using SNPs

Data from The Human Genome Diversity Project (HGDP) dataset,
available at

http://www.hagsc.org/hgdp/files.html.

Cleaned-up comprised of 11,775 SNPs from 931 subjects from 53
populations from Crosset et al. (2010).

The goal of the analysis is to identify the hierarchy of high-density
clusters of individuals in the sample, ideally capturing the correct
membership in populations.

In the first level set tree k = 40, in the second k = 6.

A. Rinaldo DeBaCl : Density Based Clustering 20/43
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(a) (b)

Figure 3.6: Oversmoothed level set tree result for population genetics. (a) When
the smoothing parameter k is set to 40, the estimated level set tree for the HGDP
population genetic data has only four all-mode clusters. (b) The map shows these
clusters describe continent groups well, but do not capture more detailed population
a�liations. Each pie chart on the map represents a true population, and the slices
of each pie represent the contribution from each cluster (matched by color to the
dendrogram). The clusters in this result are very well matched to populations.

(a) (b)

Figure 3.7: Exploring high-density population genetics clusters. The level set tree
is constructed with k = 6, yielding a more detailed and multi-scale set of high-
density clusters. (a) Cutting the tree at a low ↵ level yields continent groups and
highly dissimilar populations (Figure 3.8a). (b) Cutting at a higher ↵ level produces
high-density clusters that better capture individual populations (Figure 3.8b).
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(a)

(b)

Figure 3.8: Maps indicating clusters for the dendrograms in Figure 3.7. Each pie
chart on the map represents a true population, and the slices of each pie represent
the contribution from each cluster (matched by color to the respective dendrogram
in Figure 3.7). (a) High-density clusters for a low ↵ cut of the tree (Figure 3.7a). Pop-
ulations in Papua New Guinea and the Americas are identified, but only continent
groups are recovered in Africa, Eurasia, and East Asia. (b) High-density clusters for
the high ↵ cut (Figure 3.7b) correspond better to individual populations.
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Example 3: clustering phonemes (functional data)

The phoneme dataset, from Ferraty and Vieu (2006) contains
log-periodograms of 2000 instances of digitized human speech, divided
evenly between five phonemes: “sh", “dcl" (as in “dark"), “iy" (as in the
vowel of “she"), “aa", and “ao". Each recording is treated as a single
functional observation, which was smoothed using a cubic spline.

Distance between function is the L2 distace (each phoneme is observed
over 150 frequencies).

k = 20.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.1: Spoken phoneme data, separated into the 5 true classes. Each phoneme is
represented by the log-periodogram at 150 fixed frequencies (see Hastie et al. (1995)
for details), which we smoothed with a cubic spline. The phonemes are (a) ‘sh’, (b)
‘iy’, (c) ‘dcl’, (d) ‘aa’, and (e) ‘ao’. (f) The mean function for each phoneme; color
indicates correspondence between phoneme class and mean function.

what contrived to use to a pseudo-density estimate instead of a bona fide density.

Furthermore, the phoneme dataset has been curated carefully by Hastie et al. (1995)

and Ferraty and Vieu (2006) for the purpose of illustrating statistical methods.

Hurricane trajectories are also easily visualized functional data, but they are
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4.3. HURRICANE TRACKS 51

Figure 4.2: Pseudo-density values for the phoneme data. More intense shades indi-
cate higher pseudo-density values, implying greater proximity to neighbors.

(a) (b)

Figure 4.3: (a) Phoneme level set tree. (b) All-mode clusters. The modal observation
in each all-mode cluster is shown with a black outline.

sampled irregularly (in space), have variable lengths, and lie in an ambient dimension

larger than d = 1, making them much more like white matter fiber streamlines. We

show that level set trees can be used e↵ectively to describe the topography of a

hurricane track dataset and to gather tracks into coherent clusters, opening a new
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Example 4: clustering hurricane tracks (functional data)

The U.S. National Hurricane Centers’s HURDAT dataset contains
positional and atmospheric measurements of North Atlantic tropical
cyclons from 1851 to 2012 (Landsea et al., 2013). The coordinates (in
degrees latitude and longitude) for each storm are recorded at least
every six hours.

The processed dataset contained 398 hurricane tracks.

Pairwise distances based on max-average-min distance (not a metric).

k = 6 (γ = 2).
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4.3. HURRICANE TRACKS 53

pseudo-density estimate, with k = 6 and � = 2. These parameters were chosen by

trial-and-error with a qualitative evaluation of the information content of the result;

higher values of k result in overly simple level set trees while lower values lead to

fragmented results with many very small clusters and little hierarchical structure.

The data are shown in Figure 4.4, colored by pseudo-density (darker hues correspond

to high pseudo-density values). Just by looking at this map, we expected at least

one major mode centered near the Yucatán peninsula and one just o↵shore of the

U.S east coast.

Figure 4.4: Hurricane track data, shaded by pseudo-density value. Curves with more
intense color have higher pseudo-density, indicating greater proximity to neighbors.

Figure 4.5 shows the estimated level set tree and corresponding all-mode clusters.

By visual inspection, the tree is very successful at separating clusters with either

di↵erent shape trajectories or spatial separation. The former case, the cyan, brown,

and purple clusters are all very near each other in the Gulf of Mexico, but are

distinct clusters because they follow di↵erent tracks. On the other hand, the pink and

orange pseudo-density clusters follow similar trajectories but are distinct because

they are separated in space. The level set tree also correctly captures the hierarchy
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of similarity; that is, the Gulf of Mexico storms are more similar to each other than

to any other cluster. The only cluster that seems possibly out of place is the plain

green, which is closer to the mid-Atlantic pink and orange than to the Gulf of Mexico

storms, despite substantial overlap with the latter.

(a) (b)

Figure 4.5: (a) Hurricane track level set tree. (b) All-mode clusters. Color indicates
correspondence between dendrogram branches and clusters on the map; low-density,
unclustered background tracks are shown faintly in gray.

4.4 Fiber streamlines

4.4.1 Fiber streamline distances

Returning now to the original challenge of building level set trees for fiber stream-

lines, a major decision in analyzing this type of data (or any functional data) is

the choice of a distance function between two observations. One of the most pop-

ular choices in fiber tractography analysis is Dmam (also known as chamfer) dis-

tance (Moberts et al., 2005; O’Donnell et al., 2013), which first matches each point

on a streamline to the closest point on the opposite streamline, then takes the av-

erage of those matched pair distances. Let X and Y be fiber tracks with mX and
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Example 5: clustering fiber tracks (functional data)

Fiber tractography datasets obtained through DSI techniques. Focus on
two corticostriatal pathways: lateral frontal (middle frontal gyrus to
striatum) and orbitofrontal (gyrus rectus to striatum).

A 30 subject template was used.

We used DeBaClto perform whole fiber tracks segmentation and looked
at tracks in the lateral frontal cortex and orbitofrontal cortex. Total of
51,126 fibers.

Pairwise distances based on max-average-min distance (not a metric).

k = d0.25 ∗ ne
Work done in collaboration with Timothy Verstynen:

http://www.psy.cmu.edu/~coaxlab/
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Figure 6. Level set tree clustering for whole fiber streamlines. A) Foreground fibers for the seven selected clusters from the 30 subject
template data set for streamlines tracked between the middle frontal gyrus and striatum, shown in both a sagittal and coronal view. Clusters are
colored according to an all-mode clustering of the tree. B) The level set tree for data in panel A. Tree leaves are matched to fiber clusters by color. C)
Same analysis as shown in A, but for a set of streamlines from the orbitofrontal cortex. Inset shows closeup of fiber streamlines in the striatal ROI
mask. D) Level set tree for data shown in panel C. The branch colors of trees in panels B and D match the clusters shown in the streamlines of panels
A and C respectively.
doi:10.1371/journal.pone.0093344.g006

Figure 7. Comparison of methods for whole-fiber segmentation. A, B) High-density fiber pathway clusters from the level set tree all-mode
method for middle frontal gyrus fibers in two subjects. C, D) Single linkage hierarchical clustering results for the same fiber pathways, with the
dendrogram cut to match the same number of clusters in the level set tree result. E, F) K-means clustering results for the sample fiber pathways.
doi:10.1371/journal.pone.0093344.g007

Mapping Neural Topography with Level Set Trees

PLOS ONE | www.plosone.org 12 April 2014 | Volume 9 | Issue 4 | e93344
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Theoretical analysis of DeBaCl: set-up

Let P a non-atomic probability measure supported on S ⊂ Pd . We allow
for dim(S) < d and for S to be of mixed dimension.

Fix a number p ∈ (0, 1). Define the function rp : Rd → R+ given by

x 7→ rp(x) = inf
{

r > 0 : P (B(x , r)) ≥ p
}
.

Thus rp(x) is the p-th quantile of the univariate variable ‖X − x‖, X ∼ P.

DeBaCl estimates rp and its lower level sets at the sample points Xn.
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Let K be the uniform kernel K (x) =

{
1 ‖x‖ ≤ 1
0 otherwise and consider the

biased, Lebesgue density

fp(x) =
1

vd r d
p (x)

∫
Rd

K
(
‖x − y‖

rp(x)

)
dP(y) =

p
vd r d

p (x)
∝ 1

r d
p (x)

, x ∈ Rd ,

with vd the volume of unit ball in Rd .

The empirical equivalent of fp(x) is the k-nn density estimator, where
k = dpne:

f̂p(x) =
k
n

1
vd r̂ d

p (x)
, x ∈ Rd

with r̂p(x) the distance from x to its k -th nearest neighborhood in Xn.
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fp is biased

If P has a continuous Lebesgue density f , then, a.e.,

lim
p→0

p
vd r d

p (x)
= f (x),

and convergence holds uniformly over compacts. If P has a continuous
density f w.r.t. Hk , then, a.e.,

lim
p→0

p
vkr k

x,p
= f (x),
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Density-based clustering with no densities

The upper level sets of fp(·) are the lower level sets of rp(·).

For r > 0, let L(r) = {x ∈ Rd : rp(x) ≤ r}∩S.
Define the r -clusters of P as the maximal (path) connected component
of L(r). The resulting tree is algorithmically hard.

Algorithmic connectedness. Two points in L(r) are algorithmically
connected if there exists {x = z0, z1, . . . , zm = y} ⊂ L(r) such that
zi ∈ B(zi+1, rzi+1).

Algorithmic Tree

The algorithmic tree T is the dendrogram of the r -clusters of P with path
connectedness replaced by algorithmic connectedness.
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Density-based clustering with no densities

Connectedness implies algorithmic connectedness but not the other way
around.
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Density-based clustering with no densities

Empirical Tree

The empirical tree T̂n is the dendrogram produced by DeBaCl (i.e. based on
the estimated distances r̂1, . . . , r̂n).

Oracle Tree

The oracle tree Tn is the dedrogram of nested subsets of Xn obtained by
running DeBaCl if an oracle gave us the true values of rp(X1), . . . , rp(Xn).

They are both data dependent!
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A tale of many trees

The “density" tree (high density clusters of f )
my not be defined (if, e.g., S is of mixed dimension)
is statistically and algorithmically hard in d .

The algorithmic r-tree (tree of r -clusters with path connectedness
replaced by algorithmic connectedness): our target.

The oracle tree: the output of DeBaCl using the true rXi ’s.

The empirical tree: the output of DeBaCl, using the estimated distances
r̂X1 , . . . , r̂Xn .
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Consistency of DeBaCl

Tree Consistency

A cluster A of T is said to be consistency estimable if, with high probability,
Ân := A ∩ Xn is a cluster of T̂n. Consistency of the tree follows from uniform
consistency over clusters.

To prove consistency we will show that

T̂n the (empirical tree) and Tn (the oracle tree) yield nearly the same
hierarchy of clusters over Xn, with high probability;

Tn (the oracle tree) consistently estimates most of T (the algorithmic
tree).
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The empirical tree T̂n is close to the oracle tree Tn

Write ri and r̂i for rXi and r̂Xi .

Regularity Assumption

Let Fx be the cdf of ‖X − x‖, X ∼ P. For some c > 0 and P-almost all x ,
F ′x (rp(x)) ≥ c. The constant c depends on dim(P).

x

Fx(t)

t

K

x

Fx(t)

t

Figure 1: Two situations where there is no modulus of continuity for the quantile function F�1
x .

Left: the set is not a connected set. Right: the measure is not (a, b)-standard.

4 Application to the geometric models in Rd

4.1 (a, b) standard measures

In the context of (a, b) standard measures in Rd, we now give a control on the the two key terms
!x and F�1

x,r (u) � F�1
x,r (0) which are involved in the deviation bounds.

Note that he regularity of the quantile function F�1
x directly depends on how the measure is

spread-out in the ambient space. In particular, if the support of the measure is not a connected
set, or if an (a, b)-standard assumption is not satisfied, the quantile function may not be uniformly
continuous for some query points x (see Figure 1). In the more simple case where these two
properties are satisfied, a modulus of continuity exists.

Lemma 5. Let P be a probability measure on Rd which is (a, b) standard. Let K be the support
of P . Then, for any u 2 [0, 1],

F�1
x,r (u) � F�1

x,r (0)  r
⇣u

a

⌘1/b
⇣u

a

⌘1/b
+ dK(x0)

�r�1

.

Assume moreover that K is a connected set of Rd. Then, for any (h, t) 2 (0, 1) such that h+t  1
we have

F�1
x,r (t + h) � F�1

x,r (t)  ra�1/b Haus ({x}, K)r�1 h1/b.

Proof. We have (see the left picture of Figure 2)

Fx,r(t) = P
⇣
B(x0,

p
t)
⌘

� P
⇣
B(⇡K(x0), (

p
t � dK(x0))

+)
⌘

� a
h
(
p

t � dK(x0))
+
ib

7

Courtesy of Betrand Michel
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The empirical tree T̂n is close to the oracle tree Tn

Lemma

There exists a constant C, depending on dim(P), such that, with probability at
least 1/n,

max
i

∣∣̂ri − ri
∣∣ ≤ C

√
log n

n
:= εn.

For a uniform distribution in full dimension C ∝ 1
pd .
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For fixed r > 0, consider the (random) sublevel sets:

Ln(r) = {Xi ∈ {1, . . . , n} : ri ≤ r}, (oracle) (1)

L̂n(r) = {Xi ∈ {1, . . . , n} : r̂i ≤ r}, (empirical). (2)

Corollary (Level set consistency)

Uniformly over all r > εn, with probability at least 1− 1/n,

Ln(r − εn) ⊂ L̂n(r) ⊂ Ln(r + εn),

and
L̂n(r − εn) ⊂ Ln(r) ⊂ L̂n(r + εn).

If the c.d.f. of rp(X ) with X ∼ P is locally Lipschizt at r , with high probability

the proportion of misclustered nodes at level r is O
(√

log n
n

)
.
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Stability (yields correct connectivity)

The interval of heights I = (a, b) is stable for Tn if the dendrogram does not
change when the k-nn distances involved are perturbed by εn. Sufficient
conditions are that the clusters are at least 2εn- apart and Xn is “sufficiently
dense".

Corollary (Cluster consistency)

If I is a stable interval, then for each a + εn ≤ r ≤ b − εn, the number of
clusters in Lr (n) and L̂n(r) is the same and constant and each cluster A of
Ln(r) is such that B ⊂ A ⊂ B′, for some B cluster of L̂n(r − εn) and B′ of
L̂n(r + εn).

Stability is a local property and does not hold around at values r of near
branching points.
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The oracle tree Tn is close to the algorithmic tree T

We need clusters to be “well-shaped".

Thickness

A cluster is (γ, c)-thick, where γ > 0 and c ≥ 0 if, for any x ∈ A, there exists a
y ∈ B(x , γ) ∩ A such that

B(y , γ/(2 + c)) ∩ supp(P) ⊂ B(x , γ) ∩ A.

Thickness provides controls how narrow a cluster A can get compared to
clusters at contiguous higher levels in the tree. It is satisfied for
well-behaved manifold if γ is small compared to the reach.
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For a cluster A of T , let rA = infx∈A rp(x).

Consistency

Assume that the sample X = (X1, . . . ,Xn) is a γn-covering of supp(P). Then,
if A is an r -cluster that is (γn, c)-thick, where γn < rA/(2(2 + c)), then Xn,A is
a cluster of Ln(r). This holds uniformly over all such clusters.

That is, when the sample is dense enough, the oracle tree will produce the
same clustering as the if we knew the algorithmic tree.
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When is Xn a dense covering?

When is Xn a γn-covering of a set A ⊂ S, with γn ≤ rA
2(c+2)?

Assume A is “well-behaved" (standard assumption) and

inf
x

P(B(x , γ/2) ∩ A) = cA > 0.

Then, Xn,A is a γ covering of A with high probability if

cA = Ω

(
dim(A) + log n

n

)
.

If we let p → 0, then cA → 0 at a rate Θ(γk ), with γ → 0. This would give
dimension dependent rate.
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Consistency of DeBaCl

Consistency of DeBaCl

Let A be an r -cluster of T such that its r − εn subcluster A′ is (γn, c)-thick,
with γn < (rA′ − εn)/(2 + c) and c ≥ 0. If the sample X = (X1, . . . ,Xn) is a γn

covering of supp(P) then the subgraph of Ĝ(r − εn) induced by Xn,A′ is
connected; if A is also 2εn-away from all the other r clusters, then Xn,A′ is a
cluster of T̂n(r − εn). This holds uniformly over such clusters of T .
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Cluster trees come in many flavors: r , λ, α...and κ

DeBaCloutputs a data structure, which can be visualized in different ways.

The r -tree: the tree height is indexed by r . Counterintuitive: the tree
grows as r gets smaller and the higher portions of the tree are shorter!

λ-tree: the tree height is indexed by 1/r d , a rescaling proportional to the
values of the k-nn density estimator.
The proportions are right but it is not very interpretable.

α-tree: for each α ∈ (0, 1) set r̂α to be the α-quantile of r̂1, . . . , r̂n. The
tree height is indexed by α: the α-level of the tree represents L̂(̂rα), i.e.
the α-fraction of “most clusterable" data points. Highly interpretable.

κ-tree: each branch has length equal to the fraction of points comprising
it. The sum of the length of all branches and leaves is 1.
Highly interpretable.
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Cluster trees come in many flavors: r , λ, α...and κ
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Cluster trees come in many flavors: r , λ, α...and κ

The difference can be substantial.
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Weak convergence and the bootstrap

Let B the P-Brownian bridge indexed by the closed balls in Rd : a centered
Gaussian process with covariance function

(B,B′)→ P(B ∩ B′) = P(B)P(B′).

Denote by B(x , r) the value of B at the ball B(x , r).

Recall that, for x ∈ Rd , Fx is the c.d.f. of ‖X − x‖ with X ∼ P and rp(x) is the
p-th quantile of Fx .

Theorem (Function delta method)

Assume that, for some constant c > 0 and for P-almost all x,

F ′x (rp(x)) ≥ c.

Then, {√
n
(
r̂p(x)− rp(x)

)
, x ∈ Rd

}
 

{
B(x , rp(x))

F ′x (rp(x))
, x ∈ Rd

}
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Weak convergence and the bootstrap

Let {r̂∗p (x), x ∈ Rd} be the bootstrap version of r̂p based on the empirical
distribution of Xn.

Corollary (Boostrap validity)

Conditionally almost surely,{√
n
(
r̂∗p (x)− r̂p(x)

)
, x ∈ Rd

}
 
{ B(x , rp(x))

F ′x (rp(x))
, x ∈ Rd

}

Using the bootstrap, we can construct asymptotically correct confidence
bands for rp and the DeBaCltrees.
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Bootstrap confidence sets example
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Conclusions

Density-based clustering is a principled paradigm for clustering.

The cluster tree provides an interpretable and highy informative
encoding of all the clustering properties of P.

DeBaClis a simple, computationally efficient algorithm for consistently
estimating the cluster tree, even in high dimensions.

Current and future work:

Work out the theoretical properties of the α and κ tree.

Develop and study methods for constructing confidence sets for cluster
trees and, more generally, for using cluster trees for statistical inference.

Provide guidelines on how to choose p!
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