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Homeomorphisms

An Informal Discussion

A homeomorphism is a continuous bending, stretching, or shrinking (but
not tearing or glueing) of one object into another object.

B. Fasy (Tulane) Statistics and Topology 3 June 2014 5/ 48



Homeomorphisms

An Informal Discussion

A homeomorphism is a continuous bending, stretching, or shrinking (but
not tearing or glueing) of one object into another object.

Circle = Square

B. Fasy (Tulane) Statistics and Topology 3 June 2014 5/ 48



Homeomorphisms

An Informal Discussion

A homeomorphism is a continuous bending, stretching, or shrinking (but
not tearing or glueing) of one object into another object.

Donut = Coffee Cup

Circle = Square

B. Fasy (Tulane) Statistics and Topology 3 June 2014 5/ 48



Homeomorphisms

An Informal Discussion

A homeomorphism is a continuous bending, stretching, or shrinking (but
not tearing or glueing) of one object into another object.

Donut # Sugar Bowl

Circle = Square

B. Fasy (Tulane) Statistics and Topology 3 June 2014 5/ 48



Confidence Sets for Persistence Diagrams

Topological Spaces
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(405

B. Fasy (Tulane) Statistics and Topology 3 June 2014 6 /48



Topological Spaces

Nerve Complexes

Fasy (Tulane) Statistics and Topology 3 June 2014 6 /48




Topological Spaces

Nerve Complexes

B. Fasy (Tulane) Statistics and Topology



Confidence Sets for Persistence Diagrams

Topological Spaces

Nerve Complexes

Nerve Lemma

If X is a set of closed convex
sets, then Nrv(X) is topologically
equivalent to [J X' (up to homotopy type).
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Homology

fr=0

B. Fasy (Tulane)

Confidence Sets for Persistence Diagrams

Simplicial Homology
@ X, is the power set of all p-simplices.
o Cp=(Xp, +2).
@ 0p: C, — Cp_1 is the boundary map.
o Hp = Ker(dp)/Im(0p+1)
e [, = rank(H,).
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Confidence Sets for Persistence Diagrams
Homology

Bo=n Bo="5 fo=1
61:0 ,31:1 [31:1
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Homology

Bo=n Bo=5
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Confidence Sets for Persistence Diagrams

Homology

d=([0, r2])
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Persistent Homology

Lower-Level Set Filtration

Let M be a compact topological space.
Let f: M — R be continuous.
We consider all sets of the form M, := f~1((—oo0, t]).
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Confidence Sets for Persistence Diagrams

Persistent Homology

Lower-Level Set Filtration

Let M be a compact topological space.

Let f: M — R be continuous.
We consider all sets of the form M; := f~1((—oo0, t]).
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Confidence Sets for Persistence Diagrams

Persistent Homology
Upper-Level Set Filtration

Let M be a compact topological space.
Let f: M — R be continuous.
We consider all sets of the form Mt := f~1([t, 00)).
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Distance and Stability

A Metric on Persistence Diagrams
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Confidence Sets for Persistence Diagrams

Distance and Stability

A Metric on Persistence Diagrams
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Confidence Sets for Persistence Diagrams

Bottleneck Distance

Given two persistence diagrams, é
find the best perfect matching M
between the point sets. e ¢
< £ £
=

Minimize Cost N
We wish to find r
Woo = min{ max — . >

o = min{ max o |} 228
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Stability of Matchings
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Bottleneck Stability Theorem [CDGO]

Ifi—flle > W(Di,0y) }
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Confidence Sets for Persistence Diagrams

Topological Inference

Death
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Confidence Sets for Persistence Diagrams
Objective

Let D1 denote the set of all T-bounded persistence diagrams.

Confidence Sets
Given « € (0,1) and unknown diagram D, we want C, C Dt such that

P(DeCy)>1-a.

Question

If D is an estimate of D, how close is DtoD?
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Confidence Sets for Persistent Diagrams

Co=1{D e D7 : Wx(D,D) < t(a)} ]
s |l &
0!0 0.|1 0!2 0!3
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Confidence Sets for Persistent Diagrams
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Confidence Sets for Persistence Diagrams

Statistical Model

M is a manifold.

P is a probability distribution supported on M.
Observe data X1, Xz, ..., X5 ~ P.

Compute D, = Dgm~(Xy,...,Xy)
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Statistical Model

M is a manifold.

P is a probability distribution supported on M.
Observe data Xy, Xo,..., X, ~ P.

Compute 5,, =Dgm~(Xy,...,Xy)

Question

How does D,, compare to E(D,) ~ Dgm™(M)?

Answer

Find C, such that P(E(D,) € Co) > 1 — a. How?
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Computing a Confidence Interval

With Infinite Resources

Repeatedly sample n data points, obtaining: J

1

0.8 —

0.6 —

0.4 —

0.2 —

0

0 0.2 0.4 0.6 0.8

Confidence Intervals
P(©,(M) € [0,¢%]) > 1 - «. J
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Computing a Confidence Interval

With Infinite Resources

Repeatedly sample n data points, obtaining: 6, Tyens ,(:),77,\, via simulation.J
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Confidence Sets for Persistence Diagrams

Bootstrapping
When We Can Only Take One Sample

We have one sample:
Sp={X1,..., Xn} J
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Bootstrapping
When We Can Only Take One Sample

We have one sample:
Sp={X1,..., Xn}

Subsample (with replacement),
obtaining: {X{,..., X}}
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Bootstrapping
When We Can Only Take One Sample

We have one sample:
Sp={X1,..., Xn} J

Subsample (with replacement),
obtaining: {X{,..., X}}

Compute &% = O(X;,..., X%). J
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Confidence Sets for Persistence Diagrams

Bootstrapping
When We Can Only Take One Sample

Sp={X1,..., Xn}

We have one sample: J
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0.8 —

0.6 —

Subsample (with replacement),
obtaining: {X{,..., X}}
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Confidence Sets for Persistence Diagrams

Distance to a Subset

dvi(a) = infeem [|x — ||
D = Dgm,, (dw)
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Confidence Sets for Persistence Diagrams

Distance to a Subset

dyi(a) = infyenm ||x — &
D = Dgm,, ()

P has continuous density p.
support(P) = M.
§n:{X1,...,Xn}~ P

D = Dgm, (ds,)
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Subsampling

A Variant of the Bootstrap

Let SZ; be a subsample of size b< n, fori=1,...,B.
Ly is the CDF of H(S},Sn).
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Confidence Sets for Persistence Diagrams Distance Function

Subsampling

A Variant of the Bootstrap

Let Sl’; be a subsample of size b< n, fori=1,...,B.
Ly is the CDF of H(S},Sn).

Confidence Sets from Subsampling [FLRWBS]

Assume that p(x) is bounded away from zero.
Then, almost surely, for all large n,

P (||dy; — ds, ||oo > 2L, () < a + O <\/1/_n)

B. Fasy (Tulane) Statistics and Topology 3 June 2014
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Confidence Sets for Persistence Diagrams Distance Function

Subsampling

A Variant of the Bootstrap

Let Sl’; be a subsample of size b< n, fori=1,...,B.
Ly is the CDF of H(S},Sn).

Confidence Sets from Subsampling [FLRWBS]

Assume that p(x) is bounded away from zero.
Then, almost surely, for all large n,

P (||dy; — ds, ||oo > 2L, () < a + O <\/1/_n)

[RS-2002] On the uniform asymptotic validity of subsampling and the bootstrap. Annals
of Statistics.
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Putting It All Together

Subsampling Theorem

P (||du — ds, |0 > 205 (0)) < @+ O (\/1/_,1)
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Confidence Sets for Persistence Diagrams

Putting It All Together

Subsampling Theorem

P (||du — ds, |0 > 205 (0)) < @+ O (\/1/_,1)

Bottleneck Stability Theorem

lldi — ds,llc > Weo(D, Dn)

Confidence Sets for Persistence Diagrams

i <WOO(D, Dy) > 2Lb—1(a)) <a+0 <\/1/_n)
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Confidence Sets for Persistence Diagrams

Putting It All Together

Subsampling Theorem

P (||du — ds, |0 > 205 (0)) < @+ O (\/1/_,1)

Bottleneck Stability Theorem

ldvi — ds,lloc = Woo(D, Dn)

Confidence Sets for Persistence Diagrams

i <WOO(D, Dy) > 2Lb—1(a)) <a+0 <\/1/_n)

Asymptotic Confidence Sets for Persistence Diagrams

lim P (WOO(D, Dn) < 2L;1(a)) > 1-a

n—o0
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Confidence Sets for Persistence Diagrams Distance Function

Varying «

SN ///' ’“\.\..

/ \\.__ _____ e .'\ %
/ 8
\ /

\\ Jp— /

\ v \\,. /"

\\\__,-/ \\~_ . /

Birth

a = 0.001,0.05,0.25
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Confidence Sets for Persistence Diagrams

Two More Methods

Distance Function

Sn = Sl,n |_| S2,n-

Theorem (Concentration of Measure)

There exists tem = tem(av, d, 0, S1.5) such that

R 1/d+2
IP)<VV<><>(D,Dn)>Ii'cm> SOé-i-O((Ioin) )

Theorem (Method of Shells)

There exists ts = ts(ov, d, n, K, S1,5) such that

R A log '\ /4+2
IP’(WOO(D,D,,)>tS)§a+O ( ° ) .

B. Fasy (Tulane)
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These Methods are Different

Concentration of Measure

tem is found by solving the following for t:

241 (P
— < €X — =«
tdﬁl n P 2

)

Shells
ts is found by solving the following for t:

2d+1 [CSRPN td'\
S / ivv)exp <_”%> dv—a.

n
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Confidence Sets for Persistence Diagrams

Distance Function Examples

Uniform Distribution on Unit Circle
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Confidence Sets for Persistence Diagrams

Distance Function Examples

Uniform Distribution on Cassini Curve
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Confidence Sets for Persistence Diagrams Distance Function

Distance Function Examples

Cassini Curve with Outliers

Concentration "

—
/
f
\
e’
Death
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Confidence Sets for Persistence Diagrams

Distance Function Examples

Normal Distribution on Unit Circle

el
. I 8o /"Cnncen!ra(ion
. X L | Shells
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Confidence Sets for Persistence Diagrams Distance Function

The Intersection of Statistics and Topology:

Stochastic Convergence of Persistence Landscapes and Silhouettes

Brittany Terese Fasy

joint work with F. Chazal, F. Lecci, B. Michel
A. Rinaldo, L. Wasserman

3 June 2014

[CFLRW] Stochastic Convergence of Persistence Landscapes and
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Persistence Landscapes
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Confidence Sets for Persistence Diagrams Distance Function

Persistence Landscapes

(Death- Birth) /2

(Death+Birth) /2 P
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Persistence Landscapes

(Death- Birth) /2

/\ >

(Death+Birth) /2
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Confidence Sets for Persistence Diagrams Distance Function

Persistence Landscapes

(Death- Birth) /2

N AN

(Death+Birth) /2
[B-2012] Statistical Topology Using Persistent Homology. ArXiv 1207.6437
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Weak Convergence of Landscapes

Let Al,...,)\nN,CT.
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Confidence Sets for Persistence Diagrams Distance Function

Weak Convergence of Landscapes

Let A\i,...,An~ L.
A : true (unknown) landscape
= E(\i)
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Confidence Sets for Persistence Diagrams Distance Function

Weak Convergence of Landscapes

Let A\i,...,An~ L.

A : true (unknown) landscape
,l_j, = E()\,)

An : average landscape
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Weak Convergence of Landscapes

Let A\i,...,An~ L.

A : true (unknown) landscape
,l_j, = E()\,)

An : average landscape

Pointwise Convergence [B-2012].

An converges pointwise to (.
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Confidence Sets for Persistence Diagrams Distance Function

Weak Convergence of Landscapes

Let A\i,...,An~ L.

A : true (unknown) landscape
,l_j, = E()\,)

An : average landscape

Pointwise Convergence [B-2012].

An converges pointwise to (.

Gaussian Process on [0, T]

For t € [0, T], we define G,(f;) = G,(t) := \/Lﬁ(xn(t) — u(1)).

v
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Confidence Sets for Persistence Diagrams Distance Function

Uniform Convergence

Weak Convergence

G, converges weakly to the Brownian bridge G with covariance function

w(F.g) = / F(u)e(y)dP(u) — ( / F(u)dP(u))( / g(u)dP(u)).
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Confidence Sets for Persistence Diagrams Distance Function

Uniform Convergence

Weak Convergence

G, converges weakly to the Brownian bridge G with covariance function

w(F.g) = / F(u)e(y)dP(u) — ( / F(u)dP(u))( / g(u)dP(u)).

Uniform CLT

There exists a random variable W < SUPsere, ¢+ |G(ft)| such that

7
log n)s
sup IP’( sup ]Gn(t)lgz)—}P’(Wgz) :O<( gln) )
z€R te[ts,t*] ns
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Confidence Sets for Persistence Diagrams Distance Function

Uniform Convergence

Weak Convergence

G, converges weakly to the Brownian bridge G with covariance function

w(F.g) = / F(u)e(y)dP(u) — ( / F(u)dP(u))( / g(u)dP(u)).

Uniform CLT

There exists a random variable W < SUPsere, ¢+ |G(ft)| such that

7
8

_ O((logln) )

ns

sup
zeR

P sup [Ga(t) <2) - P(W<2)

te[ts,t*]

Proofs rely on [CCK-2013]: Anti-concentration and honest adaptive confidence bands.
ArXiv 1303.7152.
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(death-birth)/2

Confidence Sets for Persistence Diagrams

Confidence Bands

E||A —

(birth+death)/2

B. Fasy (Tulane)

Distance Function

variance
_ ——
Anlle < Ef|p = Anlloc
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Confidence Sets for Persistence Diagrams Distance Function

Confidence Bands

\ A variance
\'/ _ e N
2 E[JA = Anlloo < Ellp = Anlloo
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N

(death-birth)/2

(birth+death)/2

Confidence Band
Find ¢ such that £, = X\, — ¢ and u,, = A, + ¢ such that

P(ln(t) < p(t) < up(t) forall t) >1—a.
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Asymptotic Confidence Bands
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Asymptotic Confidence Band
Find ¢ such that £, = A\, — ¢ and u, = A\, + ¢ such that

lim P(,(t) < u(t) < wup(t) forall t) > 1 — a.
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Confidence Bands for Landscapes

&,...,& ~ N(0,1)

Gnlfy) = \if 3600 — Ru(e)

a-Quantile

Z,, is the unique value such that

{)\,}) =

v

P <sup\<§,,(a)| > Z,
t
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Confidence Bands for Landscapes

gla"'vé.n'\‘ N(Ovl)

Gnlfy) = \if 3600 — Ru(e)

a-Quantile

Z,, is the unique value such that

{)\,}) =

*Approx. Za by MC simulation
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P <sup\<§,,(a)| > Z,
t
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Confidence Sets for Persistence Diagrams

Confidence Bands for Landscapes
The Multiplier Bootstrap
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Uniform Band
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P (£n(£) < u(t) < up(t) forall £) > 1 — o — (('°g ”)5).
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Variable Width Confidence Bands

Ha(ft) := Gn(t)/o(t) = \/—Z

Ai(t) — Aa(t)
() fz a0

{N}) =«
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Confidence Bands for Landscapes
The Multiplier Bootstrap
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Persistence Silhouettes

Definitions
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Persistence Silhouettes

Definitions
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Persistence Silhouettes

Definitions

Weighted Silhouette

o(t) = —227?1 1W§j$)
(J= J

Power-Weighted Silhouette

(Death - Birth) /2

wi = |d; — bil?

(Death+Birth) /2
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Power-Weighted Silhouettes

Two Examples

Persistence Diagram Silhouette (p=0.1) Silhouette (p=1)
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Persistence Silhouettes

Results

Since ¢ is one-Lipschitz for non-negative weights w; ...

Convergence of Empirical Process

(Z ¢i(t) — E[o( )])

converges weakly to a Brownian bridge, with known rate of convergence.

Confidence Bands

We can use the multiplier bootstrap to create a uniform (or a variable
width) confidence band defined by #5" and u$ such that

lim P <z$"( ) < u(t) < us(t) for all t> —1-a

n—o0
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Example |
A Toy Example

Mean 1st Landscape (n=30) Mean Silhouette (p=4)
with Adaptive 95% band © with Adaptive 95% band
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Example Il
Earthquake Epicenters

N Mean 1st Landscape (n=30) Mean Silhouette (p=0.01)
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Conclusion

Summary
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Thank you!
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