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OUTLINE

Main Topic: Random sets K1, . . . ,Kn ∼ P . Infer P or
the “average homology” using functional summaries.
Includes “meta-persistent homology.” (Use persistent ho-
mology to study persistent homology.)

Time permitting:

The tyranny of tuning parmeters. Find data-driven meth-
ods for choosing tuning parameters.

Other TopStat Stuff (later this week): Inference for Per-
sistence diagrams, Metric graphs, Lyman α reconstruc-
tion, Density trees.



Problem: Random sets K1, . . . ,Kn ∼ P . Infer P or the
“average homology” using functional summaries.

One approach: compute persistence diagram Di for
eack Ki. Then take the Fréchet average i.e. find D to
minimize ∑

i

d∞(D,Di).

This turns out to involve some subtle complications. See
Turner et al (2012) and Munch et al (2013).

We take a different approach. Convert each Di into
a function Fi (functional summary) and work with the
functions F1, . . . , Fn. These are random fuctions:

F1, . . . , Fn ∼ P .

The mean is µ(t) = E[Fi(t)].



FUNCTIONAL SUMMARIES

Landscapes (Bubenik 2012), Silhouettes, Barcode inten-
sity, Persistence Intensity (Edelsbrunner, Pranav), Salience
(Doraiswarmy et al).

The advantage of function-valued summaries of persis-
tent homology is that we can analyze them using exist-
ing techniques from probability and nonparametric statis-
tics. In particular we look at:

• means

• weak convergence

• bootstrap

• functional clustering

• meta-persistent homology



TWO SCENARIOS

Scenario 1:

K1, . . . ,Kn ∼ P .

Ki −→ Di −→ Fi.

Goal is to infer µ = E(Fi) (and other things).

There are many ways of going from Ki to Di. In fact, we
may have

Ki −→ Data −→ Di

but we ignore this (until Wed morning.)



TWO SCENARIOS

Scenario 2: We have a very large dataset

DN = {Y1, . . . , YN}

with N points. The data define a diagram D and func-
tional summary F . But it may be hard to compute D
when N is large.

Draw n subsamples, S1, . . . , Sn from DN where |Si| =
m < N . We have:
Si −→ Di −→ Fi.

Let µm = E(Fi). Then

||µ̂m − F ||∞ ≤ ||µ̂m − µm||∞ + ||µm − F ||∞ = I + II.

Today we only deal with I.



BUBENIK’S LANDSCAPES

Start with a persistence diagram D or barcodes B. We
regard this as a set of intervals (birth and death times):

B = D = {(bj, dj) : j = 1, . . . ,m}.

For simplicity we assume that m <∞.

Also, we assume that

0 ≤ bj ≤ dj ≤ T

for some fixed T <∞.



BUBENIK’S LANDSCAPES

Step 1: Convert each (bj, dj) into a triangle function:

Tj(t) =
[
(t− bj) ∧ (dj − t)

]
+
.

Barcode

Triangle
function



Step 2: convert the bag of triangle functions {Tj} into a
summary function such as

Λ(t) = max
j
Tj(t).

Bubenik also considers second biggest, third biggest etc.
We will focus on the max for simplicity.

Note that Λ is 1-Lipschitz.

So now we have:

Di −→ {Tj}mj=1 −→ Λi

for i = 1, . . . , n.





Rotated Persistence Diagram −→ Landscapes
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Let LT denote the space of persistence landscapes cor-
responding to the set of diagrams DT .

Let P be a probability distribution on LT , and let

Λ1, . . . ,Λn ∼ P.

We define the mean landscape as

µ(t) = E[Λi(t)], t ∈ [0, T ].

Point estimate:

µ̂(t) ≡ Λn(t) =
1

n

n∑
i=1

Λi(t).

Ultimately we want to find `, u such that

P
(
`(t) ≤ µ(t) ≤ u(t) for all t

)
≥ 1− α.



Recall that

Λn(t) =
1

n

n∑
i=1

Λi(t), t ∈ [0, T ].

Note that E(Λn(t)) = µ(t).

Bubenik (2012) showed that Λn converges pointwise to
µ and that the pointwise Central Limit Theorem holds.
We will show that{√

n
(
Λn(t)− µ(t)

) }
t∈[0,T ]

converges weakly to a Gaussian process on [0, T ] and
we establish the rate of convergence.



Let F = {ft : 0 ≤ t ≤ T} where ft : LT → R is defined
by

ft(Λ) = Λ(t).

Write P (f) =
∫
fdP and let

Pn be the empirical measure: mass 1/n at each Λi.

We regard
√
n
(
Λn(t)− µ(t)

)
as an empirical process

indexed by
f ∈ F . Thus, for t ∈ [0, T ], we will write

√
n
(
Λn(t)− µ(t)

)
=
√
n(Pn − P )(ft) = Gn(t) = Gn(ft)



CONVERGENCE

Theorem. Let G be a Brownian bridge with covariance
function

κ(t, s) =

∫
ft(λ)fs(λ)dP (λ)−

∫
ft(λ)dP (λ)

∫
fs(λ)dP (λ)

for t, s ∈ [0, T ]. Then Gn  G (converges in distribution).

Theorem. Let W d
= supt |G(ft)|. Then

sup
z∈R

∣∣∣∣P(sup
t
|Gn(t)| ≤ z

)
− P (W ≤ z)

∣∣∣∣ = O

(
(logn)7/8

n1/8

)
→ 0.



INFERENCE

Want `n, un such that

P
(
`n(t) ≤ µ(t) ≤ un(t) for all t

)
≥ 1− α− O(rn),

where rn = o(1). We use the multiplier bootstrap.

Let ξn1 = (ξ1, . . . , ξn) where ξi ∼ N(0, 1). Define

G̃n(t) =
1
√
n

n∑
i=1

ξi
(
Λi(t)− Λn(t)

)
, t ∈ [0, T ].

Everything is fixed except ξn1 = (ξ1, . . . , ξn) which we
generate. Hence, we know (can compute) Z̃(α) where

P(
√
n||G̃n(t)||∞ > Z̃(α)) = α.



INFERENCE

The multiplier bootstrap confidence band is

`n(t) = Λn(t)−
Z(α)
√
n
, un(t) = Λn(t) +

Z(α)
√
n
.

THEOREM. We have

P
(
`n(t) ≤ µ(t) ≤ un(t) for all t

)
≥ 1−α−O

(
(logn)7/8

n1/8

)
.

Also, supt (un(t)− `n(t)) = OP

(√
1
n

)
.



IMPROVEMENT: Variable Width

Let

σ̂n(t) :=

√√√√1

n

n∑
i=1

[ft(Λi)]2 − [Λn(t))]2

and

Hn(ft) := Hn(Λn
1)(ft) :=

1
√
n

n∑
i=1

ft(Λi)− µ(t)

σ(t)
.

Multiplier bootstrap version

Ĥn(ft) := Ĥn(Λn
1 , ξ

n
1 )(ft) :=

1
√
n

n∑
i=1

ξi
ft(Λi)− Λn(t)

σ̂n(t)
.



BOOTSTRAP

Let Q̂(α) be such that

P

(
sup
t

∣∣∣Ĥn(λn1 , ξn1 )(ft)
∣∣∣ > Q̂(α)

∣∣∣∣∣ λ1, . . . , λn

)
= α.

The variable width confidence band is

`σn(t) = Λn(t)−
Q̂(α)σ̂n(t)√

n
, uσn(t) = Λn(t)+

Q̂(α)σ̂n(t)√
n

.

THEOREM. We have

P
(
`σn(t) ≤ µ(t) ≤ uσn(t) for all t

)
≥ 1−α−O

(
(logn)1/2

n1/8

)
.



BEYOND LANDSCAPES

The landscape is just one of many functions that could
be used to summarize persistence.

For 0 < p ≤ ∞, we define the Power-Weighted Silhou-
ette

φp(t) =

∑n
j=1 |bj − aj|p T(aj,bj)(t)∑n

j=1 |bj − aj|p
.

p small: φp(t) is dominated by small barcodes.

p large: φp(t) is dominated by large barcodes.
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Earthquake data (N = 8000, Rips filtration, β1, Dionysus
program (Dmitriy Morozov))

sample m = 400 epicenters, 30 times.



Torus + circle. N = 11, 800 points.



Barcode Intensity Function

(1) Turn barcode sideways, (2) drop onto the axis, (3)
smooth. Equivalently: collapase the landscape trian-
gles:

ιr(t) =
∑
j

πj
1

r
K

(
t− δj
r

)
r > 0 is a bandwidth, K is a kernel,
πj = normalized lifetime
δj is a point mass at (bj + dj)/2.

“Bias-Variance” tradeoff:
small r: low bias, but large confidence band
large r: high bias (obscures detail) but narrow band.
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Persistence Intensity Function (Weygaert, Edelsbrunner,
Pranav et al.)

Treat points zj = (bj, dj) in persistence diagram as apoint
process then smooth it. They use a histogram but we can
use a kernel:

ιr(t) =
1

m

∑
j

1

r2
K

(||t− zj||
r

)
.

Again, there is a quasi bias-variance tradeoff.

For many diagrams D1, . . . , Dn we can simply average

ι(t) =
1

n

n∑
i=1

ιi(t).
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Work in progress:

1. Optimal choice of r.
2. Different r for each diagram.
3. Spatially varying r.
4. Convergence theory.
5. Bootstrap.
6. Invertibility.

Bias? Note that when r = 0 we can recover D. When
r > 0, the map D → ι is (apparently) not invertible. The
“bias” should be related to the modulus of continuity:

mr(ε) = sup
{
d∞(D,D′) : ||ιr(D)− ιr(D′)||∞ ≤ ε

}
.

We can estimate m′r(0).



Meta Persistent Homology

Given summary functions

F1, . . . , Fn ∼ P

why should we summarize them with their mean?

Perhaps we should look for clusters in P . Now P does
not have a density but it does have a pseudo-density

pε(f) = P(Nε(f))

where
Nε(f) = {g : d(f, g) ≤ ε}.

Estimate

p̂ε(f) =
1

n

n∑
i=1

I(Fi ∈ Nε(f)).



Now apply mode clustering (Morse clustering) to p̂ε.

Locate the modes of p̂ε using the mean-shift algorithm.

Each mode m̂j has a lifetime and basin of attraction
which defines the clusters. (Chacon arxiv:1212.1385, Chazal,
Guibas, Oudot and Skraba 2011).
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Met-Persistent Homology of the modes in function space
(using DeBaClR: Brian Kent, Fabrizio Lecci).
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THE TYRANNY OF TUNING PARAMETERS

(Warning: this is work in progress.)

Let X1, . . . , Xn ∼ G supported on K. Add noise:

Yi = Xi + εi

where ε ∼ Φ. Add clutter: Let U1, . . . , Un ∼ Q.

Zi =

{
Yi with prob π

Ui with prob 1− π.

Distribution of Z is P = (1−π)Q+π(G?Φ) with density

p(z) = (1− π)q(z) + π

∫
φ(z − u)dG(u).

p is concetrated nearK and the persistent homology of
the upper level sets is of interest. (See Fabrizio’s talk later
this week.)



Kernel density estimator:

p̂h(x) =
1

n

n∑
i=1

1

hd
K

(||x−Xi||
h

)
.

K is any kernel (example: Gaussian).

h > 0, the bandwidth, is crucial.

How to choose h?

Usual method in statistics: cross-validation. No good for
TDA.

(Similarly, distance-to-a-measure (Chazal, Cohen-Steiner
and Merigot 2011) has a smoothing parameter m0.)



FAILURE OF CROSS-VALIDATION FOR TDA

Cross-validation: Minimize∫
(p̂h(x)− p(x))2dx = J(h) + constant

where

J(h) =

∫
p̂2
h(x)dx− 2

∫
p̂h(x)p(x)dx

≈
∫
p̂2
h(x)dx−

2

n

k∑
i=1

p̂h(Zi) held out data

= Ĵ(h)

and we minimize Ĵ(h) over h.

But L2 is the wrong loss function for TDA.



FAILURE OF CROSS-VALIDATION FOR TDA

But in TDA, p might be singular or nearly singular. Con-
sider

P =
1

3
N(−5, 1) +

1

3
δ0 +

1

3
N(5, 1)

where δ0 is a point mass at 0.

P doesn’t have a density but ph does, where

ph(x) = E[p̂h(x)] =
d

dx
(P ? Kh).



FAILURE OF CROSS-VALIDATION FOR TDA

Cross-validation gives h = 0 which is useless.

Genovese, Perone-Pacifico, Verdinelli and Wasserman
(2013, arxiv:1312.7567) proposed the following:

-compute p̂h fo each h
-find modes
-test significance of modes
-chose h to maximize number of significant modes
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Methods for choosing h (and other tuning parameters)
in TDA.

(1) MTSS (Maximum Significant Topological Signal Strength)
Choose h to maximize significant topological signal:

ξ(h) =
∑
j

I(dj − bj > ε(h))

where ε(h) comes from the bootstrap (Fabrizio’s talk).

ξ(h) = 0 for small h and large h.

Example: mixture with singular component again ...



Small h and Large h:
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Maximum significant topological signal:
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(2) Density Diversity (adapted from an idea in Ferraty
and Vieu 2000).

Let Z = (Z1, . . . , Zn) where

Zi =
1

p̂h(Xi)
.

Let

S(h) = empirical standard deviation of Z1, . . . , Zn.

h = 0 implies S(h) = 0.

h =∞ implies S(h) = 0.

Choose ĥ to maximimize S(h).
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(3) SKI-BOOT. LepSKI with BOOTstrap.

Oleg Lepski (and co-authors) have a series of papers on
selecting tuning parameters. See, especially, arXiv:1210.7078.
Essentially, it works like this.

1. Start with large h.
2. Test: is there a bandwidth t < h with a significantly

different fit?

T (h) = sup
t<h

||p̂h − p̂t||∞
σ̂(h, t)

.

3. If T (h) is big, reduce h and repeat. Else, stop.

The details of the procedure are actually very compli-
cated and perhaps not practical. We are working on a
bootstrap version:

σ̂(h, t) = Eh||p̂∗t − p̂t||∞.



DTM

We can apply similar ideas to distance-to-a-measure
(DTM). (Chazal, Cohen-Steiner, Merigot 2011).

d̂β(x) =
1

k

k∑
i=1

||Xx(i)− x||2

where k = βn. Here, 0 < β < 1 is the bandwidth.

Let K be support and let dK be distance function. Then

||dK − d̂β||∞ ≤ ||dK − dβ||∞ + ||dβ − d̂β||∞.

Here we use a minimum modified diversity:

s(β) =

∫
(̂dβ(x)− d)2dx.
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CONCLUSION

1. Functional summaries: very useful. Still working on
intensity functions.

2. Tuning parameters: this is very important and unsolved.

3. We should really be using locally adaptive tuning pa-
rameters which is even harder.



THE END


