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Confidence Sets for Persistence Diagrams

Topological Spaces
Nerve Complexes

Nerve Lemma

If X is a set of closed convex
sets, then Nrv(X ) is topologically
equivalent to

⋃
X (up to homotopy type).
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Confidence Sets for Persistence Diagrams

Homology

d−1(0)

β0 = n

β1 = 0

Simplicial Homology

Xp is the power set of all p-simplices.

Cp = (Xp,+2).

∂p : Cp → Cp−1 is the boundary map.

Hp = Ker(∂p)/Im(∂p+1)

βp = rank(Hp).
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Confidence Sets for Persistence Diagrams

Persistent Homology
Lower-Level Set Filtration

Let M be a compact topological space.
Let f : M→ R be continuous.
We consider all sets of the form Mt := f −1((−∞, t]).
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Confidence Sets for Persistence Diagrams

Persistent Homology
Upper-Level Set Filtration

Let M be a compact topological space.
Let f : M→ R be continuous.
We consider all sets of the form Mt := f −1([t,∞)).

B. Fasy (Tulane) Statistics and Topology 3 June 2014 9 / 48



Confidence Sets for Persistence Diagrams

Distance and Stability
A Metric on Persistence Diagrams

B. Fasy (Tulane) Statistics and Topology 3 June 2014 10 / 48



Confidence Sets for Persistence Diagrams

Distance and Stability
A Metric on Persistence Diagrams

B. Fasy (Tulane) Statistics and Topology 3 June 2014 10 / 48



Confidence Sets for Persistence Diagrams

Bottleneck Distance

Given two persistence diagrams,
find the best perfect matching M
between the point sets.

Minimize Cost

We wish to find

W∞ = min
M
{ max

(p,q)∈M
||p − q||∞}.
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Confidence Sets for Persistence Diagrams

Stability of Matchings

Bottleneck Stability Theorem [CDGO]

||f1 − f2||∞ ≥ W∞(D1,D2)
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Topological Inference
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Confidence Sets for Persistence Diagrams

Objective

Let DT denote the set of all T -bounded persistence diagrams.

Confidence Sets

Given α ∈ (0, 1) and unknown diagram D, we want Cα ⊂ DT such that

P(D ∈ Cα) ≥ 1− α.

Question

If D̂ is an estimate of D, how close is D̂ to D ?
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Confidence Sets for Persistent Diagrams

Cα = {D ∈ DT : W∞(D, D̂) ≤ t(α)}
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Confidence Sets for Persistence Diagrams

Statistical Model

M is a manifold.
P is a probability distribution supported on M.
Observe data X1,X2, . . . ,Xn ∼ P.
Compute D̂n = Dgm−(X1, . . . ,Xn)

Question

How does D̂n compare to E(D̂n) ≈ Dgm−(M)?

Answer

Find Cα such that P(E(D̂n) ∈ Cα) ≥ 1− α. How?
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Confidence Sets for Persistence Diagrams

Computing a Confidence Interval
With Infinite Resources

Repeatedly sample n data points, obtaining:

Θ̂n,1, . . . , Θ̂n,N via simulation.

Confidence Intervals

P(Θn(M) ∈ [0, qα]) ≥ 1− α.
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Confidence Sets for Persistence Diagrams

Bootstrapping
When We Can Only Take One Sample

We have one sample:
Sn = {X1, . . . ,Xn}

Subsample (with replacement),
obtaining: {X ∗1 , . . . ,X ∗n }

Compute Θ̂∗n = Θ(X ∗1 , . . . ,X
∗
n ).

Repeat N times, obtaining:
Θ̂∗n,1, . . . , Θ̂

∗
n,N .
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Confidence Sets for Persistence Diagrams Distance Function

Distance to a Subset

dM(a) = infx∈M ||x − a||
D = Dgm−p (dM)

P has continuous density p.
support(P) = M.
Sn = {X1, . . . ,Xn} ∼ P
D̂ = Dgm−p (dSn)
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Confidence Sets for Persistence Diagrams Distance Function

Subsampling
A Variant of the Bootstrap

Let S ib be a subsample of size b < n, for i = 1, . . . ,B.
Lb is the CDF of H(S ib,Sn).

Confidence Sets from Subsampling [FLRWBS]

Assume that p(x) is bounded away from zero.
Then, almost surely, for all large n,

P
(
||dM − dSn ||∞ > 2L−1

b (α)
)
≤ α + O

(√
1/n
)

[RS-2002] On the uniform asymptotic validity of subsampling and the bootstrap. Annals
of Statistics.
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Confidence Sets for Persistence Diagrams Distance Function

Putting It All Together

Subsampling Theorem

P
(
||dM − dSn ||∞ > 2L−1

b (α)
)
≤ α + O

(√
1/n
)

Bottleneck Stability Theorem

||dM − dSn ||∞ ≥ W∞(D, D̂n)

Confidence Sets for Persistence Diagrams

P
(
W∞(D, D̂n) > 2L−1

b (α)
)
≤ α + O

(√
1/n
)

Asymptotic Confidence Sets for Persistence Diagrams

lim
n→∞

P
(
W∞(D, D̂n) ≤ 2L−1

b (α)
)
≥ 1− α
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Confidence Sets for Persistence Diagrams Distance Function

Varying α

α = 0.001, 0.05, 0.25
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Confidence Sets for Persistence Diagrams Distance Function

Two More Methods

Sn = S1,n
⊔
S2,n.

Theorem (Concentration of Measure)

There exists t̂cm = t̂cm(α, d , n,S1,n) such that

P
(
W∞(D, D̂n) > t̂cm

)
≤ α + O

((
log n

n

)1/d+2
)
.

Theorem (Method of Shells)

There exists t̂s = t̂s(α, d , n,K ,S1,n) such that

P
(
W∞(D, D̂n) > t̂s

)
≤ α + O

((
log n

n

)1/d+2
)
.
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Confidence Sets for Persistence Diagrams Distance Function

These Methods are Different

Concentration of Measure

t̂cm is found by solving the following for t:

2d+1

td ρ̂1,n
exp

(
−ntd ρ̂1,n

2

)
= α.

Shells

t̂s is found by solving the following for t:

2d+1

td

∫ ∞
ρ̂n

ĝ(v)

v
exp

(
−nvtd ρ̂1,n

2

)
dv = α.
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Confidence Sets for Persistence Diagrams Distance Function

Distance Function Examples
Uniform Distribution on Unit Circle
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Distance Function Examples
Uniform Distribution on Cassini Curve
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Confidence Sets for Persistence Diagrams Distance Function

Distance Function Examples
Cassini Curve with Outliers
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Confidence Sets for Persistence Diagrams Distance Function

Distance Function Examples
Normal Distribution on Unit Circle
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Confidence Sets for Persistence Diagrams Distance Function

The Intersection of Statistics and Topology:
Stochastic Convergence of Persistence Landscapes and Silhouettes

Brittany Terese Fasy

joint work with F. Chazal, F. Lecci, B. Michel
A. Rinaldo, L. Wasserman

3 June 2014

[CFLRW] Stochastic Convergence of Persistence Landscapes and
Silhouettes. ArXiv. SoCG 2014 Proceedings, Kyoto. Journal version
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Confidence Sets for Persistence Diagrams Distance Function

Persistence Landscapes

[B-2012] Statistical Topology Using Persistent Homology. ArXiv 1207.6437
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Persistence Landscapes

/2+(

(

/2
-

(

(

[B-2012] Statistical Topology Using Persistent Homology. ArXiv 1207.6437

B. Fasy (Tulane) Statistics and Topology 3 June 2014 30 / 48



Confidence Sets for Persistence Diagrams Distance Function

Persistence Landscapes

/2+(

(

/2
-

(

(

[B-2012] Statistical Topology Using Persistent Homology. ArXiv 1207.6437

B. Fasy (Tulane) Statistics and Topology 3 June 2014 30 / 48



Confidence Sets for Persistence Diagrams Distance Function

Persistence Landscapes

/2+(

(

/2
-

(

(
[B-2012] Statistical Topology Using Persistent Homology. ArXiv 1207.6437

B. Fasy (Tulane) Statistics and Topology 3 June 2014 30 / 48



Confidence Sets for Persistence Diagrams Distance Function

Weak Convergence of Landscapes

Let λ1, . . . , λn ∼ LT .

λ : true (unknown) landscape
µ = E(λi )
λ̄n : average landscape

Pointwise Convergence [B-2012].

λ̄n converges pointwise to µ.

Gaussian Process on [0,T ]

For t ∈ [0,T ], we define Gn(ft) = Gn(t) := 1√
n

(λ̄n(t)− µ(t)).
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Confidence Sets for Persistence Diagrams Distance Function

Uniform Convergence

Weak Convergence

Gn converges weakly to the Brownian bridge G with covariance function

κ(f , g) =

∫
f (u)g(y)dP(u)− (

∫
f (u)dP(u))(

∫
g(u)dP(u)).

Uniform CLT

There exists a random variable W
d
= supt∈[t∗ ,t∗] |G(ft)| such that

sup
z∈R

∣∣∣∣∣P( sup
t∈[t∗,t∗]

|Gn(t)| ≤ z
)
− P (W ≤ z)

∣∣∣∣∣ = O
((log n)

7
8

n
1
8

)
.

Proofs rely on [CCK-2013]: Anti-concentration and honest adaptive confidence bands.

ArXiv 1303.7152.
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Asymptotic

Confidence Bands

E||λ− λ̄n||∞ ≤

variance︷ ︸︸ ︷
E||µ− λ̄n||∞
+E||λ− µ||∞︸ ︷︷ ︸

bais

Asymptotic

Confidence Band

Find c such that `n = λ̄n − c and un = λ̄n + c such that

P(`n(t) ≤ µ(t) ≤ un(t) for all t) ≥ 1− α.
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Confidence Bands for Landscapes

ξ1, . . . , ξn ∼ N(0, 1)

G̃n(ft) :=
1√
n

n∑
i=1

ξi (λi (t)− λ̄n(t))

α-Quantile

Z̃α is the unique value such that

P

(
sup
t
|G̃n(ft)| > Z̃α

∣∣∣∣∣ {λi}
)

= α

*Approx. Z̃α by MC simulation
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Confidence Bands for Landscapes
The Multiplier Bootstrap

`n = λ̄n(t)− Z̃ (α)√
n

un = λ̄n(t) +
Z̃ (α)√

n

Uniform Band

P (`n(t) ≤ µ(t) ≤ un(t) for all t) ≥ 1− α−
((log n)

7
8

n
1
8

)
.
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Confidence Sets for Persistence Diagrams Distance Function

Variable Width Confidence Bands

Hn(ft) := Gn(t)/σ(t) =
1√
n

n∑
i=1

λi (t)− µ(t)

σ(t)

Ĥn(ft) :=
1√
n

n∑
i=1

ξi
λi (t)− λ̄n(t)

σ̂n(t)

Q̂α is the unique value such that

P

(
sup
t
|H̃n(ft)| > Q̃α

∣∣∣∣∣ {λi}
)

= α
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Confidence Bands for Landscapes
The Multiplier Bootstrap

`n = λ̄n(t)− Q̂(α)σ̂n(t)√
n

un = λ̄n(t) +
Q̂(α)σ̂n(t)√

n

Variable Band

P (`n(t) ≤ µ(t) ≤ un(t) for all t) ≥ 1− α−
((log n)

7
8

n
1
8

)
.
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The Intersection of Statistics and Topology:
... And More!
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Persistence Silhouettes
Definitions

/2+(

(
/2

-
(
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Persistence Silhouettes
Definitions

Weighted Silhouette

φ(t) =

∑n
i=1 wiΛj(t)∑m
j=1

∑
wj

Power-Weighted Silhouette

wi = |di − bi |p
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Power-Weighted Silhouettes
Two Examples

●

●●●●●

●
●●

 

 

0 2 4 6 8 10

0
1

2
3

4
5

6

●

●●●●●

●
●
●

Persistence Diagram

(Birth+Death)/2

(D
ea

th
−

B
ir

th
)/

2

0 2 4 6 8 10
0.

0
0.

4
0.

8
t

φ(
t)

Silhouette (p=0.1)

0 2 4 6 8 10

0.
0

1.
0

2.
0

t

φ(
t)

Silhouette (p=1)

●

●

●
●

●

●

●
●
●●●

●●●●
●
●●
●●

 

 

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.
0

0.
2

0.
4 ●

●

●
●

●

●

●

●
●● ●

●
●

●
●
●
●●
●●

Persistence Diagram

(Birth+Death)/2

(D
ea

th
−

B
ir

th
)/

2

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.
00

0.
02

0.
04

0.
06

t

φ(
t)

Silhouette (p=0.1)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.
00

0.
10

0.
20

0.
30

t
φ(

t)

Silhouette (p=3)

B. Fasy (Tulane) Statistics and Topology 3 June 2014 40 / 48



Confidence Sets for Persistence Diagrams Distance Function

Persistence Silhouettes
Results

Since φ is one-Lipschitz for non-negative weights wj ...

Convergence of Empirical Process

1√
n

(
n∑

i=1

φi (t)− E[φ(t)]

)
converges weakly to a Brownian bridge, with known rate of convergence.

Confidence Bands

We can use the multiplier bootstrap to create a uniform (or a variable
width) confidence band defined by `siln and usiln such that

lim
n→∞

P
(
`siln (t) ≤ µ(t) ≤ usiln (t) for all t

)
= 1− α.
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Example I
A Toy Example
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Example II
Earthquake Epicenters
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Summary
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Conclusion

Collaborator Collage
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Conclusion

Thank you!

Brittany Terese Fasy
www.fasy.us

brittany.fasy@alumni.duke.edu
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