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Outline

@ Density-based clustering.

@ The algorithm DeBacCland some applications.

@ Theoretical analysis of DeBaCl.
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Density-based Clustering

Clustering

@ Classic problem in statistics, computer science, probability and many
other fields. Huge literature!

@ Abstract formulation: optimally organize a set of objects into groups, so
that objects in the same group are maximally similar and objects in
different groups are maximally dissimilar.

@ Goal, scope and performance of a given clustering task is in many cases
poorly or only partially defined.

@ Analyses of clustering procedures often focus on the algorithmic
properties, and tend to ignore the probabilistic nature of the input.
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Density-based Clustering

Clustering in Euclidean spaces

In much of this talk, we are interested in clustering X, = (X1, ..., X»), ani.i.d.
sample from a probability distribution P with support S ¢ R¢.
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Density-based Clustering

Clustering in Euclidean spaces
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Clustering in Euclidean spaces

-4 -2 0 2 4 6 8

Source: Fundamental Clustering Problems Suite (FCPS).
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Density-based Clustering

Clustering in Euclidean spaces
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Density-based Clustering

Clustering in Euclidean spaces
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Density-based Clustering

Clustering in Euclidean spaces

Source: Fundamental Clustering Problems Suite (FCPS).
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Density-based Clustering

Clustering in Euclidean spaces

We will try to be as agnostic as possible about P:

@ P has a density with respect to k-dimensional Hausdorff measure or
mixtures thereof, k = {1,...,d};

the dimension k = dim(S) is unknown;
the smoothness of f is unknown;
the number of clusters is unknown;

we are interested in both the algorithmic and statistical challenges of
high dimensions.

We believe that many of our results extend to clustering of functional data.
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Density-based Clustering

Density-based clustering — Hartigan (1975, 1981)

@ Assume P has a density f. For a threshold A > 0, the A-upper level set
(high density region) of f is

L)) = {x e R?: f(x) > A}.

Definition (A-Clusters)
A X-cluster of P is a maximal connected component of L()\).
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Density-based Clustering

Density-based clustering — Hartigan (1975, 1981)

@ Assume P has a density f. For a threshold A > 0, the A-upper level set
(high density region) of f is

L)) = {x e R?: f(x) > A}.

Definition (A-Clusters)

A X-cluster of P is a maximal connected component of L()\).

@ More interpretable twist (see Rinaldo et al., 2012).
For o € [0, 1], set A\a = sup{A: P(L(})) > a} and L(a) = L(Aa).

Definition (a-Clusters)

A a-cluster of P is maximal connected component of L(«). Minimal volume
set of prescribed probability content.
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Density-based Clustering

Density-based clustering — Hartigan (1975, 1981)

@ Consider all thresholds simultaneously!

@ The family of all A-clusters of P is called the cluster tree of P because it
has the tree property: A, B € T implies that

ACBorBCA or ANnB=1.

The hierarchy of inclusions of 7" can be represented as a dendrogram,
with height indexed by A or .
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Density-based Clustering

Density-based clustering — Hartigan (1975, 1981)

@ Consider all thresholds simultaneously!

@ The family of all A-clusters of P is called the cluster tree of P because it
has the tree property: A, B € T implies that

ACBorBCA or ANnB=1.

The hierarchy of inclusions of 7" can be represented as a dendrogram,
with height indexed by A or .

@ Many subtle topological and measure-theoretical details: see Steinwart
(2014).
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Density-based Clustering

Density-based clustering in action
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Density-based clustering in action
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Density-based Clustering

Density-based clustering in action
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Density-based Clustering

Density-based clustering in action
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Density-based Clustering

Density-based clustering in action
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Density-based Clustering

Cluster Trees

@ The cluster tree T captures all the clustering properties of P
simultaneously.

@ The cluster tree is an algebraic structure for visualizing and encoding P.
It is largely decoupled from the geometry and dimension of P.

@ There is no need to choose the number of clusters.

A) 020 B) 0
015
o 012 088
2 3 =
2010 2 o
7] 3 ]
a
0.8 074
.............................. S
0.5
004 T 0.46
0.02 028
0ol - — i ho
Connected component

A. Rinaldo ) : Density Based Clustering



Density-based Clustering

Trees, branches and leaves

Partition Property
The leaves and branches of the tree partition S = supp(P).

Density lambda Tree Superlevel Sets
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Density-based Clustering

Issue I: Density-based clustering is statistically hard

To “estimate 7 consistently" using a density estimator f, we need sup norm

~

consistency, i.e. sup, |f(x) — f(x)| = op(1).
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Density-based Clustering

Issue I: Density-based clustering is statistically hard

To “estimate 7 consistently" using a density estimator f, we need sup norm

~

consistency, i.e. sup, |f(x) — f(x)| = op(1).

@ The minimax rate (attained by KDEs with vanishing bandwidth) for this
problem over Hélder classes of densities is

]
log nY\ 28+d
n )

where 3 is the smoothness parameter.

@ This typically requires a sample size exponential in d. Consistent
estimation of 7 is unfeasible in high-dimensions.
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Density-based Clustering

Issue IlI: density-based clustering is algorithmically hard

@ Even assuming f known, deciding whether x and y are in the same
A-cluster of f requires finding a path ¢ C S between x and y such that
f(z) > Mforall z € .
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Density-based Clustering

Issue IlI: density-based clustering is algorithmically hard

@ Even assuming f known, deciding whether x and y are in the same
A-cluster of f requires finding a path ¢ C S between x and y such that
f(z) > Mforall z € .

@ This computation is prohibitively difficult even in moderate dimensions.
Building 7 is unfeasible in high-dimensions.
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Density-based Clustering

Issue IlI: density-based clustering is algorithmically hard

@ Even assuming f known, deciding whether x and y are in the same
A-cluster of f requires finding a path ¢ C S between x and y such that
f(z) > Mforall z € .

@ This computation is prohibitively difficult even in moderate dimensions.
Building 7 is unfeasible in high-dimensions.

Use (slightly) incorrect connectivity based on X.
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Density-based Clustering

How to deal with curse of dimensionality in density-based clustering

So you are all about the bias...big trouble!

Statistical hardness is an unavoidable bias issue. So let’s ignore it!
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Density-based Clustering

How to deal with curse of dimensionality in density-based clustering

So you are all about the bias...big trouble!
Statistical hardness is an unavoidable bias issue. So let’s ignore it!

@ Suppose P has Lebesgue density f, assumed Hélder smooth with
parameter 3. Let f, be a KDE with bandwitdh h

To(x) = Zhd (”X_XH), x e RY.

For eaxh h > 0, ?h is an unbiased estimator of the density

fa(x) = hd/ fly (H’v X”>dx, x € R,

@ f, is much easier to estimate than f!!
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Density-based Clustering

How to deal with course of dimensionality

@ By the Holder assumption and Gine’ and Guillon (2002):

sup [f(x) — F(x)| < SUP|F(x) = hi(x)] +sUp |fo(x) — Fo(x)|

bias random fluctuations

=O(h’) + Op < nL(,)
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Density-based Clustering

How to deal with course of dimensionality

@ By the Holder assumption and Gine’ and Guillon (2002):

sup [f(x) — F(x)| < SUP|F(x) = hi(x)] +sUp |fo(x) — Fo(x)|

bias random fluctuations

=O(h’) + Op < nL(,)

Ignoring the bias and for fixed h f, can be well estimated with the nearly
parameric, dimension independent rate:

ng(p|f,,(x) —T(x)] = O (\/@)

with high probability. The dimension is in the constants!
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Density-based Clustering

More on ignoring the bias

@ One may measure the difficulty of a clustering problem depending on
whether density clustering based on biased density estimation can be
successful.

Easy Hard
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Density-based Clustering

More on ignoring the bias

@ One may measure the difficulty of a clustering problem depending on
whether density clustering based on biased density estimation can be
successful.

Easy Hard

@ Another major advantage of allowing for bias is that it extends the
applicability of density-based clustering to singular P.
See, e.g., Rinaldo and Wasserman (2010).
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Density-based Clustering

@ Very large amount of literature.

o Cluster tree estimation: Koltchinksii (2000), Stuetzle and Nugent (2010).
More recently: Chaudhuri, Dasgupta, Kptufe and von Luxburg (2013),
Balakrishnan et al. (2013) and Steinwary (2014).

@ Support estimation: Korostelev and Tsybakov (1993), Mammen and
Tsybakov (1995), Cuevas and Fraiman (1997), Biau, Cadre and Pellettier
(2008).

o Level set estimation for fixed A: Polonik (1995), Tsybakov (1997), Walther
(1997), Scott and Nowak (2006), Cuevas, Gonzalez-Menteiga and
Rodriguez-Casal (2006), Singh, Scott and Nowak (2009), Rigollet and Vert
(2010).

@ Some algorithms: DBSCAN, OPTICS, denpro.
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Meet DeBaCl

@ DeBacCl is a simple algorithm for density-based clustering.
We credit Kpotufe and von Luxburg (2011).

@ ltis based on the k-nn density estimator.
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Meet DeBaCl

@ DeBacCl is a simple algorithm for density-based clustering.
We credit Kpotufe and von Luxburg (2011).

@ ltis based on the k-nn density estimator.

@ Implementations:

@ pyton module DeBaCl by Brian Kent (update coming soon)
https://github.com/CoAxLab/DeBaCl

e R package TDA by Fabrizio Lecci et al.
http://cran.r-project.org/web/packages/TDA/index.html

A. Rinaldo ) : Density Based Clustering 16/43


https://github.com/CoAxLab/DeBaCl
http://cran.r-project.org/web/packages/TDA/index.html

Meet DeBaCl

For fixed p € (0,1) and each i = 1,..., n, set 7; be the distance of X; from its
k-th nearest neighbors in X, with k = [np].

Input: p € (0,1) and Xn
1. Construct the knn graph G, with nodes X, and edges (X, X;)
(i) if 1% — Xl < max{7;, 7} (k-nn)
(i) if ||1X; — X;|| < max{7;,7;} (mutual k-nn)
2. Forall r € R := [min; 7;, max; r}]
(i) set (jn(r) be subgraph induced by {X;: 7; < r}.
(il) compute the connected components of §n(r).
Output {7A7,(r), r € R}, the dendrogram of the connected components.
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Meet DeBaCl
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Meet DeBaCl

kNN Graph Empirical r Tree
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Meet DeBaCl

kNN Graph Empirical r Tree
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Remarks on DeBacCl

@ The inputto DeBaCl are the k-nn distances 73, . . ., T, that are used
both to compute level sets and to determine connectedness.

@ Computational complexity. The computation of all the k-nn’s has
complexity O (nlog n) (using k-d trees, ball-trees and cover-trees).
The complexity of constructing all the connected components is nearly
linear in n because it relies on a modified union-find procedure (Najman
and Couprie, 2006) and never uses breadth-first search.

@ DeBaCl outputs a data structure.
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Remarks on DeBacCl

The inputto DeBaCl are the k-nn distances 71, . . ., T, that are used
both to compute level sets and to determine connectedness.

Computational complexity. The computation of all the k-nn’s has
complexity O (nlog n) (using k-d trees, ball-trees and cover-trees).

The complexity of constructing all the connected components is nearly
linear in n because it relies on a modified union-find procedure (Najman
and Couprie, 2006) and never uses breadth-first search.

DeBaCl outputs a data structure.

Why k-nn and not KDE? A KDE version of DeBaCl is easy enough to
devise but we prefer k-nn...
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DeBaCl

Example 1: clustering endpoints of fiber tracks in the striatum

@ The fiber endpoint data is derived from in vivo difusion weighted brain
imaging (DWI) collected at the Scientific Imaging and Brain Research
Center at Carnegie Mellon University in 2012 for 30 neurologically
healthy controls (the CMU-30 group).

@ From the DWI data, deterministic fiber tractography was used to simulate
smooth 1-dimensional manifolds (with boundaries) called fiber
streamlines that represent tracks of strong water diffusion in the brain
(Hagmann et al., 2006).

@ 10,000 fiber streamlines were mapped from the cortex into the striatum
for a single subject. Only the teminal points of the streamlines were kept.

@ k=200

@ Work done in collaboration with Timothy Verstynen:
http://www.psy.cmu.edu/~coaxlab/
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DeBaCl

Example 1: clustering endpoints of fiber tracks in the striatum
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DeBaCl

Example 1: clustering endpoints of fiber tracks in the striatum
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DeBaCl

Example 1: clustering endpoints of fiber tracks in the striatum
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DeBaCl

Example 2: clustering individuals into populations using SNPs

@ Data from The Human Genome Diversity Project (HGDP) dataset,
available at
http://www.hagsc.org/hgdp/files.html.

@ Cleaned-up comprised of 11,775 SNPs from 931 subjects from 53
populations from Crosset et al. (2010).

@ The goal of the analysis is to identify the hierarchy of high-density
clusters of individuals in the sample, ideally capturing the correct
membership in populations.

@ In the first level set tree k = 40, in the second k = 6.
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Example 2: clustering individuals into populations using SNPs
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Example 2: clustering individuals into populations using SNPs
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DeBaCl

Example 2: clustering individuals into populations using SNPs
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DeBaCl

Example 2: clustering individuals into populations using SNPs
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DeBaCl

Example 2: clustering individuals into populations using SNPs
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DeBaCl

Example 3: clustering phonemes (functional data)

@ The phoneme dataset, from Ferraty and Vieu (2006) contains
log-periodograms of 2000 instances of digitized human speech, divided
evenly between five phonemes: “sh”, “dcl" (as in “dark"), “iy" (as in the
vowel of “she"), “aa”, and “ao". Each recording is treated as a single
functional observation, which was smoothed using a cubic spline.

@ Distance between function is the L, distace (each phoneme is observed
over 150 frequencies).

@ k= 20.
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DeBaCl

Example 3: clustering phonemes (functional data)
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DeBaCl

Example 3: clustering phonemes (functional data)
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DeBaCl

Example 4: clustering hurricane tracks (functional data)

@ The U.S. National Hurricane Centers's HURDAT dataset contains
positional and atmospheric measurements of North Atlantic tropical
cyclons from 1851 to 2012 (Landsea et al., 2013). The coordinates (in
degrees latitude and longitude) for each storm are recorded at least
every six hours.

@ The processed dataset contained 398 hurricane tracks.

@ Pairwise distances based on max-average-min distance (not a metric).

o k=6(y=2).
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DeBaCl

Example 4: clustering hurricane tracks (functional data)
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DeBaCl

Example 4: clustering hurricane tracks (functional data)
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DeBaCl

Example 5: clustering fiber tracks (functional data)

@ Fiber tractography datasets obtained through DSI techniques. Focus on
two corticostriatal pathways: lateral frontal (middle frontal gyrus to
striatum) and orbitofrontal (gyrus rectus to striatum).

@ A 30 subject template was used.

@ We used DeBac1lto perform whole fiber tracks segmentation and looked
at tracks in the lateral frontal cortex and orbitofrontal cortex. Total of
51,126 fibers.

@ Pairwise distances based on max-average-min distance (not a metric).

@ k=10.25x%n)]

@ Work done in collaboration with Timothy Verstynen:

http://www.psy.cmu.edu/~coaxlab/
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DeBaCl

Example 5: clustering fiber tracks (functional data)
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DeBaCl

Example 5: clustering fiber tracks (functional data)

Subject 0177 Subject 0193

Single-linkage
DeBacCl (all-mode)

(1mm distance)

K-Means
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Theoretical Analysis of DeBaC1

Theoretical analysis of DeBaC1: set-up

@ Let P a non-atomic probability measure supported on S c PY. We allow
for dim(S) < d and for S to be of mixed dimension.
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Theoretical Analysis of DeBaC1

Theoretical analysis of DeBaC1: set-up

@ Let P a non-atomic probability measure supported on S c PY. We allow
for dim(S) < d and for S to be of mixed dimension.

@ Fix a number p € (0,1). Define the function r,: R — R, given by
x> ro(x) = inf {r > 0: P(B(x,r)) > p}.

Thus rp,(x) is the p-th quantile of the univariate variable || X — x|, X ~ P.
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Theoretical Analysis of DeBaC1

Theoretical analysis of DeBaC1: set-up

@ Let P a non-atomic probability measure supported on S c PY. We allow
for dim(S) < d and for S to be of mixed dimension.

@ Fix a number p € (0,1). Define the function r,: R — R, given by
x> ro(x) = inf {r > 0: P(B(x,r)) > p}.

Thus rp,(x) is the p-th quantile of the univariate variable || X — x|, X ~ P.

DeBaCl estimates r, and its lower level sets at the sample points X,.
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Theoretical Analysis of DeBaC1

T xl<1

@ Let K be the uniform kernel K(x) = { 0  otherwise and consider the

biased, Lebesgue density

_ 1 Ix =yl P 1
) = g0 I ( () )dP W)= st ey X EF

with vy the volume of unit ball in R?.

A. Rinaldo e 1 : Density Based Clustering 25/43



Theoretical Analysis of DeBaC1

T xl<1

0 otherwise 2nd considerthe

@ Let K be the uniform kernel K(x) = {

biased, Lebesgue density

_ 1 Ix =yl P 1
) = g0 I ( () )dP W)= st ey X EF

with vy the volume of unit ball in R?.

@ The empirical equivalent of fp(x) is the k-nn density estimator, where
k = [pn]:
..k 1

fo(X) = ——+—~, X R
b(X) n vgrd(x) <

with 7,(x) the distance from x to its k-th nearest neighborhood in X.
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Theoretical Analysis of DeBaC1

fo is biased
If P has a continuous Lebesgue density f, then, a.e.,

. p
im ——— =f
pano varg(x) ),

and convergence holds uniformly over compacts. If P has a continuous
density f w.r.t. Hy, then, a.e.,

lim —P = f(x),

p—0 ka)l((’p
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Theoretical Analysis of DeBaC1

Density-based clustering with no densities

The upper level sets of f,(-) are the lower level sets of r,(+).

@ Forr>0,letL(r) = {x € RY: rp(x) < r}nS.
Define the r-clusters of P as the maximal (path) connected component
of L(r). The resulting tree is algorithmically hard.
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Theoretical Analysis of DeBaC1

Density-based clustering with no densities

The upper level sets of f,(-) are the lower level sets of r,(+).

@ Forr>0,letL(r) = {x € RY: rp(x) < r}nS.
Define the r-clusters of P as the maximal (path) connected component
of L(r). The resulting tree is algorithmically hard.

@ Algorithmic connectedness. Two points in L(r) are algorithmically
connected if there exists {x = 2y, z1,...,2m = y} C L(r) such that
zZj € B(Zi+1 s Izi41 )

Algorithmic Tree

The algorithmic tree T is the dendrogram of the r-clusters of P with path
connectedness replaced by algorithmic connectedness.
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Density-based clustering with no densities

@ Connectedness implies algorithmic connectedness but not the other way
around.
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@ Connectedness implies algorithmic connectedness but not the other way
around.
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Density-based clustering with no densities

Empirical Tree

The empirical tree 7, is the dendrogram produced by DeBacCl (i.e. based on
the estimated distances 71, . . . , 7).

Oracle Tree
The oracle tree T, is the dedrogram of nested subsets of X, obtained by
running DeBacCl if an oracle gave us the true values of rp(X1), .. ., rp(Xn).

They are both data dependent!
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A tale of many trees

@ The “density" tree (high density clusters of f)
e my not be defined (if, e.g., S is of mixed dimension)
@ is statistically and algorithmically hard in d.
@ The algorithmic r-tree (tree of r-clusters with path connectedness
replaced by algorithmic connectedness): our target.
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A tale of many trees

@ The “density" tree (high density clusters of f)

e my not be defined (if, e.g., S is of mixed dimension)
@ is statistically and algorithmically hard in d.

@ The algorithmic r-tree (tree of r-clusters with path connectedness
replaced by algorithmic connectedness): our target.

@ The oracle tree: the output of DeBaC1 using the true rx’s.

@ The empirical tree: the output of DeBaC1, using the estimated distances
Ty e e ey Iy
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A tale of many trees

Density lambda Tree Superlevel Sets

o
~
3
o
o

s @ p—

o o

o
o
o

| B E— E— —
00 02 04 06 08 1.0
Ix Topological r Tree Sublevel Sets

©
3
5]
o
=]
<
o

00 02 04 06 08 1.0

A. Rinaldo Density Based Clustering 29/43



Theoretical Analysis of DeBaC1

A tale of many trees
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A tale of many trees
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A tale of many trees
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Consistency of DeBaCl

Tree Consistency

A cluster A of T is said to be consistency estimable if, with high probability,
A, := AN X, is a cluster of 7,. Consistency of the tree follows from uniform
consistency over clusters.

A. Rinaldo DeBaCl : Density Based Clustering 30/43



Theoretical Analysis of DeBaC1

Consistency of DeBaCl

Tree Consistency

A cluster A of T is said to be consistency estimable if, with high probability,
A, := AN X, is a cluster of 7,. Consistency of the tree follows from uniform
consistency over clusters.

To prove consistency we will show that
e 7, the (empirical tree) and 7, (the oracle tree) yield nearly the same
hierarchy of clusters over X,, with high probability;
@ 7, (the oracle tree) consistently estimates most of 7 (the algorithmic
tree).
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The empirical tree 77 is close to the oracle tree 7,

Write r; and 7; for rx, and T,.

Regularity Assumption

Let Fx be the cdf of || X — x||, X ~ P. For some ¢ > 0 and P-almost all x,
Fx(ro(x)) > c. The constant ¢ depends on dim(P).

Courtesy of Betrand Michel
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The empirical tree 77 is close to the oracle tree 7,

There exists a constant C, depending on dim(P), such that, with probability at

least1/n,
=~ logn
max |7 — r| < C\/% = en.
1

@ For a uniform distribution in full dimension C p‘—d.
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For fixed r > 0, consider the (random) sublevel sets:

La(ry={Xie {1,....,n} : i <r}, (oracle) (1)
Lo(ry={X€{1,....,n}: 7 <r}, (empirical). @)

Corollary (Level set consistency)

Uniformly over all r > €,, with probability at least1 — 1/n,

Lo(r — €n) C La(r) C La(r + €n),

and R N
Ln(r — En) C Ln(r) C Ln(r+ En).

If the c.d.f. of r,(X) with X ~ P is locally Lipschizt at r, with high probability

the proportion of misclustered nodes at level r is O ( "’%) ;
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Stability (yields correct connectivity)

The interval of heights | = (a, b) is stable for T, if the dendrogram does not
change when the k-nn distances involved are perturbed by ¢,. Sufficient
conditions are that the clusters are at least 2¢,- apart and X, is “sufficiently
dense".
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Stability (yields correct connectivity)

The interval of heights | = (a, b) is stable for T, if the dendrogram does not
change when the k-nn distances involved are perturbed by ¢,. Sufficient
conditions are that the clusters are at least 2¢,- apart and X, is “sufficiently
dense".

Corollary (Cluster consistency)

If I is a stable interval, then for each a+ e, < r < b — ep, the number of
clusters in L,(n) and L(r) is the same and constant and each cluster A of
Ln(r) is such that B c A C B', for some B cluster of Zn(r — €n) and B’ of
Lo(r + €n).
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Stability (yields correct connectivity)

The interval of heights | = (a, b) is stable for T, if the dendrogram does not
change when the k-nn distances involved are perturbed by ¢,. Sufficient
conditions are that the clusters are at least 2¢,- apart and X, is “sufficiently
dense".

Corollary (Cluster consistency)

If I is a stable interval, then for each a+ e, < r < b — ep, the number of
clusters in L,(n) and Ln(r) is the same and constant and each cluster A of
Ln(r) is such that B c A C B', for some B cluster of Zn(r — €n) and B’ of
Lo(r + €n).

Stability is a local property and does not hold around at values r of near
branching points.
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The oracle tree 7, is close to the algorithmic tree T

@ We need clusters to be “well-shaped".

A cluster is (v, ¢)-thick, where v > 0 and ¢ > 0 if, for any x € A, there exists a
y € B(x,~) N Asuch that

B(y,~/(2+ ¢)) Nsupp(P) C B(x,7) N A.
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The oracle tree 7, is close to the algorithmic tree T

@ We need clusters to be “well-shaped".

A cluster is (v, ¢)-thick, where v > 0 and ¢ > 0 if, for any x € A, there exists a
y € B(x,~) N Asuch that

B(y,~/(2+ ¢)) Nsupp(P) C B(x,7) N A.

@ Thickness provides controls how narrow a cluster A can get compared to
clusters at contiguous higher levels in the tree. It is satisfied for
well-behaved manifold if v is small compared to the reach.
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The oracle tree 7, is close to the algorithmic tree T
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For a cluster A of T, let ra = infyca rp(x).

Assume that the sample X = (X1, ..., X») is a yn-covering of supp(P). Then,
if Ais an r-cluster that is (s, ¢)-thick, where v, < ra/(2(2 + ¢)), then X, 4 is
a cluster of L,(r). This holds uniformly over all such clusters.

That is, when the sample is dense enough, the oracle tree will produce the
same clustering as the if we knew the algorithmic tree.

A. Rinaldo 1 : Density Based Clustering 35/43



Theoretical Analysis of DeBaC1

When is X, a dense covering?

When is X, a yn-covering of a set A C S, with y, < ﬁ?
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When is X, a dense covering?

When is X, a yn-covering of a set A C S, with y, < ﬁ?

@ Assume Ais “well-behaved" (standard assumption) and
irx1f P(B(x,v/2)NnA) =ca > 0.

Then, X, 4 is a v covering of A with high probability if

A= 0 <dim(A)n+ log n) .
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When is X, a dense covering?

When is X, a yn-covering of a set A C S, with y, < ﬁ?

@ Assume Ais “well-behaved" (standard assumption) and
irx1f P(B(x,v/2)NnA) =ca > 0.

Then, X, 4 is a v covering of A with high probability if

A= 0 <dim(A)n+ log n) .

@ Ifwe let p — 0, then ca — 0 at a rate ©(~*), with v — 0. This would give
dimension dependent rate.
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Consistency of DeBaCl

Consistency of DeBaCl

Let A be an r-cluster of 7 such that its r — e, subcluster A" is (+n, ¢)-thick,
with v, < (ra — €n)/(2 4+ ¢) and ¢ > 0. If the sample X = (Xi,..., Xa) isa
covering of supp(P) then the subgraph of §(r — €n) induced by X, 4 is
connected; if A is also 2e,-away from all the other r clusters, then X, 4 is a
cluster of 7n(r — ,). This holds uniformly over such clusters of 7.
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Cluster trees come in many flavors: r, A, a...and s

DeBaCloutputs a data structure, which can be visualized in different ways.

@ The r-tree: the tree height is indexed by r. Counterintuitive: the tree
grows as r gets smaller and the higher portions of the tree are shorter!
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DeBaCloutputs a data structure, which can be visualized in different ways.

@ The r-tree: the tree height is indexed by r. Counterintuitive: the tree
grows as r gets smaller and the higher portions of the tree are shorter!

@ \-tree: the tree height is indexed by 1/r?, a rescaling proportional to the
values of the k-nn density estimator.
The proportions are right but it is not very interpretable.
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Cluster trees come in many flavors: r, A, a...and s

DeBaCloutputs a data structure, which can be visualized in different ways.

@ The r-tree: the tree height is indexed by r. Counterintuitive: the tree
grows as r gets smaller and the higher portions of the tree are shorter!

@ \-tree: the tree height is indexed by 1/r?, a rescaling proportional to the
values of the k-nn density estimator.
The proportions are right but it is not very interpretable.

@ a-tree: for each a € (0, 1) set 7., to be the a-quantile of 71, ..., 7». The
tree height is indexed by a: the a-level of the tree represents L(7.), i.e.
the a-fraction of “most clusterable" data points. Highly interpretable.
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Cluster trees come in many flavors: r, A, a...and s

DeBaCloutputs a data structure, which can be visualized in different ways.

@ The r-tree: the tree height is indexed by r. Counterintuitive: the tree
grows as r gets smaller and the higher portions of the tree are shorter!

@ \-tree: the tree height is indexed by 1/r?, a rescaling proportional to the
values of the k-nn density estimator.
The proportions are right but it is not very interpretable.

@ a-tree: for each a € (0, 1) set 7., to be the a-quantile of 71, ..., 7». The
tree height is indexed by a: the a-level of the tree represents L(7.), i.e.
the a-fraction of “most clusterable" data points. Highly interpretable.

@ x-tree: each branch has length equal to the fraction of points comprising
it. The sum of the length of all branches and leaves is 1.
Highly interpretable.
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Cluster trees come in many flavors: r, A, a...and s
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Cluster trees come in many flavors: r, A, a...and s

@ The difference can be substantial.
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Weak convergence and the bootstrap

Let B the P-Brownian bridge indexed by the closed balls in R?: a centered
Gaussian process with covariance function

(B,B'Y = P(BNB') = P(B)P(B').

Denote by B(x, r) the value of B at the ball B(x, r).

A. Rinaldo e 1 : Density Based Clustering 39/43



Theoretical Analysis of DeBaC1

Weak convergence and the bootstrap

Let B the P-Brownian bridge indexed by the closed balls in R?: a centered
Gaussian process with covariance function

(B,B'Y = P(BNB') = P(B)P(B').
Denote by B(x, r) the value of B at the ball B(x, r).

Recall that, for x € RY, Fy is the c.d.f. of || X — x| with X ~ P and ry(x) is the
p-th quantile of F.
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Weak convergence and the bootstrap

Let B the P-Brownian bridge indexed by the closed balls in R?: a centered
Gaussian process with covariance function

(B,B'Y = P(BNB') = P(B)P(B').
Denote by B(x, r) the value of B at the ball B(x, r).

Recall that, for x € RY, Fy is the c.d.f. of || X — x| with X ~ P and ry(x) is the
p-th quantile of F.

Theorem (Function delta method)
Assume that, for some constant ¢ > 0 and for P-almost all x,
Fu(ro(x)) > c.

Then,

{ﬁ(?p(x) —1p(x)) ,x € ]Rd} o { %,x € Rd}
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Weak convergence and the bootstrap

Let {r;(x),x € R?} be the bootstrap version of 7, based on the empirical
distribution of Xp,.
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Weak convergence and the bootstrap

Let {r;(x),x € R?} be the bootstrap version of 7, based on the empirical
distribution of Xp,.

Corollary (Boostrap validity)

Conditionally almost surely,

{ﬁ(’r;“(x)f?p(x)) X € ]Rd} ~ %,x € Rd}

Using the bootstrap, we can construct asymptotically correct confidence
bands for r, and the DeBaCltrees.
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Bootstrap confidence sets example
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Bootstrap confidence sets example
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Bootstrap confidence sets example
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Conclusions

@ Density-based clustering is a principled paradigm for clustering.

@ The cluster tree provides an interpretable and highy informative
encoding of all the clustering properties of P.

@ DeBaClis a simple, computationally efficient algorithm for consistently
estimating the cluster tree, even in high dimensions.
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Conclusions

@ Density-based clustering is a principled paradigm for clustering.

@ The cluster tree provides an interpretable and highy informative
encoding of all the clustering properties of P.

@ DeBaClis a simple, computationally efficient algorithm for consistently
estimating the cluster tree, even in high dimensions.

Current and future work:
@ Work out the theoretical properties of the o and « tree.

@ Develop and study methods for constructing confidence sets for cluster
trees and, more generally, for using cluster trees for statistical inference.

@ Provide guidelines on how to choose p!
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