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Topological Data Analysis (TDA):
Extracting information from complex data.

The purpose of TDA is to extract features from complex point
clouds (and images) for: summary, visualization, comparison,
classification, inference.

Many current methods are highly non-robust.

In this talk, I will describe a robust approach (distance-to-a-
measure DTM) and I will discuss its statistical properties.

Before we start, here are some motivating examples:



Cosmic web (source: Max Plank Institut; http://www.mpa-
garching.mpg.de/galform/virgo/millennium/)



Fibrin network (source: Amiredly et al 2011).



Histological Images (source: Singh et al 2014)
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Three VVoronoi foam models.

Which one is different?




NOTE ON SOFTWARE

All calculations were done with the R package: T DA
by Brittany T. Fasy, Jisu Kim, Fabrizio Lecci, Clement Maria.

Built on: Dionysus by Dmitriy Morozov, GUDHI by Clement
Maria, PHAT by Ulrich Bauer, Michael Kerber, Jan Reininghaus.

Download it from:
http://cran.us.r-project.org/web/packages/ TDA /index.html
or

www.stat.cmu.edu/topstat



Algebraic Topology (Homology) in One Slide

Bo=3, f1 =3



PERSISTENT HOMOLOGY

Persistent homology is a multiscale version of homology. (Edels-
brunner, Zomorodian, Harer, Carlsson, ...)

The idea is to find topological features (connected components,
loops, voids etc) at different scales.

e First I will explain persistent homology using unions of balls.
e Then I will explain it using distance functions.

e [ hen we will robustify the distance function.
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IMPORTANT FACTS ABOUT THE PERSISTENCE
DIAGRAM

e It is two dimensional, regardless of the dimension of the data.

e Points close to the diagonal are ‘“‘small features.” (noise?)

e [ he diagram D includes the points plus all the points on the
diagonal.

e There is a metric on the space of diagrams. The bottleneck
distance.
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Persistent homology measures the evolution of features of

{sez ezo}.

The diagram D is a collection of pairs (birth and death times)
{(b1,d1),...,(bm,dm)}. D includes all points on the diagonal.

Distance between two diagrams D1, Do:

bottleneck(D1,D5) = min_ sup ||z — g(2)]]co.
9:D1—D> zeDq
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COMPUTING HOMOLOGY

How do we actually find the connected components, holes, etc
of S¢7

We form a simplicial complex which is a set of simplices. This
complex has the same topology as S..

Computing the homology from the complex reduces to linear
algebra (operations on matrices).

We won't discuss the details in this talk.
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THE DISTANCE FUNCTION

Let S be a compact set.
Define Ag(z) = d(z,S) = inf cg ||z — y|-

Let L; = {z: Ag(x) <t} be a lower level set of the distance
function.

The filtration {L; : t > 0} defines a persistent homology.

Cohen-Steiner, Edeslbrunner and Harer (2007) showed that:

bottleneck(Dq, D>) < sup ||A51 (x) — ASQ(QB)H
x
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Distance function for a circle in the plane.
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Sublevel Sets




THE EMPIRICAL DISTANCE FUNCTION

Now let S = {Xq,...,Xn}. Then
Ag(x) =d(z,S) = miin |z — X;]|.
Let
Li =A{x: Ag(z) <t}

T hen

n
Ly = |J B(X;,t).
1=1

The union of balls is just the lower level sets of the empirical

distance function.
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INTERLUDE: THE STATISTICAL PERSPECTIVE
We are focusing on the following situation:
The data: Xq,..., Xy~ P.
We are interested in some function T'(P) (population quantity).
Example: T (P) = persistent homology of the support of P.

Anything we compute from the data should be viewed as an
estimate of population quantity.

Success means:

-consistency (get correct answer as n — o)

-some measurement of uncertainty (bootstrap confidence sets)
-robustness (don't require fragile conditions on P)
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BOOTSTRAP INFERENCE IN ONE SLIDE
X1,...,Xn~ P.
P, = empirical measure (mass 1/n at each data point).
Estimate 0 = T(P) with § = T(P,).

Bootstrap: Draw Xi,..., X} ~ P,. Compute §* = T(P}). Re-
peat. Find ¢ such that

P(\/n|0* — 0] > ¢| X1,...,Xn) = .
Then P(AeCpr)=1—a+0Op (\%)
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Let X4,...,Xy ~ P where P has support S.

True distance function Ag with persistence diagram D.
Empirical distance function:

An(z) = min |lz — X]]
with diagram D.
Under not so weak conditions, (see our paper, Annals to appear),
sup || An(@) — Ag(@)]| % 0

and this implies that
bottleneck(D, D) & o.

But: if there is any noise or outliers, A, (x) is a disaster!
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Circle, no outliers:
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Cassini curve, no outliers:
Cassini Curve Distance Function
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Circle

Sublevel Set, t=0.25

Distance Function

Persistence Diagram
L
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Circle with Outliers

Distance Function

Sublevel Set, t=0.25
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ROBUST TDA

Suppose that

X1, .., Xn~P=1mR+ (1 -m)(Qx Ps)

where R is a smooth distribution over R? (outliers), @ is noise
(N(0,02I)) and Q is supported on a ‘“small set” S. We want to
estimate the homology of S or the persistent homology of S.
Two robust approaches:

(1) DTM (distance to a measure); described on next slide.

(2) Upper level sets of density p.

First we focus on DTM.
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DTM

Distance-to-a-measure (DTM) invented by: Chazal, Cohen-Steiner
and Merigot (2011).

For each z, let
Ge(t) = P(||X — || < t).
Given 0O<m << 1, the DTM is

() =[G @)Pdu = E||IX — |2 1(IX — ]| < G (m)) |

The sublevel sets of 4 define a persistence diagram D.
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Stability Theorem (Chazal, Cohen-Steiner and Merigot, 2011)

Let P4 have DTM 647 with diagram Dy and P> have DTM ¢4, with
diagram D».

Then,
bottleneck(Dq, Dy) < |01 — 92]|co-

This will help us with statistical inference.
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Suppose that
P=7nmR+ (1-7m)(Q*Ps)

and @ is supported on S and satisfies (a,b)-condition:

Q(B(z,¢€)) > ae’.

Let D be the diagram from ¢ and let Dg be the diagram for the
distance function of S. Then

c/m+ o(1 —|-7T).

bottleneck(D, Dg) < a " L/om1/b 4 Jm

So, when m,0,m are small, D = Dg.
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ESTIMATION AND INFERENCE

The DTM 6(x) = ép(x) is a function of P. If we insert the
empirical measure

we get the plug-in estimator

0= ()

1=

kn 5
[z = X3yl
1

where kp = mn and || X1y —z|| > [| X (o) — =[] = - -
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Voronoi foams (astronomical models): the first two have
have similar topological features, the third has more voids:

Voronoi Model 1 Voronoi Model 2 Voronoi Model 3
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Death
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THEOREM

Under regularity conditions,

V(6% (z) — 6°(x)) ~ B(x)

where B is a centered Gaussian process with covariance kernel
1 [Em) pE7(m)
sey=— [ [ (B[B@ VD 0BV - BWF) Jds d
0 0

and Fp(t) =P(||X — z||?2 < ).

Recall the stability theorem:

bottleneck(D, D) < sup [|8(z) — §(z)].
xr
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BOOTSTRAP CONFIDENCE BAND FOR §
Draw: Xi,...,X} ~ P,. Compute §*. Repeat.

THEOREM: The map ¢ taking probability measures to DTM’'s
iIs Hadamard differentiable. Hence, if we define ¢, by

P(v/n||6% — 8||oo > Ca | X1,...,Xn) = .
Then

A

~ Co
POw—mw<__ S 1-a
— ﬁ
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SIGNIFICANCE OF TOPOLOGICAL FEATURES
Confidence set for true diagram D:

D = {D . bottleneck(D, D) < CO‘}
n

How to display this?

Consider a feature (a point on the diagram) with birth and death
time (b,d). A feature is significant if it is not matched to the
diagonal for any diagram in D i.e. if
Ca
d—b>—.
vn

We can display this by adding a “noise band” on the diagram.
37



Cassini with Noise

Sublevel Set, t=0.5
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ANOTHER APPROACH: DENSITIES

1 &~ 1 (lz— X
KDE: pr(z)==5 —K
pr(x) n@; v ( -
which estimates py,(x) = E[py,(x)]. The upper-level sets
{p,(z) > t} define a persistence diagram D. In TDA we do not

let h > 0. This means that the rates are Op(1/+4/n).

The diagram D of {p;, > t} estimates the diagram D of {p;, > t}.

Then
_ 1
bottleneck(D,D) = O — .
o) P(ﬁ)

39



Alternative view:
Kernel Distances (Phillips, Wang and Zheng 2014):

D2(P,Q) = [ [ Ki(uw,0)dP()dP(w) + [ [ Ky(u,0)dQ(u)dQ(v)
—2 / / K (u, v)dP(u)dQ(v).

Let 6, be a point mass at . Define
D?(z) = D?(P,0,)
— / / K (u, v)dP(w)dP(v) + K (z,z) — 2 / K (2, u)dP(u)
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PLUG-IN ESTIMATOR

D2(x) = 5 35" Kn(Xi, X)) + Ky (o) = = Y Ki(ar, X))
T 7 7

The lower-level sets of D are (essentially) the same as the upper
level sets of py,.

Now we proceed as with the D TM: get diagram, bootstrap etc.
(Similar limiting theorems apply.)

Technical note: & estimates the persistent homology of S. p
really estimates the homology of S.
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INFERENCE

The inferences are based on the stability theorem:

bottleneck(D, D) < ||py, — ppl|oo-

Now we can construct estimate, confidence band, etc.

But: sometimes bottleneck(D, D) < ||p1, — pplloo.
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A SHARPER LIMIT THEOREM

If we make slightly stronger assumptions, we get a better limiting
result.

THEOREM:

V/n bottleneck(D, D) ~ ||Z]|s0

where, Z € R¥, Z ~ N(0,X), and X is a function of the gradient
and Hessian of py,.

This sidesteps the stability theorem. It is directly about the
bottleneck distance.
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BOTTLENECK BOOTSTRAP

Let
F(t) = P(+/n bottleneck(D, D) < t).

Let X7,...,X, ~ P, where P, is the empirical distribution. Let
D* be the diagram from 5% and let

Fn(t) = P(y/n bottleneck(D*, D) | X1,...,Xn) <t)

be the bootstrap approximation to Fi,.

THEOREM:
= P
Sl;flp | Fn(t) — Fn(t)| — O.

So we can use éq = Fp(1 — a)//n.
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Cassini with Noise DTM Bootstrap
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TUNING PARAMETERS

How to choose the tuning parameter: m for DTM, and h for
kernels?

Births and deaths: {(b1,d1),..., (br,dm)}.

Choose parameter to maximize the number of significant fea-
tures:
C.
d; — b; > -

NG

(First suggested informally in Guibas, Morozov and Merigot,
2013, without the notion of statistical significance).
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Persistence

Cassini with Outliers

Kernel Distance

n AA
3 _ AA A
o A
] A FaX A
N
S 4 A
o
o
(3_ —
< | | | |
0.1 0.3 0.5

Persistence
00 02 04 0.6

Persistence

0.10 0.20

0.00

DTM

—A
1 a
A A
in A
_ A
_!\|,| T
0.05 0.15 0.25
m

KDE
A A dim 1
1n A
A\ a

Aa
] AAA

s 47

i
1 T T T |
0.1 0.3 0.5



Defender

Death
10

15 20

5

0

oA

0

| [ I |

5 10 15 20
Birth

Death

1.000

0.990

DTM m0= 0.01

48
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Wall Model (8 nuclei)
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CONCLUDING REMARKS: (2 Slides)
e Boundary bias: padding or reflection.
e [T WO sample testing: in progress

e Applications to astronomy:

Nonparametric 3D map of the IGM using the Lyman-alpha forest.
Cisewski, Croft, Freeman, Genovese, Khandai, Ozbek and Larry
Wasserman. arXiv:1401.1867.

Other applications in progress.

e Computation is slow (high memory demands).
Subsampling Methods for Persistent Homology. Chazal, Fasy,
Lecci, Michel, Rinaldo and Wasserman. arXiv:1406.1901
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CONCLUDING REMARKS

e [ here are other useful “topological features.”

-Peter Bubenik's landscapes.

Stochastic Convergence of Persistence Landscapes and Silhou-
ettes.

Chazal, Fasy, Lecci, Rinaldo, Wasserman. arXiv:1312.0308

-Low dimensional, high density structures (ridges)
Nonparametric ridge estimation. Genovese, Perone-Pacifico, Verdinelli,
Wasserman. (Annals 2014). arXiv:1212.5156.

e Papers can be found at www.stat.cmu.edu/topstat

e Software: also at: www.stat.cmu.edu/topstat
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THANKS
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