
Statistical Inference For Functional Summaries of Persistent Homology

> Larry Wasserman CMU www.stat.cmu.edu/topstat

Co-authors: Brittany Fasy, Fabrizio Lecci Fred Chazal, Alessandro Rinaldo

TOPSTAT

www.stat.cmu.edu/topstat

PEOPLE

Sivaraman BalakrishnanYen-Chi ChenJessi CisewskiBrittany FasyChristopher GenoveseBrian KentJisu KimFabrizio LecciAlessandro RinaldoAarti SinghIsa VerdinelliLarry Wasserman

Honorary members: Fred Chazal, Don Sheehy.

Main Topic: Random sets $K_1, \ldots, K_n \sim P$. Infer P or the "average homology" using functional summaries. Includes "meta-persistent homology." (Use persistent homology to study persistent homology.)

Time permitting:

The tyranny of tuning parmeters. Find data-driven methods for choosing tuning parameters.

Other TopStat Stuff (later this week): Inference for Persistence diagrams, Metric graphs, Lyman α reconstruction, Density trees.

Problem: Random sets $K_1, \ldots, K_n \sim P$. Infer P or the "average homology" using functional summaries.

One approach: compute persistence diagram D_i for eack K_i . Then take the Fréchet average i.e. find D to minimize

$$\sum_i d_\infty(D,D_i).$$

This turns out to involve some subtle complications. See Turner et al (2012) and Munch et al (2013).

We take a different approach. Convert each D_i into a function F_i (functional summary) and work with the functions F_1, \ldots, F_n . These are random fuctions:

$$F_1,\ldots,F_n\sim P$$
.

The mean is $\mu(t) = \mathbb{E}[F_i(t)]$.

FUNCTIONAL SUMMARIES

Landscapes (Bubenik 2012), Silhouettes, Barcode intensity, Persistence Intensity (Edelsbrunner, Pranav), Salience (Doraiswarmy et al).

The advantage of function-valued summaries of persistent homology is that we can analyze them using existing techniques from probability and nonparametric statistics. In particular we look at:

- means
- weak convergence
- bootstrap
- functional clustering
- meta-persistent homology

TWO SCENARIOS

Scenario 1:

- $K_1,\ldots,K_n\sim P$.
- $K_i \longrightarrow D_i \longrightarrow F_i$.

Goal is to infer $\mu = \mathbb{E}(F_i)$ (and other things).

There are many ways of going from K_i to D_i . In fact, we may have

 $K_i \longrightarrow \mathrm{Data} \longrightarrow D_i$

but we ignore this (until Wed morning.)

TWO SCENARIOS

Scenario 2: We have a very large dataset

 $\mathcal{D}_N = \{Y_1, \dots, Y_N\}$

with N points. The data define a diagram D and functional summary F. But it may be hard to compute D when N is large.

Draw n subsamples, S_1, \ldots, S_n from \mathcal{D}_N where $|S_i| = m < N$. We have:

$$S_i \longrightarrow D_i \longrightarrow F_i$$
.

Let $\mu_m = \mathbb{E}(F_i)$. Then

 $||\widehat{\mu}_m-F||_\infty\leq ||\widehat{\mu}_m-\mu_m||_\infty+||\mu_m-F||_\infty=I+II.$

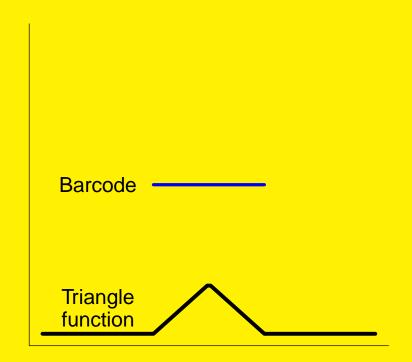
Today we only deal with *I*.

BUBENIK'S LANDSCAPES

Start with a persistence diagram D or barcodes B. We regard this as a set of intervals (birth and death times):

 $B = D = \{(b_j, d_j): j = 1, \dots, m\}.$

For simplicity we assume that $m < \infty$.


Also, we assume that

 $0 \leq b_j \leq d_j \leq T$

for some fixed $T < \infty$.

BUBENIK'S LANDSCAPES

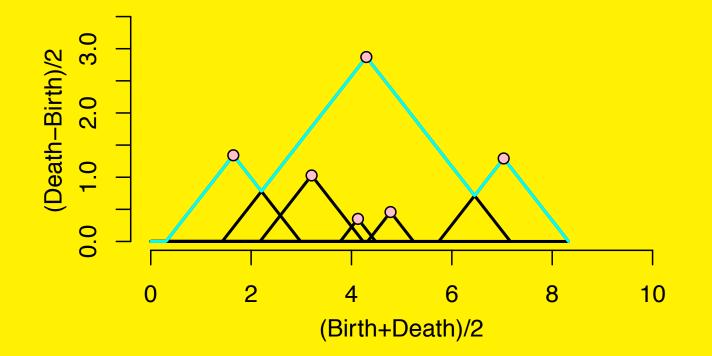
Step 1: Convert each (b_j, d_j) into a triangle function: $T_j(t) = ig[(t-b_j) \wedge (d_j-t)ig]_+.$

Step 2: convert the bag of triangle functions $\{T_j\}$ into a summary function such as

 $\Lambda(t) = \max_j T_j(t).$


Bubenik also considers second biggest, third biggest etc. We will focus on the max for simplicity.

Note that Λ is 1-Lipschitz.


So now we have:

$$D_i \longrightarrow \{T_j\}_{j=1}^m \longrightarrow \Lambda_i$$

for i = 1, ..., n.

Rotated Persistence Diagram \longrightarrow Landscapes

Let \mathcal{L}_T denote the space of persistence landscapes corresponding to the set of diagrams \mathcal{D}_T .

Let P be a probability distribution on \mathcal{L}_T , and let

 $\Lambda_1,\ldots,\Lambda_n\sim P.$

We define the mean landscape as

 $\mu(t) = \mathbb{E}[\Lambda_i(t)], \hspace{1em} t \in [0,T].$

Point estimate:

$$\widehat{\mu}(t)\equiv\overline{\Lambda}_n(t)=rac{1}{n}\sum_{i=1}^n\Lambda_i(t).$$

Ultimately we want to find ℓ, u such that

 $\mathbb{P}\Big(\ell(t) \leq \mu(t) \leq u(t) ext{ for all } t\Big) \geq 1-lpha.$

Recall that

$$\overline{\Lambda}_n(t) = rac{1}{n}\sum_{i=1}^n \Lambda_i(t), \hspace{1em} t \in [0,T].$$

Note that $\mathbb{E}(\overline{\Lambda}_n(t)) = \mu(t).$

Bubenik (2012) showed that $\overline{\Lambda}_n$ converges pointwise to μ and that the pointwise Central Limit Theorem holds. We will show that

$$\left\{\sqrt{n}\left(\overline{\Lambda}_n(t)-\mu(t)
ight)
ight\}_{t\in[0,T]}$$

converges weakly to a Gaussian process on [0, T] and we establish the rate of convergence.

Let $\mathcal{F} = \{f_t: \ 0 \leq t \leq T\}$ where $f_t: \mathcal{L}_T o \mathbb{R}$ is defined by

$$f_t(\Lambda) = \Lambda(t).$$

Write $P(f) = \int f dP$ and let

 P_n be the empirical measure: mass 1/n at each Λ_i .

We regard $\sqrt{n} \left(\overline{\Lambda}_n(t) - \mu(t)\right)$ as an empirical process indexed by $f \in \mathcal{F}$. Thus, for $t \in [0, T]$, we will write

 $\sqrt{n}\left(\overline{\Lambda}_n(t)-\mu(t)
ight)=\sqrt{n}(P_n-P)(f_t)=\mathbb{G}_n(t)~=~\mathbb{G}_n(f_t)$

CONVERGENCE

Theorem. Let G be a Brownian bridge with covariance function

$$\kappa(t,s) = \int f_t(\lambda) f_s(\lambda) dP(\lambda) - \int f_t(\lambda) dP(\lambda) \int f_s(\lambda) dP(\lambda)$$

for $t,s \in [0,T]$. Then $\mathbb{G}_n \rightsquigarrow \mathbb{G}$ (converges in distribution).

Theorem. Let $W \stackrel{d}{=} \sup_t |\mathbb{G}(f_t)|$. Then

$$\sup_{z\in\mathbb{R}}\left|\mathbb{P}\left(\sup_t \left|\mathbb{G}_n(t)
ight|\leq z
ight)-\mathbb{P}\left(W\leq z
ight)
ight|=O\left(rac{(\log n)^{7/8}}{n^{1/8}}
ight)
ightarrow 0.$$

INFERENCE

Want ℓ_n, u_n such that

 $\mathbb{P}\Big(\ell_n(t) \leq \mu(t) \leq u_n(t) ext{ for all } t\Big) \geq 1-lpha - O(r_n),$

where $r_n = o(1)$. We use the multiplier bootstrap.

Let $\xi_1^n = (\xi_1, \dots, \xi_n)$ where $\xi_i \sim N(0, 1)$. Define

$$\widetilde{\mathbb{G}}_n(t) = rac{1}{\sqrt{n}} \sum_{i=1}^n oldsymbol{\xi}_i \left(\Lambda_i(t) - \overline{\Lambda}_n(t)
ight) \ , \ t \in [0,T].$$

Everything is fixed except $\xi_1^n = (\xi_1, \dots, \xi_n)$ which we generate. Hence, we know (can compute) $\widetilde{Z}(\alpha)$ where

 $\mathbb{P}(\sqrt{n}||\widetilde{\mathbb{G}}_n(t)||_\infty > \widetilde{Z}(lpha)) = lpha.$

INFERENCE

The multiplier bootstrap confidence band is

$$\ell_n(t) = \overline{\Lambda}_n(t) - rac{Z(lpha)}{\sqrt{n}}, \hspace{1em} u_n(t) = \overline{\Lambda}_n(t) + rac{Z(lpha)}{\sqrt{n}}.$$

THEOREM. We have

$$\mathbb{P}\Big(\ell_n(t) \leq \mu(t) \leq u_n(t) ext{ for all } t\Big) \geq 1 - lpha - O\left(rac{(\log n)^{7/8}}{n^{1/8}}
ight).$$

Also, $\sup_t \left(u_n(t) - \ell_n(t)\right) = O_P\left(\sqrt{rac{1}{n}}
ight).$

IMPROVEMENT: Variable Width

Let

$$\widehat{\sigma}_n(t):=\sqrt{rac{1}{n}\sum_{i=1}^n [f_t(\Lambda_i)]^2-[\overline{\Lambda}_n(t))]^2}$$

and

$$\mathbb{H}_n(f_t):=\mathbb{H}_n(\Lambda_1^n)(f_t):=rac{1}{\sqrt{n}}\sum_{i=1}^nrac{f_t(\Lambda_i)-\mu(t)}{\sigma(t)}.$$

Multiplier bootstrap version

$$\widehat{\mathbb{H}}_n(f_t):=\widehat{\mathbb{H}}_n(\Lambda_1^n,\xi_1^n)(f_t):=rac{1}{\sqrt{n}}\sum_{i=1}^n\xi_irac{f_t(\Lambda_i)-\Lambda_n(t)}{\widehat{\sigma}_n(t)}.$$

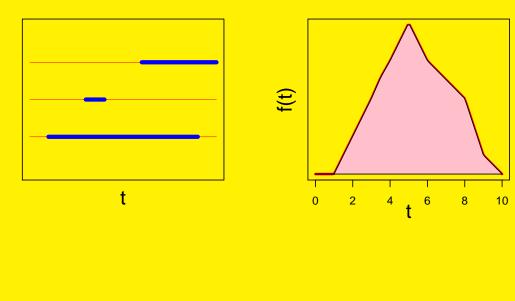
BOOTSTRAPLet $\widehat{Q}(\alpha)$ be such that $\mathbb{P}\left(\sup_{t} \left|\widehat{\mathbb{H}}_{n}(\lambda_{1}^{n},\xi_{1}^{n})(f_{t})\right| > \widehat{Q}(\alpha) \ | \ \lambda_{1},\ldots,\lambda_{n}\right) = \alpha.$

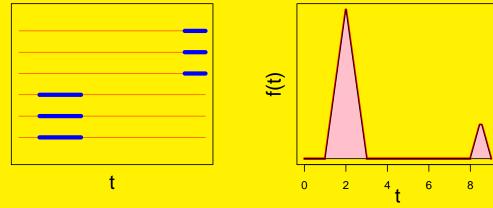
The variable width confidence band is

$$\ell_{\sigma_n}(t) = \overline{\Lambda}_n(t) - rac{\widehat{Q}(lpha) \widehat{\sigma}_n(t)}{\sqrt{n}}, \ \ u_{\sigma_n}(t) = \overline{\Lambda}_n(t) + rac{\widehat{Q}(lpha) \widehat{\sigma}_n(t)}{\sqrt{n}}.$$

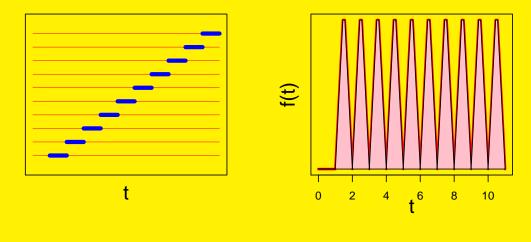
THEOREM. We have

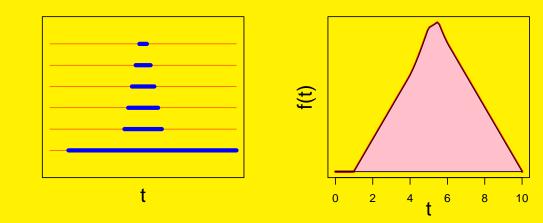
$$\mathbb{P}\Big(\ell_{\sigma_n}(t) \leq \mu(t) \leq u_{\sigma_n}(t) ext{ for all } t\Big) \geq 1{-}lpha{-}O\left(rac{(\log n)^{1/2}}{n^{1/8}}
ight).$$

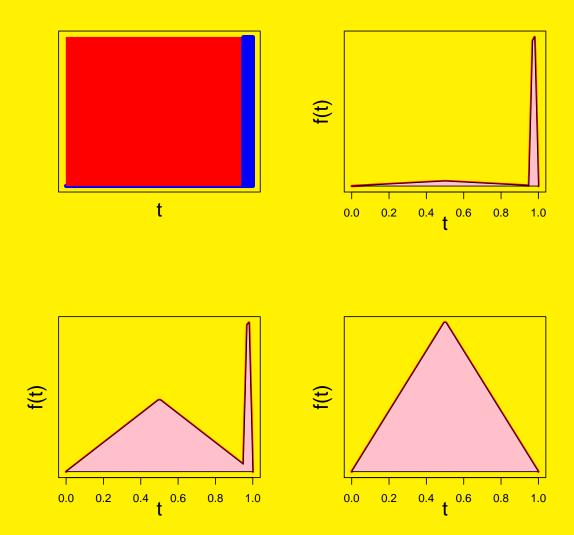

BEYOND LANDSCAPES

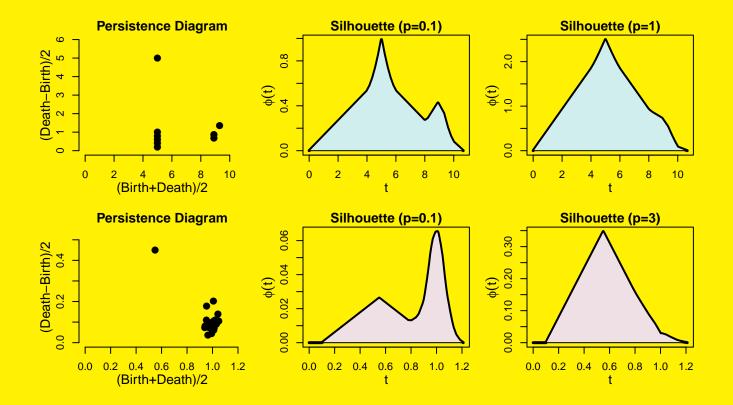

The landscape is just one of many functions that could be used to summarize persistence.

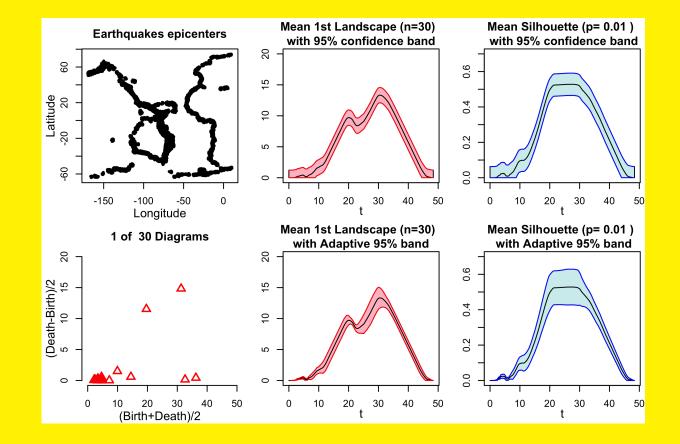
For 0 , we define the Power-Weighted Silhouette


$$\phi_p(t) = rac{\sum_{j=1}^n |b_j - a_j|^p \ T_{(a_j, b_j)}(t)}{\sum_{j=1}^n |b_j - a_j|^p}.$$

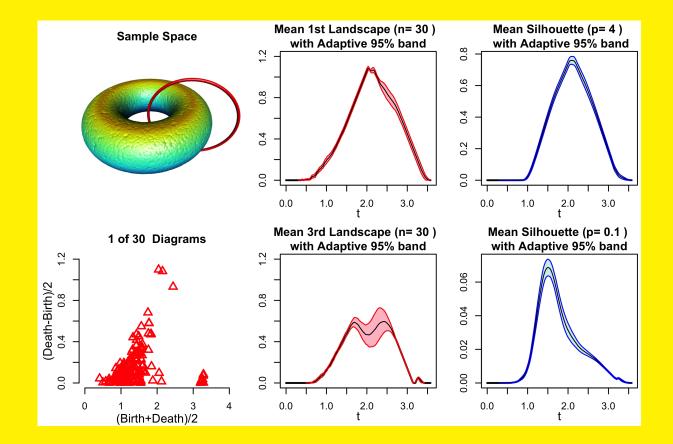

p small: $\phi_p(t)$ is dominated by small barcodes. p large: $\phi_p(t)$ is dominated by large barcodes. p = 1







$$p=0.1,\ 1.0,10.0$$



Earthquake data (N = 8000, Rips filtration, β_1 , Dionysus program (Dmitriy Morozov))

sample m = 400 epicenters, 30 times.

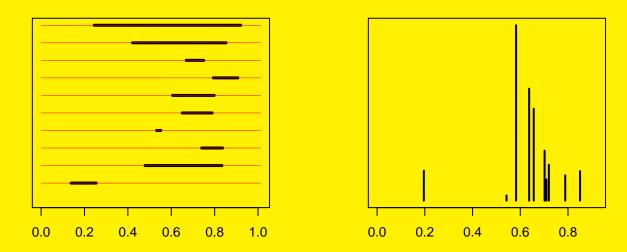
Torus + circle. N = 11,800 points.

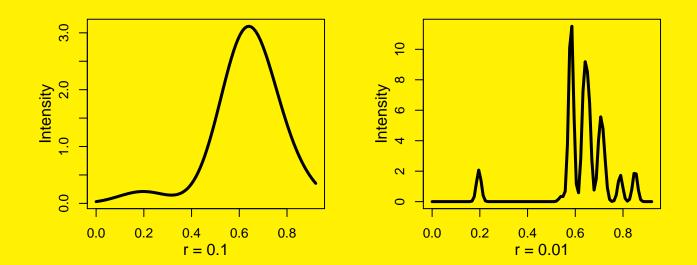
Barcode Intensity Function

(1) Turn barcode sideways, (2) drop onto the axis, (3) smooth. Equivalently: collapase the landscape triangles:

$$\iota_r(t) = \sum_j \pi_j \, rac{1}{r} K\left(rac{t-\delta_j}{r}
ight)$$

r > 0 is a bandwidth, K is a kernel,


 $\pi_i =$ normalized lifetime

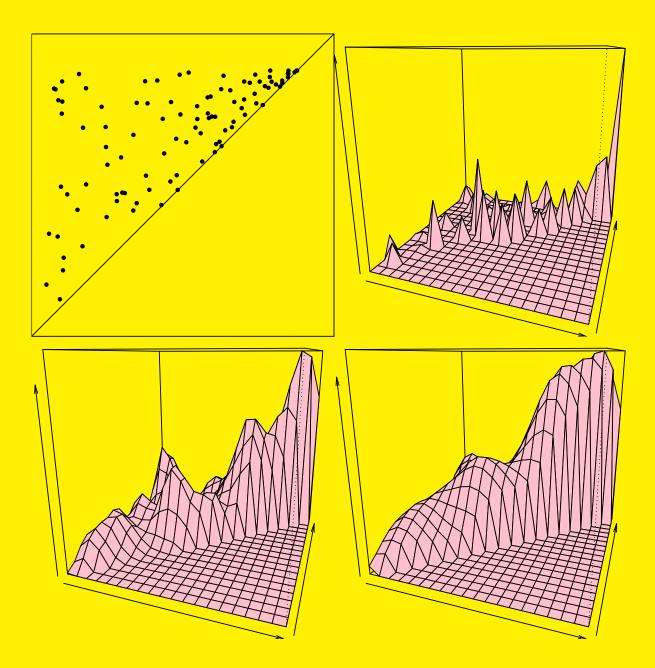

 δ_j is a point mass at $(b_j + d_j)/2$.

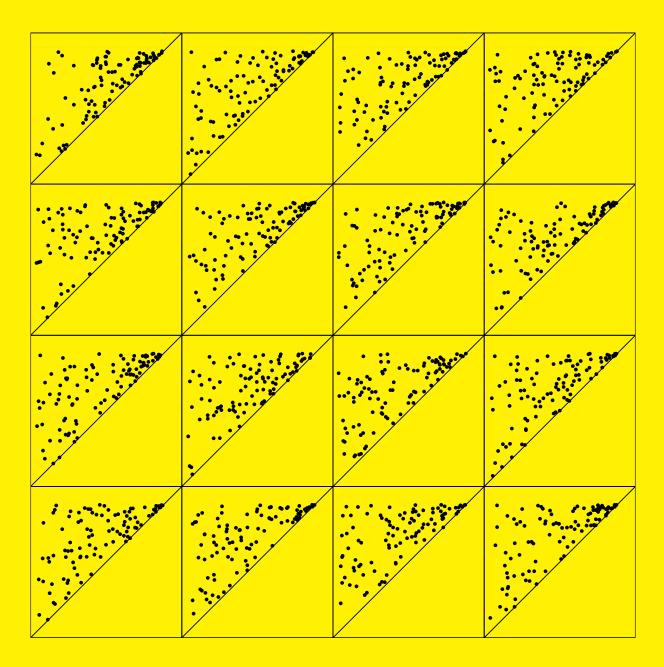
"Bias-Variance" tradeoff:

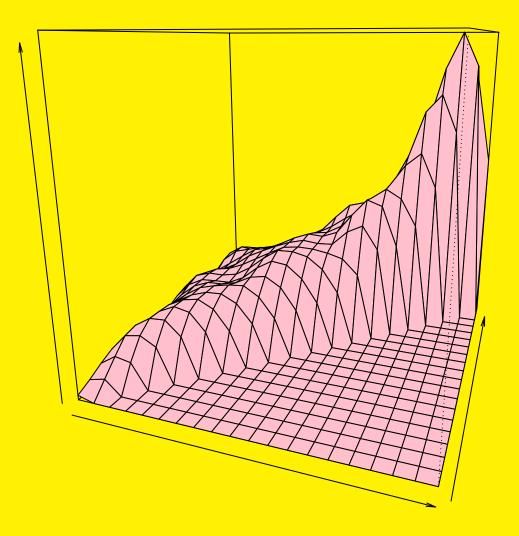
small r: low bias, but large confidence band

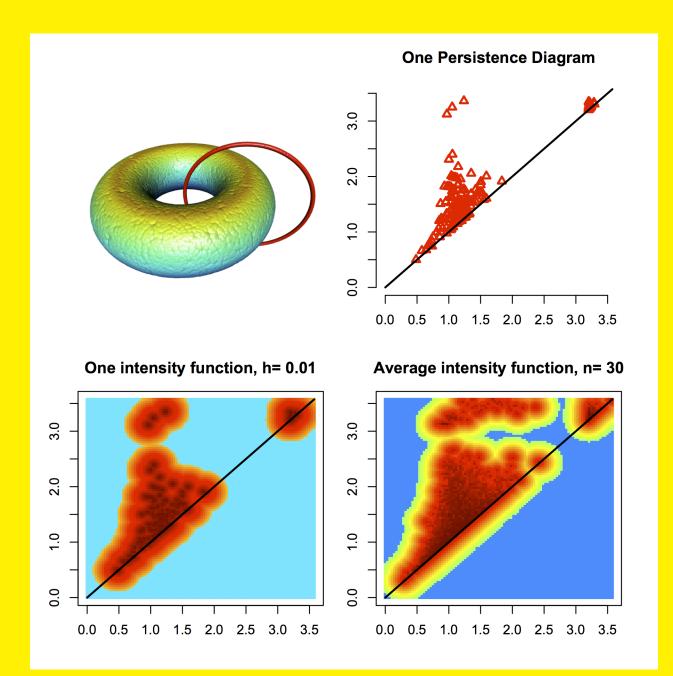
large r: high bias (obscures detail) but narrow band.

Persistence Intensity Function (Weygaert, Edelsbrunner, Pranav et al.)


Treat points $z_j = (b_j, d_j)$ in persistence diagram as apoint process then smooth it. They use a histogram but we can use a kernel:


$$\iota_r(t) = rac{1}{m} \sum_j rac{1}{r^2} K\left(rac{||t-z_j||}{r}
ight).$$


Again, there is a quasi bias-variance tradeoff.


For many diagrams D_1, \ldots, D_n we can simply average

$$\iota(t) = rac{1}{n}\sum_{i=1}^n \iota_i(t).$$

Work in progress:

- 1. Optimal choice of r.
- 2. Different r for each diagram.
- 3. Spatially varying r.
- 4. Convergence theory.
- 5. Bootstrap.
- 6. Invertibility.

Bias? Note that when r = 0 we can recover D. When r > 0, the map $D \rightarrow \iota$ is (apparently) not invertible. The "bias" should be related to the modulus of continuity:

 $m_r(\epsilon) = \sup\Big\{d_\infty(D,D'): \ ||\iota_r(D) - \iota_r(D')||_\infty \le \epsilon\Big\}.$ We can estimate $m'_r(0).$

Meta Persistent Homology

Given summary functions

 $F_1,\ldots,F_n\sim P$

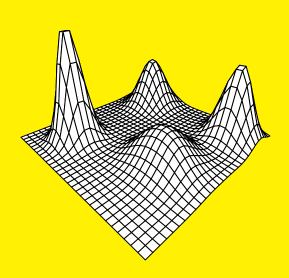
why should we summarize them with their mean?

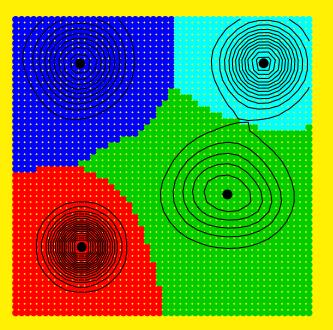
Perhaps we should look for clusters in P. Now P does not have a density but it does have a pseudo-density

 $p_\epsilon(f) = \mathbb{P}(N_\epsilon(f))$

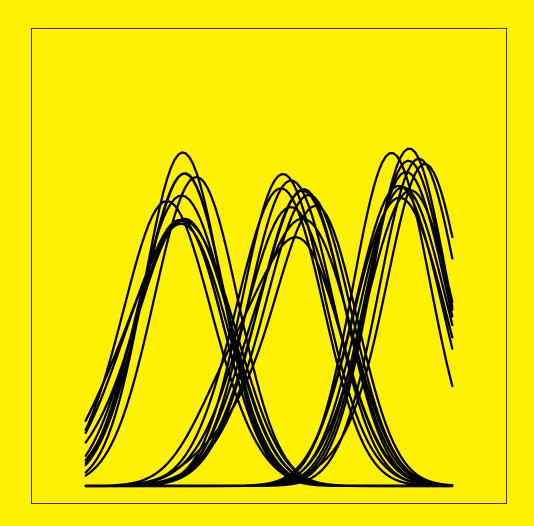
where

$$N_\epsilon(f) = \{g: \ d(f,g) \leq \epsilon\}.$$

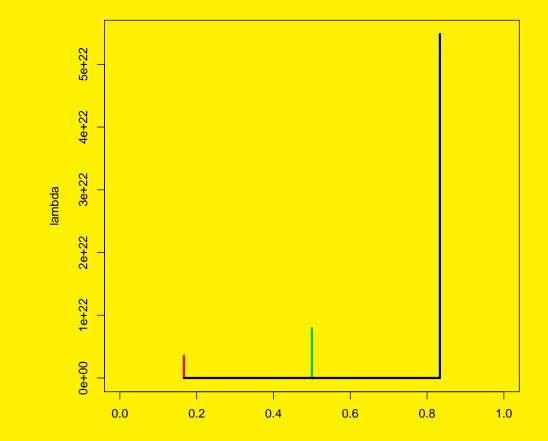

Estimate


$$\widehat{p}_\epsilon(f) = rac{1}{n}\sum_{i=1}^n I(F_i\in N_\epsilon(f)).$$

Now apply mode clustering (Morse clustering) to \widehat{p}_{ϵ} .


Locate the modes of \widehat{p}_{ϵ} using the mean-shift algorithm.

Each mode \widehat{m}_j has a lifetime and basin of attraction which defines the clusters. (Chacon arxiv:1212.1385, Chazal, Guibas, Oudot and Skraba 2011).



	_			
		·		
· · · · · · · · · · · · · · · · · · ·				
		•	-	
		_	_	
		the second s		
the second se	and the second		and the second	and the second
	and the second	and the second	and the second	and the second
the second se	and the second			and the second
		_		

Met-Persistent Homology of the modes in function space (using DeBaCIR: Brian Kent, Fabrizio Lecci).

THE TYRANNY OF TUNING PARAMETERS

(Warning: this is work in progress.)

Let $X_1, \ldots, X_n \sim G$ supported on K. Add noise:

$$Y_i = X_i + \epsilon_i$$

where $\epsilon \sim \Phi$. Add clutter: Let $U_1, \ldots, U_n \sim Q$.

$$Z_i = egin{cases} Y_i & ext{with prob} \ \pi \ U_i & ext{with prob} \ 1-\pi \end{cases}$$

Distribution of Z is $P = (1 - \pi)Q + \pi(G \star \Phi)$ with density

$$p(z)=(1-\pi)q(z)+\pi\int\phi(z-u)dG(u).$$

p is concetrated near K and the persistent homology of the upper level sets is of interest. (See Fabrizio's talk later this week.)

Kernel density estimator:

$$\widehat{p}_h(x) = rac{1}{n}\sum_{i=1}^n rac{1}{h^d} K\left(rac{||x-X_i||}{h}
ight).$$

K is any kernel (example: Gaussian).

h > 0, the bandwidth, is crucial.

How to choose h?

Usual method in statistics: cross-validation. No good for TDA.

(Similarly, distance-to-a-measure (Chazal, Cohen-Steiner and Merigot 2011) has a smoothing parameter m_0 .)

FAILURE OF CROSS-VALIDATION FOR TDA

Cross-validation: Minimize

$$\int (\widehat{p}_h(x) - p(x))^2 dx = J(h) + ext{constant}$$

where

$$egin{aligned} J(h) &= \int \widehat{p}_h^2(x) dx - 2 \int \widehat{p}_h(x) p(x) dx \ &pprox \int \widehat{p}_h^2(x) dx - rac{2}{n} \sum_{i=1}^k \widehat{p}_h(Z_i) & ext{held out data} \ &= \widehat{J}(h) \end{aligned}$$

and we minimize $\widehat{J}(h)$ over h.

But L_2 is the wrong loss function for TDA.

FAILURE OF CROSS-VALIDATION FOR TDA

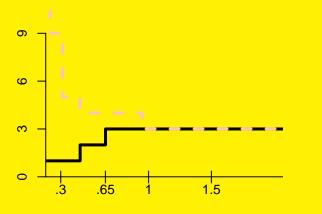
But in TDA, p might be singular or nearly singular. Consider

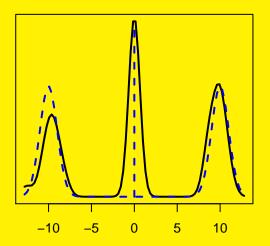
$$P=rac{1}{3}N(-5,1)+rac{1}{3}\delta_{0}+rac{1}{3}N(5,1)$$

where δ_0 is a point mass at 0.

P doesn't have a density but p_h does, where

$$p_h(x) = \mathbb{E}[\widehat{p}_h(x)] = rac{d}{dx}(P \star K_h)$$


FAILURE OF CROSS-VALIDATION FOR TDA


Cross-validation gives h = 0 which is useless.

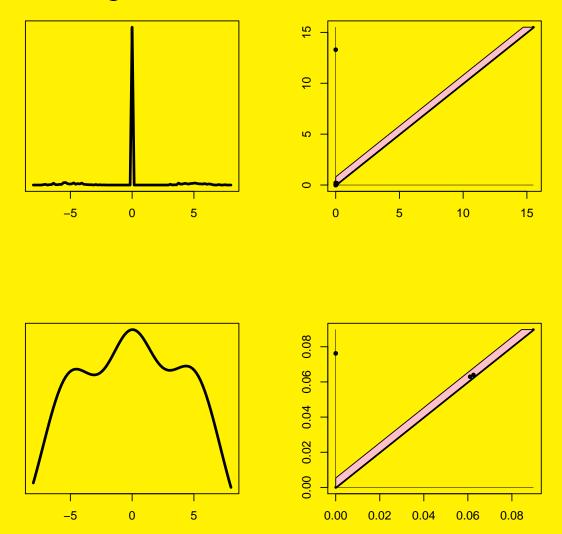
Genovese, Perone-Pacifico, Verdinelli and Wasserman (2013, arxiv:1312.7567) proposed the following:

- -compute \widehat{p}_h fo each h
- -find modes
- -test significance of modes

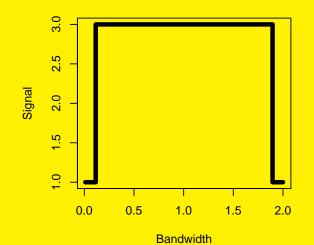
-chose h to maximize number of significant modes

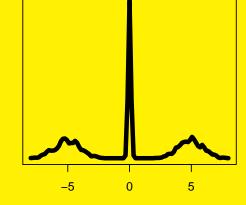
Methods for choosing h (and other tuning parameters) in TDA.

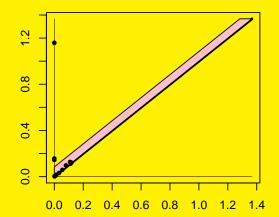
(1) MTSS (Maximum Significant Topological Signal Strength) Choose h to maximize significant topological signal:


$$oldsymbol{\xi}(h) = \sum_j I(d_j - b_j > \epsilon(h))$$

where $\epsilon(h)$ comes from the bootstrap (Fabrizio's talk).


 $\xi(h) = 0$ for small h and large h.

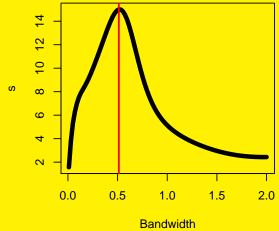

Example: mixture with singular component again ...

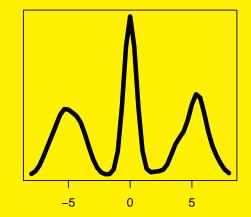

Small *h* and Large *h*:

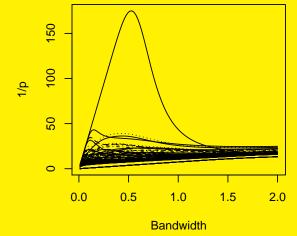
Maximum significant topological signal:

(2) **Density Diversity** (adapted from an idea in Ferraty and Vieu 2000).

Let $Z = (Z_1, \ldots, Z_n)$ where


$$Z_i = rac{1}{\widehat{p}_h(X_i)}.$$


Let


S(h) = empirical standard deviation of Z_1, \ldots, Z_n .

- h = 0 implies S(h) = 0.
- $h = \infty$ implies S(h) = 0.

Choose \widehat{h} to maximimize S(h).

(3) SKI-BOOT. LepSKI with BOOTstrap.

Oleg Lepski (and co-authors) have a series of papers on selecting tuning parameters. See, especially, arXiv:1210.7078. Essentially, it works like this.

- 1. Start with large h.
- 2. Test: is there a bandwidth t < h with a significantly different fit?

$$T(h) = \sup_{t < h} rac{||\widehat{p}_h - \widehat{p}_t||_\infty}{\widehat{\sigma}(h,t)}.$$

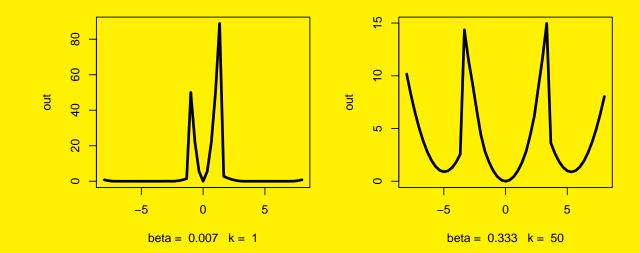
3. If T(h) is big, reduce h and repeat. Else, stop.

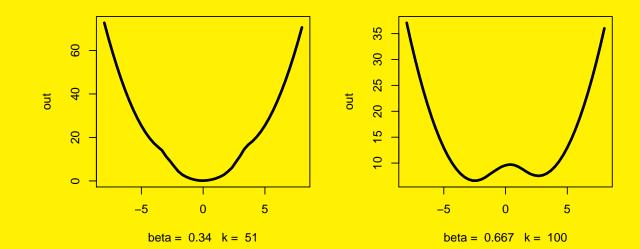
The details of the procedure are actually very complicated and perhaps not practical. We are working on a bootstrap version:

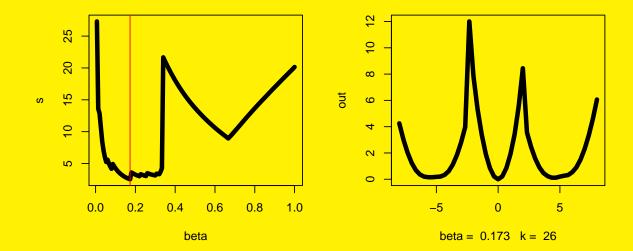
 $\widehat{\sigma}(h,t) = \mathbb{E}_h || \widehat{p}_t^* - \widehat{p}_t ||_\infty.$

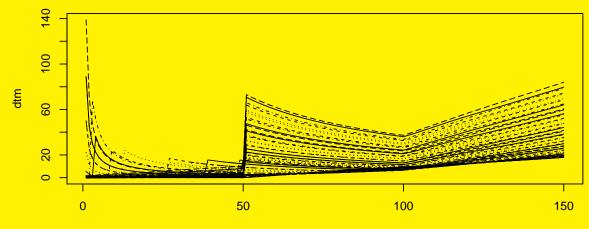
DTM

We can apply similar ideas to distance-to-a-measure (DTM). (Chazal, Cohen-Steiner, Merigot 2011).


$$\widehat{d}_eta(x) = rac{1}{k} \sum_{i=1}^k ||X_x(i) - x||^2$$


where $k = \beta n$. Here, $0 < \beta < 1$ is the bandwidth.


Let K be support and let d_K be distance function. Then $||d_K - \widehat{d}_\beta||_\infty \leq ||d_K - d_\beta||_\infty + ||d_\beta - \widehat{d}_\beta||_\infty.$


Here we use a minimum modified diversity:

$$s(eta) = \int \widehat (d_eta(x) - \overline d)^2 dx.$$

k

CONCLUSION

- 1. Functional summaries: very useful. Still working on intensity functions.
- 2. Tuning parameters: this is very important and unsolved.
- 3. We should really be using locally adaptive tuning parameters which is even harder.

THE END