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OUTLINE

Main Topic: Random sets Ki,...,K,, ~ P. Infer P or
the “average homology” using functional summaries.
Includes “meta-persistent homology.” (Use persistent ho-
mology to study persistent homology.)

Time permitting:

The tyranny of tuning parmeters. Find data-driven meth-
ods for choosing tuning parameters.

Other TopStat Stuff (later this week): Inference for Per-
sistence diagrams, Metric graphs, Lyman o reconstruc-
tion, Density trees.



Problem: Random sets K,,..., K,, ~ P. Infer P or the
“average homology” using functional summaries.

One approach: compute persistence diagram D; for
eack K,. Then take the Fréchet average i.e. find D to

minimize
Z doo(D7 Dz)‘

This turns out to involve some subtle complications. See
Turner et al (2012) and Munch et al (2013).

We take a different approach. Convert each D; into
a function F; (functional summary) and work with the
functions Fi, ..., F,,. These are random fuctions:

F,...,F, ~ P.
The meanis p(t) = E[F;(t)].



FUNCTIONAL SUMMARIES

Landscapes (Bubenik 2012), Silhouettes, Barcode inten-
sity, Persistence Intensity (Edelsbrunner, Pranav), Salience
(Doraiswarmy et al).

The advantage of function-valued summaries of persis-
tent homology is that we can analyze them using exist-
ing techniques from probability and nonparametric statis-
tics. In particular we look at:

e Means
e Weak convergence

e bootstrap

¢ functional clustering

e meta-persistent homology



TWO SCENARIOS

Scenario 1:

Ki,...,K, ~ P.

K, — D; — F;.

Goal is to infer u = E(F;) (and other things).

There are many ways of going from K; to D,. In fact, we
may have

Kz' —— Data — Dz
but we ignore this (until Wed morning.)



TWO SCENARIOS

Scenario 2: We have a very large dataset
Dy ={Y1,..., YN}

with IN points. The data define a diagram D and func-

tional summary F. But it may be hard to compute D
when N is large.

Draw n subsamples, S;,..., .S, from Dy where |S;| =
m < IN. We have:

Let p,,, = E(F;). Then
[[tm — Flloo < [[Hm — tm|loo + ||m — Flloo = I + I1.
Today we only deal with 1.



BUBENIK’S LANDSCAPES

Start with a persistence diagram D or barcodes B. We
regard this as a set of intervals (birth and death times):

B:DI{(bj,dj): j:]_,...,m}.

For simplicity we assume that m < oc.
Also, we assume that
0<b;<d; <T

for some fixed T < oc.



BUBENIK’S LANDSCAPES

Step 1: Convert each (b, d;) into a triangle function:
T;(t) = [(t —bj) A (dj — 1)) .

Barcode

Triangle
function




Step 2: convert the bag of triangle functions {7’} info a
summary function such as

A(t) = max T;(t).

Bubenik also considers second biggest, third biggest etc.
We will focus on the max for simplicity.

Note that A is 1-Lipschitz.
So now we have:

D; — {T;}7, — As
for: =1,...,n.
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Rotated Persistence Diagram — Landscapes
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Let £+ denote the space of persistence landscapes cor-
responding to the set of diagrams Dy.

Let P be a probability distribution on L+, and let
Aiy..., A, ~ P.
We define the mean landscape as
u(t) = E[Ai(t)], ¢ € [0,T].

Point estimate:

At = Ralt) = — D" Au(t):

Ultimately we want to find £, u such that

P(K(t) < p(t) < u(t) for all t) >1— a.



Recall that
. 1"
An(t) = =) Ai(t), te€[0,T].
L =1

Note that E(A,, (1)) = u(t).

Bubenik (2012) showed that A,, converges pointwise to
p and that the pointwise Central Limit Theorem holds.
We will show that

(v (Ra(t) — n(®)) |

converges weakly fo a Gaussian process on [0, 7] and
we establish the rate of convergence.

te(0,T]



let 7 ={f;: 0 <t < T} where f; : L — R is defined
by

fit(A) = A(t).
Write P(f) = | fdP and let

P, be the empirical measure: mass 1/n at each A,.

We regard /n (A,(t) — p(t)) as an empirical process
indexed by
f € F.Thus, fort € [0, T], we will write

vn (Kn(t) — H(t)) — \/H(Pn — P)(ft) = Gu(t) = Gu(ft)



CONVERGENCE

Theorem. Let G be a Brownian bridge with covariance
function

(L, 8) = / (N £ (N)dP(N)— / £ (N dP(\) / f.(A)dP ()

fort,s € [0, T]. Then G,, ~~ G (converges in distribution).

Theorem. Let W < sup; |G(f)|- Then

sup

P (sup [Gu()] < =) — P(W < 2)

| 7/8
_, ((een)
zER n1/8



INFERENCE

Want ¢,,, u,, such that

P(ﬁn(t) < p(t) < un(t) for all t) >1—a— O(rn),
where r,, = o(1). We use the multiplier bootstrap.
Let &7 = (&41,...,&,) Where §; ~ N (0, 1). Define

Bult) = <= D6 (A(0) = 8u(1)) - L€ 0,71,

Everything is fixed except £ = (&4,... ,sn)N which we
generate. Hence, we know (can compute) Z(a) where

P(v7| |G ()|l > Z(a)) = a.



INFERENCE

The multiplier bootstrap confidence band is
_ Z () _ Z ()
6. (t) = AL(t) — —=, wun(t) = A,(t) + —==.
() = Ru() = == ualt) = Ault) +— =

THEOREM. We have

P(En(t) < p(t) < un(t) for all t) >1-a-0 <(l°if}"37/8) .

Also, sup, (un(t) — £,(t)) = Op (\/%)



IMPROVEMENT: Variable Width

Let

on(t) := \ %Z[ft(Az)]z — [An(2))]?

and

Ho(f) = Ha(A™)(f3) := % Zl ft(Aio)_(;)“(t)‘

Multiplier bootstrap version

- - - t ) _Kn
Ha(fi) = Ha (AT, €1)(f2) = %Z@f ) . ®)



BOOTSTRAP
Let Q () be such that

)\1,...,An> —

The variable width confidence band is

P <sgp\ﬁn<x;,s?)<ft)\ > Q(a)

()= B0 22O, 5,4 90
THEOREM. We have
P(Ean(t) < p(t) < ug, (t) for all t) >1—a—0 <(10,i$5)31/2> :



BEYOND LANDSCAPES

The landscape is just one of many functions that could
be used to summarize persistence.

For 0 < p < oo, we define the Power-Weighted Silhou-

ette -
D i1 |bj — P Tia; b, (2)
D j—1 |bj — a;lP

p small: ¢,(t) is dominated by small barcodes.

pr(t) —

p large: ¢,(t) is dominated by large barcodes.



)

10

)




)

)




)

p=0.1, 1.0,10.0

0.8 1.0

0.2 0.4 0.6

0.0

)

)

04 . 06 0.8 1.0

0.2

0.0

0.2 04 , 06 08 1.0

0.0



(Death-Birth)/2
0 1 2 3 4 5 6

(Death-Birth)/2

0.4

0.2

0.0

Persistence Diagram

0 2 4 6 8 10
(Birth+Death)/2

Persistence Diagram

00 02 04 06 08 10 1.2
(Birth+Death)/2

()

0.4

0.8

0.0

0.00 0.02 0.04 0.06

Silhouette (p=0.1)

o -
N -
~ -
o -
o -

Silhouette (p=0.1)

00 02 04 06 08 10 1.2
t

()

1.0

()

0.00 0.10 0.20 0.30

2.0

0.0

Silhouette (p=1)

o -
N -
~ -
o -
o -

Silhouette (p=3)

00 02 04 06 08 10 1.2
t



Earthquake data (/N = 8000, Rips filtration, 3,, Dionysus

program (Dmitriy Morozov))
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Torus + circle. N = 11, 800 points.

(Death-Birth)/2

1.2

0.8

04

0.0

Sample Space

1 of 30 Diagrams

@8
A

A
A

N

1 2 3
(Birth+Death)/2

1.2

0.8

0.4

0.0

1.2

0.8

04

0.0

Mean 1st Landscape (n=30)
with Adaptive 95% band

Mean Silhouette (p=4)
with Adaptive 95% band

02 04 06 08

0.0

Mean 3rd Landscape (n=30)
with Adaptive 95% band

Mean Silhouette (p=0.1)
with Adaptive 95% band

0.02 0.04 0.06

0.00




Barcode Intensity Function

(1) Turn barcode sideways, (2) drop onto the axis, (3)
smooth. Equivalently: collapase the landscape ftrian-

gles: 5
1 t —0;

F() =) m-K ’

Lr(t) jﬂ-]r ( . )

r > 0 is d bandwidth, K is a kernel,
m; = normalized lifetfime
d; is a point mass at (b; + d;)/2.

“Bias-Variance” tradeoff:
small r: low bias, but large confidence band
large r: high bias (obscures detail) but narrow band.
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Persistence Intensity Function (Weygaert, Edelsbrunner,
Pranav et al.)

Treat points z; = (b;, d;) in persistence diagram as apoint
process then smooth it. They use a histogram but we can
use a kernel:

1 1 ||t—zj||>
Lfri t —_— — _K .
(t) m;ﬂ < r

Again, there is a quasi bias-variance tradeoff.
For many diagrams D,, ..., D, we can simply average
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Work in progress:

1. Optimal choice of r.

2. Different r for each diagram.
3. Spatially varying r.

4. Convergence theory.

5. Bootstrap.

6. Invertibility.

Bias? Note that when » = 0 we can recover D. When
r > 0,the map D — . is (apparently) not invertible. The
“bias” should be related to the modulus of continuity:

m,(€) = sup{due(D, D') : ||tr(D) = t(D')]|oc < €.

We can estimate m/ (0).



Meta Persistent Homology
Given summary functions
F,...,.F,~ P
why should we summarize them with their mean?

Perhaps we should look for clusters in P. Now P does
not have a density but it does have a pseudo-density

Pe(f) = P(Ne(f))

where

N.(f) = {g: d(f,g) < €}.
Estimate

B(F) = - S I(F € N.(f).



Now apply mode clustering (Morse clustering) to p..
Locate the modes of p. using the mean-shift algorithm.

Each mode m; has a lifetime and basin of attraction
which defines the clusters. (Chacon arxiv:1212.1385, Chazal,
Guibas, Oudot and Skraba 2011).
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Met-Persistent Homology of the modes in function space
(using DeBaCIR: Brian Kent, Fabrizio Lecci).
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THE TYRANNY OF TUNING PARAMETERS

(Warning: this is work in progress.)

Let X4,..., X,, ~ G supported on K. Add noise:
Y, = X; +¢€

where ¢ ~ ®. Add clutter: Let U,,...,U, ~ Q.

7 _ Y, with probw
" |U; with prob 1 — 7.

Distribution of Z is P = (1 — 7)Q + 7 (G % ) with density
p(z) = (1= m)a(z) + 7 [ ¢z~ WdG(w)

p is concetrated near K and the persistent homology of
the upper level sets is of interest. (See Fabrizio’s talk later
this week.)



Kernel density estimator:

~ 1 -1 ||fI3—Xz'||>
Tr) = — —K .
p() n;hd ( h

K is any kernel (example: Gaussian).
h > 0, the bandwidth, is crucial.
How to choose h?

Usual method in statistics: cross-validation. No good for
TDA.

(Similarly, distance-to-a-measure (Chazal, Cohen-Steiner
and Merigot 2011) has a smoothing parameter m,.)



FAILURE OF CROSS-VALIDATION FOR TDA
Cross-validation: Minimize

/ Gulle) — pl@))f = J(E) - ot
where
I(h) = [ Bi(@)dz — 2 [ pu(e)p(e)de
- / 72 (z)da — %i $(Z;) held out data
— J(h)

and we minimize J (k) over h.
But L, is the wrong loss function for TDA.



FAILURE OF CROSS-VALIDATION FOR TDA

But in TDA, p might be singular or nearly singular. Con-
sider

1 1 1
P = gN(_5a 1) + 550 + gN(57 1)
where §, is a point mass at 0.
P doesn’t have a density but p;, does, where

pu() = Elpu(e)] = (P + Kr).

\ 1]

JWL




FAILURE OF CROSS-VALIDATION FOR TDA
Cross-validation gives h = 0 which is useless.

Genovese, Perone-Pacifico, Verdinelli and Wasserman
(2013, arxiv:1312.7567) proposed the following:

-compute p;, fo each h

-find modes

-test significance of modes

-chose h to maximize number of significant modes

|
1
3 .65 1 15




Methods for choosing h (and other tuning parameters)
in TDA.

(1) MTSS (Maximum Significant Topological Signal Strength)
Choose h to maximize significant topological signai:

§(h) = Zf(dj — bj > e(h))

where ¢(h) comes from the bootstrap (Fabrizio’s talk).
&(h) = 0 for small h and large h.

Example: mixture with singular component again ...
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Maximum significant topological signai:
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(2) Density Diversity (adapted from an idea in Ferraty
and Vieu 2000).

let Z = (7, ..., Z,) where

_ 1
" ope(X)
Let
S(h) = empirical standard deviationof Z,,..., Z,.

h = 0 implies S(h) = 0.
h = oo implies S(h) = 0.
Choose h to maximimize S(h).
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(3) SKI-BOOT. LepSKI with BOOTstrap.

Oleg Lepski (and co-authors) have a series of papers on
selecting tuning parameters. See, especially, arXiv:1210.7078.
Essentially, it works like this.

1. Start with large h.
2. Test: is there a bandwidth ¢t < h with a significantly
different fit?

P — Ptl] o
T(h) = sup —— .
() t<h  o(h,t)

3. If T'(h) is big, reduce h and repeat. Else, stop.
The details of the procedure are actually very compli-

cated and perhaps not practical. We are working on a
bootstrap version:

o (h,t) = En||p; — Pt||co-



DTM

We can apply similar ideas to distance-to-a-measure
(DTM). (Chazal, Cohen-Steiner, Merigot 2011).

ds(z) = Z 1 X2 (5) — z||?

where k = 8n. Here, 0 < B < 1 is the bandwidth.
Let K be support and let di be distance function. Then

|[dx — dgl||eo < ||dx — dg||oc + ||dg — dg||o-

Here we use a minimum modified diversity:

5(8) = [ (ds(e) - dy°da.
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CONCLUSION

1. Functional summaries: very useful. Still working on
infensity functions.

2. Tuning parameters: this is very important and unsolved.

3. We should really be using locally adaptive tuning pa-
rameters which is even harder.



THE END



