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1 Introduction

A principal goal of astronomy is to describe and understand how galaxies evolve as the

Universe ages. To understand the processes that drive evolution, one needs to investigate the

connections between various properties of galaxies�such as mass, star-formation rate (SFR),

and morphology�in a quantitative manner. The last of the these properties, morphology,

refers to the two-dimensional appearance of a galaxy projected onto the plane of the sky.

The classic description of galaxy morphology is the Hubble sequence (Figure 1), in which

galaxies exist in two main classes: ellipticals and spirals. While this discrete measurement of

galaxy morphology is e�cient to describe nearby galaxies, it is not flexible enough to capture

the full range of morphologies that galaxies have exhibited over the Universe’s history. To

overcome this limitation, various authors have developed so-called “nonparametric” summary

statistics that attempt to concisely preserve morphological information (e.g., Conselice 2003,

Lotz et al. 2004, Freeman et al. 2013). By combining summary statistics with catalogs that

arise from large-scale sky surveys, it is now possible to carry out comprehensive quantitative

studies about galaxy formation and evolution.

One of the major questions we would like to address in this study is how galaxy assembly

occurs over cosmic time. However, we are limited by not being able to trace galaxies through

time; rather, we have many snapshots gleaned at di↵erent times that we wish to stitch

together into a panorama. Within each snapshot, it is particularly interesting to investigate

relationships of galaxy morphologies to other physical properties of galaxies, such as stellar

mass and star-formation rate (SFR). Another interesting question is whether the existence

of such relations, or their nature, breaks down or changes at some point. In this study,

we focus on the first topic from the standpoint of comparing distributions of galaxies (e.g.,

high- versus low-mass galaxies or high- versus low-SFR galaxies) at the same time point; the
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Figure 1: Hubble tuning fork diagram, showing the three major morphological classes for massive

galaxies in the local Universe: ellipticals, spirals, and barred spirals.

methods we develop can then later be applied to matched samples at di↵erent redshifts to

test for evolution.

From a statistical point of view, the challenge is to develop tools that are able to quantify

the detailed structural di↵erences between two di↵erent groups of galaxies. Most two-sample

tests only tell us whether two samples are di↵erent, rather than exactly where and by how

much they di↵er. At the same time, in astronomy, standard approaches to comparing galaxy

morphologies mostly rely on by-eye comparisons of one-dimensional or two-dimensional plots

of feature statistics; such approaches do not identify statistically significant di↵erences and

also do not consider more than two features jointly.

In this work, we develop and apply a new approach to comparing distributions of galaxy

morphologies. The method is fully nonparametric and finds locally significant di↵erences

with statistical confidence in a multivariate feature space. The basic idea is to detect locally

significant di↵erences with a test statistic based on class posteriors. The details on the

methodology can be found in Section 3. We apply our method on data collected by the

CANDELS program, and use it to explore interrelationships between galaxy morphologies,

stellar mass and SFR at a fixed cosmic time.

The rest of this work is organized as follows. In Section 2, we present a brief description of

the data, which include summary statistics for measuring the morphologies and structures
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Figure 2: Filter curves for the V, i, Y, J, and H bands, as observed by the ACS and WFC3

instruments on board the Hubble Space Telescope. The transmission probabilities are denoted as a

function of wavelength in units of Å, where 1 Å= 10�10 meters. (The human eye observes light

with wavelengths between ⇡ 4,000 and 7,000 Å.) Five images of one galaxy are include to illustrate

how morphology changes as a function of wavelength.

of galaxies. In Section 3, we propose a framework and methodology for detecting local

significant di↵erences. Then, in Section 4, we apply our method to describing how galaxy

morphologies and other physical properties are interrelated . Finally, in Section 5, we provide

a summary and future directions.

2 Data

We analyze galaxy morphologies from galaxy images. The images were collected from four

fields oberved by the Hubble Space Telescope (HST) as part of the CANDELS program:

the Cosmic Evolution Survey field (COSMOS), the Extended Groth Strip (EGS), the Great

Observatories Origins Deep Survey North field (GOODSN), and the Ultra Deep Survey field

(UDS). Each galaxy is observed at up to five wavelengths via di↵erent filters. Specifically,

we have galaxy images from five filters�V, i, Y, J, H�and the transmission probabilities as

a function of wavelength for each are shown in Figure 2.
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2.1 Redshift Estimation

In expanding space, the velocity at which a galaxy is moving away from us is proportional to

its distance from us. This movement results in the observed wavelengths of galaxies shifting

towards the red end of the spectrum with the increase in wavelength, a phenomenon referred

to as redshift. Objects with higher values of redshift are more distant from us and it takes

longer for the emitted light to reach our telescope. More specifically, redshift is defined as

z =
�o � �e

�e

(1)

where �o and �e represent observed and emitted wavelengths of a photon, respectively.

Two ways to estimate redshift are via spectroscopy and via photometry. Spectroscopy usually

provides a precise estimate (�z/z ⇠ 10�5), but it is not appropriate for large–scale sky

surveys because of time and cost. On the other hand, photometry is less time consuming

but usually imprecise so it is common practice to estimate a probability distribution for the

redshift of a galaxy from its photometric data (Izbicki et al. 2016 and references therein).

Estimated density functions are usually unimodal but some exhibit several spikes or irregular

shapes. Four examples of density functions are shown in Figure 3.
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Figure 3: Illustration of redshift density estimates. Most estimates exhibit only one mode, such

as those for UDS 146 and COSMOS 26 (upper and lower left), while some such as UDS 805 and

GOODSS 127 exhibit more complex behaviors (upper and lower right).
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2.2 Sample Selection

As mentioned before, there are five sets of images for each galaxy from five di↵erent filters.

We use redshift tomography to select an appropriate image for each galaxy based on its

estimated distance from us. (We also call this the discrete bin approach.) Specifically, after

rearranging eq. (1), the observed wavelength can be expressed as

�o = (1 + z)⇥ �e.

According to Figure 2, we can determine a range for �o for each filter (see Table 1).

Table 1: Range of observed wavelength for five HST filters.

V-filter i-filter Y-filter J-filter H-filter

Minimum �o 4643.04 7020.00 9226.99 11063.50 14027.50

Maximum �o 7167.95 9550.00 11876.99 13908.50 16710.50

One can then determine a redshift range given a fixed emitted wavelength:

�o 2 [�min, �max] () z 2

�min � �e

�e

,

�max � �e

�e

�

In this project, �e is chosen to be 4,500Å, a wavelength where the appearance is not greatly

a↵ected by star formation (�e ⌧ 4,500Å) or dust (�e � 4,500Å). The corresponding redshift

ranges are presented in Table 2.

Table 2: Range of redshift for five HST filters given �e = 4,500Å.

V-filter i-filter Y-filter J-filter H-filter

Minimum z 0.03 0.56 1.05 1.46 2.12

Maximum z 0.59 1.12 1.64 2.09 2.71

Note that when a spectroscopic redshift is available, we assign a galaxy to the corresponding

filter on the basis of that single precise estimate. However, most galaxies have a photometric

redshift estimate, with a density function of the sort shown in Figure 3. In this case, we

estimate the probability that a galaxy lies in one of the redshift ranges by integrating the

density estimate. If the probability is greater than a certain threshold, for example 0.8 in

our case, then the galaxy is associated to the corresponding filter. Otherwise, the galaxy is

removed for the entire analysis. Furthermore, when a galaxy is included in two di↵erent filters

due to overlapping areas in the redshift range, we select the one for which the probability
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Table 3: Results of binning in the five CANDELS fields. Y-band data are not available for the

COSMOS, UDS, and EGS fields, and i-band data is not available for the GOODSS field.

Fields V i Y J H Not matched Total

GOODSS 158 NA 475 598 570 1,828 3,629

GOODSN 391 938 456 472 327 1,984 4,568

COSMOS 273 995 NA 921 431 2,095 4,715

UDS 145 612 NA 769 517 2,270 4,313

EGS 189 594 NA 761 346 3,823 5,713

Total 1,156 3,139 931 3,521 2,191 12,000 22,938

is higher than the other. In Figure 4, we illustrate the discrete bin approach using four

examples.

2.3 Summary Statistics

As an quantitative approach to studying the morphological content of galaxies, it is common

to extract important features of a galaxy image. We also adopt this approach by considering

seven statistics that summarize galaxy images in a nonparametric way: Multimode (M),

Intensity (I), Deviation (D), Gini coe�cient (G), M
20

, Concentration (C), and Asymmetry

(A). Each statistic is sensitive to particular aspects of galaxy morphology. In brief, the M , I,

D statistics proposed by Freeman et al. (2013) capture galaxies with disturbed morphologies.

G and M

20

in Lotz et al. (2004) are useful to describe the variance of a galaxy’s stellar light

distribution. C and A, given in Conselice (2003), measure the concentration of light and

asymmetry of a galaxy, respectively. More details and mathematical definitions of summary

statistics are provided in Appendix C.
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Figure 4: Illustration of the discrete-bin approach using the J- and H-band HST filters. This

approach identifies UDS 146 as an “H-band galaxy” because its probability summed over the range

of the H-band filter exceeds our adopted threshold of 0.8. Similarly, we assign UDS 805 to the J-

band bin. On the other hand, the galaxies COSMOS 26 and GOODSS 127 are assigned to neither

the J- nor H-band bins since neither has integrated area greater than 0.8 within either filter range.
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Figure 5: Boxplots of the seven morphology statistics for i- and H-band bin galaxies after standard-

ization. The M , I, and D statistics have fairly skewed distributions, and every distribution exhibits

clear outliers.
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Figure 6: Boxplots of the seven morphology statistics from the di↵erent mass groups defined for

i-band bin data, after standardization. The three groups are separated at the 25th and 75th mass

percentiles (see Section 4.1.)
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3 Methods

The objective of a two-sample test (or a test of homogeneity) is to determine whether the

distributions behind two sets of data are the same or not. More precisely, for two given

independent samples {xi,0}n0
i=1

and {xi,1}n1
i=1

from d-dimensional distributions P (·) = P(·|Y =

0) and Q(·) = P(·|Y = 1), where the group labels Y = 0 and Y = 1 indicate the two samples,

the goal is to test

H
0

: P = Q against H
1

: P 6= Q. (2)

A classic method for testing homogeneity is the two-sample t-test, which compares the means

of two Gaussian distributions. There are several nonparametric extensions of classical t-tests;

for example, Maximum Mean Discrepancy (MMD) [Gretton et al., 2012a], which compares

the means of two distributions in Reproducing Kernel Hilbert Spaces (RKHSs) and the

energy distance, [Székely and Rizzo, 2004], which is a member of MMD with the RKHS

induced by a positive definite kernel [Sejdinovic et al. (2013)].

Another means to two-sample testing is to estimate a divergence between the two probability

distributions of interest. The f-divergence is the most popular measure of divergence. It is

defined as

Df (P ||Q) =

Z
f

✓
p(x)

q(x)

◆
q(x)dµ(x)

where dP = pdµ, dQ = qdµ and f is a convex function. This family of divergences includes

many common divergences; such as, the Kullback-Leibler divergence, the Pearson divergence,

the Hellinger distance and the Total variation distance. Two-sample tests based on a diver-

gence have been investigated by many authors; see, for example, Sugiyama et al. (2011a)

and Kanamori et al. (2012).

The methods mentioned above, however, only provide us with a global binary result of

the form “Reject the null hypothesis” or “Fail to reject the null hypothesis.” This type of

binary result can leave much of the local information concealed. For our applications, we

would like to know how the two distributions are di↵erent. More specifically, we would like

to detect locally significant di↵erences in a multivariate feature space. This question can be

reformulated in terms of estimating highest density di↵erence or highest density ratio regions

in a sample space.

3.1 Local Two-Sample Tests

From the Bayes’ theorem, testing (2) is equivalent to testing

H
0

: P(Y = 1|Ci) = P(Y = 1) against H
1

: P(Y = 1|Ci) 6= P(Y = 1) (3)
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for all arbitrary partitions [i2ICi = Rd. Since we would like to identify regions where the

two distributions are significantly di↵erent, we consider a set of local alternatives instead of

the global alternative in (3); each local alternative is restricted within Ci, which leads to

multiple testing with

H
1,1 : P(Y = 1|C

1

) 6= P(Y = 1)

H
1,2 : P(Y = 1|C

2

) 6= P(Y = 1)

...

H
1,m : P(Y = 1|Cm) 6= P(Y = 1)

where m can be infinite.

In the flow cytometry literature, Roederer and Hardy (2001) addressed the question of finding

di↵erences between two samples in a multi-dimensional space. Their method partitions

the space into box-shaped sub-regions and then relies on chi-squared tests to identify local

significant di↵erences. This approach can be generalized to moderately high dimensions but,

due to the rectangular shaped partitions, there is room for improvement, especially when

the underlying di↵erences between the two distributions vary smoothly in sample space.

Moreover, to capture detailed local structures, it is natural to shrink the volume of each

region Ci as the sample size increases, eventually approaching a point-wise test in the limit

of large sample sizes.

Hence, building on the work of Roederer and Hardy (2001), we instead propose a point-

wise test for di↵erences at grid points (x
1

, . . . , xm) in sample space. More precisely, we test

against m local alternatives,

H
i,0 : P(Y = 1|X = xi) = P(Y = 1) vs. H

i,1 : P(Y = 1|X = xi) 6= P(Y = 1)

for xi 2 Rd and i=1, . . . ,m.

Indeed, the point-wise local alternatives are also studied by Duong (2013) who use kernel

density estimates (KDEs) to find locally significant di↵erences between two samples. Our

contribution here is to combine point-wise testing with a supervised learning method (such

as regression) that does not rely on estimating densities.

As a test statistic, we propose

Ti = bP(Y = 1|X = xi)� bP(Y = 1), (4)

where bP(Y = 1) is the number of times the label Y = 1 occurs for a sample of size n. The

main challenge is to estimate the “class posteriors” P(Y = 1|X = xi) at the m di↵erent

11



testing points. An advantage of our local two-sample test is that we can take advantage

of the many already existing regression methods for multi- or high-dimensional data. By

choosing a suitable regression method, we can adapt to di↵erent types of structure in the

data as well as di↵erent types of data, potentially achieving a high power for local tests.

3.1.1 Permutation Test

The sampling distribution of Ti varies by test statistic. In this section, we first present a

general framework for carrying out local two-sample tests by using the permutation test.

Then, later in Section 3.1.2, we describe a local significance test based on the asymptotic

normality of random forest regression estimators.

The permutation test is attractive because it places no assumptions on the data, other than

that the observations are mutually exchangeable under the null hypothesis. The permutation

test is also known in many cases to have similar power as tests based on large-sample theory.

Due to computational cost considerations, the permutation p-value is usually estimated

(instead of computed exactly) by bp = m/B, where m is the number of times the permutation

test statistic is greater than or equal to the observed test statistic, and B is the total

number of random permutations of the data. The estimator bp is unbiased but tends to

underestimate the type I error rate. Hence, in our work we instead use the biased estimator

bp⇤ = (m+ 1)/(B + 1), which has the same computational cost as bp but is more suitable for

multiple comparisons adjustments (Ernst, 2004 and Phipson and Smyth, 2011).

Note that many regression methods for estimating P(Y = 1|X = x) involve one or more

tuning parameters. Examples include the number of nearest neighbors k in the k-Nearest

Neighbors (k-NN) method, and the maximum depth of a tree in decision tree models. In

Appendix D, we present a general procedure for choosing tuning parameters by minimizing

an estimated mean-squared error loss.

Below we summarize the main steps of the local two-sample test at {xi}mi=1

testing points.

Algorithm 1: Local two-sample test via permutation

(1) Given i.i.d. samples {xj,0}n0
j=1

and {xj,1}n1
j=1

, calculate the test statistic {Ti}mi=1

at the m

testing points.

(2) Sample without replacement from the combined pool of {xj,0}n0
j=1

and {xj,1}n1
j=1

to create

two permuted samples of sizes n
0

and n

1

, respectively. Compute the test statistic again

using the permuted data.

12



(3) Repeat step (2) B times to obtain {T (1)

i }mi=1

, · · · , {T (B)

i }mi=1

. Then approximate the

permutation p-value at each testing point i by

Pi =
1

B + 1

 
1 +

BX

b=1

I{|T (b)
i |>|Ti|}

!
.

(4) Apply the Benjamini-Hochberg (BH) method to adjust the m local hypothesis tests.

Start by sorting the p-values in ascending order p

(1)

, . . . , p

(m)

. Define li = i↵
Cmm

and

R = max{i : p
(i) < li} where Cm =

Pm
i=1

(1/i) and ↵ is a given significance level. Reject

the null in favor of the alternative hypotheses H
(1),1, . . . ,H(R),1 for which p

(i)  p

(R)

. For

the local points x
(1)

, . . . , x

(R)

in the rejection region,

(a) if Ti > 0, then decide that P(Y = 1|xi) > P(Y = 1) or f(xi|Y = 1) > f(xi|Y = 0);

(b) if Ti < 0, then decide that P(Y = 1|xi) < P(Y = 1) or f(xi|Y = 1) < f(xi|Y = 0).

In Figure 7, we illustrate the local two-sample test for a simple toy example with two Gaussian

mixture distributions. There are two groups of observations with n

1

= 500 and n

2

= 500

data points sampled from the density functions 1

2

N(�3, 0.52)+ 1

2

N(1, 0.5)2 and 1

2

N(�1, 0.52)+
1

2

N(3, 0.52), respectively. We perform tests for a fixed grid of evenly spaced points between -7

to 7 that are 0.02 apart. The red and blue points in the final decision area indicate the locally

significant regions, whereas gray points represent the regions where there are no significant

di↵erences in distribution. We used the k-NN regressor to calculate the test statistic with

FDR= 0.05. The k-NN regressor is defined as

bP(Y = 1|x) = 1

k

X

j2J

I(Yj = 1)

where J = {i : Xi is one of the k observations nearest to x}, and k is chosen according to

Appendix D.

3.1.2 Test based on Asymptotic Normality

As mentioned before, the advantage of the permutation method is that we can control the

exact type I error as well as easily use di↵erent types of estimators to perform a valid test.

On the downside, the null hypothesis of the permutation test corresponds to a global null

hypothesis of the form H
0

: P(Y = 1|X = x) = P(Y = 1) for all x 2 Rd, rather than the

local null hypothesis: H
0

: P(Y = 1|X = x) = P(Y = 1) for a given x 2 Rd. To o↵er a truly
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Decision
f(x)=g(x)
f(x)>g(x)
f(x)<g(x)

Final decision →

Observations  →

Figure 7: Graphical illustration of the local two-sample test (Algorithm 1) for two Gaussian mixtures

in R1. See Section 3.1.1 for details.

point-wise test, we here provide an alternative way to test for locally significant di↵erences

using the large-sample limit of the test statistic.

Since our application contain data of mixed types, we choose to use random forests to

estimate the class posteriors in eq. 4. In a recent paper, Wager and Athey (2015) describe

a variant of random forests with predictions that are both asymptotically unbiased and

Gaussian. To satisfy a condition they call “honesty,” the base tree is grown using one

subsample, while the predictions are estimated using a di↵erent subsample. We use the

result from Wager and Athey (2015) to construct asymptotic confidence intervals that are

centered at the unknown function P(Y = 1|X = x). To be precise, we define a test statistic

Tn(x) =
bP(Y = 1|x)� bP(Y = 1)q

b
VIJ(x)

d! N (P(Y = 1|x)� P(Y = 1), 1) , (5)

where bP(Y = 1|x) is estimated by a forest of double-sample regression trees with binary

outcomes Y , and bVIJ(x) is a consistent estimator of the variance of the numerator based on

the infinitesimal jackknife (Wager et al. 2014).

Below we summarize the local two-sample test based on asymptotic normality of the test

statistic. As in Algorithm 1, we use the Benjamini-Hochbergh procedure to control the false
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discovery rate (FDR).

Algorithm 2: Local two-sample test via asymptotic normality

(1) Given i.i.d. samples {xj,0}n0
j=1

and {xj,1}n1
j=1

, calculate the test statistic {Ti}mi=1

at the m

testing points.

(2) Calculate the p-value of each Ti based on the normal approximation. Namely, the p-value

of the test statistic evaluated at ith grid point is

pi = 2�(�|Ti|)

where � is the distribution function of the standard normal random variable.

(3) Apply the Benjamini-Hochberg (BH) method to adjust the m local hypothesis tests.

Start by sorting the p-values in ascending order p

(1)

, . . . , p

(m)

. Define li = i↵
Cmm

and

R = max{i : p
(i) < li} where Cm =

Pm
i=1

(1/i) and a given significance level ↵. Reject

the null in favor of the alternative hypotheses H
(1),1, . . . ,H(R),1 for which p

(i)  p

(R)

. For

the local points x
(1)

, . . . , x

(R)

in the rejection region,

(a) if Ti > 0, then decide that P(Y = 1|xi) > P(Y = 1) or f(xi|Y = 1) > f(xi|Y = 0);

(b) if Ti < 0, then decide that P(Y = 1|xi) < P(Y = 1) or f(xi|Y = 1) < f(xi|Y = 0).

3.2 Di↵usion maps

Dimensionality reduction methods can be useful for visualizing and describing low-dimensional

structures that are embedded in a high-dimensional space. In this work, we use di↵usion

maps (Coifman and Lafon 2006) to visualize and inspect the results from the point-wise

analysis. Di↵usion maps is a nonlinear data reduction technique that aims to preserve the

connectivity structure of the data, where “connectivity” is learnt by propagating local infor-

mation through a di↵usion process.

As a starting point for constructing the di↵usion map, one first defines a weight that reflects

the local similarity of two points xi and xj in X = {x
1

, . . . , xn}. A common choice is the

Gaussian kernel

w(xi, xj) = exp

✓
�s(xi, xj)2

✏

◆
(6)
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where s(xi, xj) is some distance function such as the Euclidean distance. These weights are

used to build a Markov random walk on the data with the transition probability from xi to

xj defined as

p(xi, xj) =
w(xi, xj)P
k2⌦ w(xi, xk)

.

The one-step transition probabilities are stored in an n⇥ n matrix denoted by P, and then

propagated by a t-step Markov random walk with transition probabilities P

t. Instead of

choosing a fixed time parameter t, however, we here combine di↵usions at all times (Coifman

et al. 2005) and define an averaged di↵usion map according to

 
av

: x 7!
✓

�

1

1� �

1

◆
 

1

(x),

✓
�

2

1� �

2

◆
 

2

(x), . . . ,

✓
�m

1� �m

◆
 m(x)

�
,

where �i and  i, respectively, represent the first mth eigenvalues and the corresponding right

eigenvectors of P.

In our application, we also use a generalization of the weight in (6) proposed by Zelnik-

Manor and Perona (2005) for spectral clustering. In their paper, the authors show that a

data-driven varying bandwidth leads to more meaningful clustering results for data with

multiple scales and propose the weight

bw(xi, xj) = exp

✓
�s(xi, xj)2

�i�j

◆
,

where �i is some distance between xi and the kth neighbor of xi. For our visualization

purposes, we choose m = 2 and k = 30, but there are other values that give similar results.
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4 Results

Our ultimate goal is to identify the processes driving the structural evolution of galaxies, as

well as understand the connection between morphology and galaxy properties such as stellar

mass and star-formation rate. Here we show that one can use the statistical techniques in

Sec. 3.1.2 to tease out the main morphological di↵erences between two populations. We use

an example where the two populations both fall within the same redshift bin (in this case,

the i-band or 0.56 < z < 1.12).

For visualization purposes, we will display all our results in a two-dimensional di↵usion map

computed from the seven morphological indicators defined in Sec. 2.3 and Appendix C. As

Figure 8 shows, this di↵usion map roughly organizes the galaxies according to their structure,

with galaxies with similar morphology falling into nearby regions in di↵usion space.
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Figure 8: Di↵usion map of galaxies observed in the i band constructed from seven summary statis-

tics. The diagram on the right describes the characteristics of galaxies in di↵erent regions of the

map (cf. Figures 30 and 31).

4.1 Mass Study

We start by comparing the structural di↵erences between high-mass and low-mass galaxies

in the i-band. We say that a galaxy belongs to the high-mass group if its mass is greater than

the upper c-quantile of the mass distribution whereas the galaxy belongs to the low-mass

group if its mass is less than the lower c-quantile of the mass distribution (see Figure 9).

For our study, we choose the cut-o↵ value c = 0.25, which corresponds to a total of n=868
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Distribution of galaxy mass from i−band data
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Figure 9: Distribution of log
10

(Mass) and log

10

(SFR) for i-band-selected data.

galaxy observations in the two mass groups. (A study of robustness with respect to changes

in cuto↵ is provided in Appendix B.)

We use Algorithm 2 and random forest regression to identify the regions where the two

multivariate samples di↵er in density. Figure 10 shows the result of multiple testing under

FDR control at the significance level ↵ = 0.05, where the test points are chosen according

to the remark below and displayed in a two-dimensional di↵usion map.

Remark 4.1. With increasing dimension, it becomes computationally infeasible to apply

Algorithm 2 to a fine grid of uniformly spaced test points in morphology space. Hence, we

only test for di↵erences at the location of the observed data. We split the data into training

(70%) and test sets (30%) where the training set is used to define the test statistics in eq. 5

and the test sets are used as testing points for the local two-sample test.

We note that the high-mass and low-mass dominated regions are well-separated in di↵usion

space, and hence also in the seven-dimensional morphology space. Specifically, high-mass

dominated regions (red) tend to coincide with areas characterized by “high concentration”

and “low variance,” whereas low-mass dominated regions (blue) coincide with areas with a

high ratio of “merging activities.”

The parallel coordinate plot (Inselberg, 1997) in Figure 11 provides further insight on how the

significant points are distributed with respect to the original morphology features. The data

are clearly separated within the M

20

and C coordinates, which implies that the variance

measure (M
20

) and the concentration measure (C) are key to distinguishing between the

high-mass and low-mass groups. This result is also consistent with the variable importance

measures from random forests, where Table 23 indicates that M
20

and C are the two most

important variables in estimating the test statistic in eq. (5).
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Figure 10: Result of local two-sample testing of di↵erences between high- and low-mass galaxies in

a seven-dimensional morphology space. The blue color indicates regions where the density of high-

mass galaxies are significantly higher, and the red color indicates the regions that are dominated by

low-mass galaxies. The test points are visualized in a two-dimensional di↵usion map.

To facilitate a physical interpretation of the local test results, we finally divide the significant

testing points into galaxy groups (classes) using an agglomerative hierarchical clustering.

Figures 12 and 13 show the results from hierarchical clustering of the two di↵erence regions

using the first two di↵usion coordinates and the Ward2 algorithm (Murtagh and Legendre,

2014) with complete linkage.

Table 14 shows a random subset of images from the five di↵erent groups, and Figure 15

shows boxplots of the morphology statistics of each group.

Note that the group LowMass-2 includes a very large number of multi-modal (high ratio

of non-zero M , I, D), high variance (M
20

) and low concentration (C) galaxies. The group

LowMass-1 has similar characteristics with a slightly lower proportion of non-regular galaxies

than LowMass-2.

We also note that the three high-mass clusters are all described by high concentration (C),

low variance (low M

20

, high G) and a low proportion of nonzero M, I,D statistics. The

galaxies from HighMass-1 are especially concentrated compared to galaxies from the other

high-mass clusters. The HighMass-3 group is characterized with high asymmetry (A).
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Figure 11: Parallel coordinate plot of the significant points in the comparison of high- and low-mass

galaxies.
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Figure 12: Hierarchical clustering of the two significant regions from the Mass study using the first

two di↵usion coordinates.
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Figure 13: Di↵usion map with the hierarchical clustering result for the Mass study.

Table 14: Randomly chosen galaxy images from the significant clusters in the Mass study.

Random galaxy images

HighMass-1

HighMass-2

HighMass-3

LowMass-1

LowMass-2
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Figure 15: Boxplots of summary statistics for the significant clusters in the Mass study together

with a table (bottom right) of the proportion of galaxies with M > 0 or I > 0.

22



4.2 SFR Study

We next study the connection between morphology and star-formation rate (SFR). Similar

to the previous study, we divide the galaxies into two samples but now based on their star-

formation rate instead of stellar mass. We choose the same cuto↵ value c = 0.25 as before,

and use Algorithm 2 to identify local di↵erences between the two samples (high- versus

low-SFR galaxies) in our seven-dimensional morphology space.

Figure 16 shows the results of the local significance test. Note that the regions where the two

samples are significantly di↵erent roughly coincide with the di↵erence regions of the Mass

study (Figure 10). To be specific, low-SFR dominated regions coincide in di↵usion space

with high-mass dominated regions, and high-SFR dominated regions occur roughly in the

same parts of the di↵usion space as the low-mass dominated regions.
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Figure 16: Result of local two-sample testing of di↵erences between high- and low-SFR galaxies in

a seven-dimensional morphology space. The red color indicates regions where the density of low-

SFR galaxies are significantly higher, and the blue color indicates the regions that are dominated

by high-SFR galaxies. The test points are visualized in a two-dimensional di↵usion map.

To more easily interpret the local test results, we also divide the significant points into

five galaxy groups or classes (Low-SFR 1, 2 and 3 and High-SFR 1, 2) using agglomerative

hierarchical clustering; see Figures 17-18 and Table 19. Figure 20 is a parallel coordinate plot
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of the significant points in the SFR study, and Figure 21 summarizes their characteristics

with respect to the seven morphology indices after dividing the points into the five galaxy

classes.
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Figure 17: Hierarchical clustering of the two significant regions from the SFR study using the first

two di↵usion coordinates and the complete-linkage criterion.

The clustering results of the SFR study are similar to the results of the Mass study. Compar-

ing Figure 13 and Figure 18, we see the following correspondence: (LowSFR-1 & LowSFR-

2, HighMass-1 & HighMass-2) / (LowSFR-3, HighMass-3) / (HighSFR-1, LowMass-2) /

(HighSFR-2, LowMass-1). In Section 4.3, we compare this result more systematically.
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Figure 18: Di↵usion map with the hierarchical clustering result for the SFR study.

Table 19: Randomly chosen galaxy images from the significant clusters in the SFR study.

Random galaxy images

LowSFR-1

LowSFR-2

LowSFR-3

HighSFR-2

HighSFR-1
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Figure 20: Parallel coordinate plot of the significant points in the SFR study.
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Figure 21: Boxplots of summary statistics for the significant clusters in the SFR study together

with a table (bottom right) of the proportion of galaxies with M > 0 or I > 0.
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4.3 Merging the Mass and SFR studies

In this section, we merge the Mass and SFR studies (Figure 22), and investigate similarities

and di↵erences in the significance results at the sample points.
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Figure 22: The results of the pointwise two-sample tests for the Mass study (left) and the SFR

study (right) with example images attached.

Table 23 lists the variable importance measure in the random forest regression; that is,

the table shows the relevance of each summary statistic for estimating the class posterior

P(Y = 1|X = x) in eq. 5. The G statistic plays an important role in both studies. A

noticeable di↵erence between the two studies is in the (M , I) and (M
20

, C) statistics: for

the SFR study, both M and I are essential in distinguishing between high-SFR and low-SFR

galaxies, whereas M
20

and C are more important in distinguishing between high-mass and

low-mass galaxies. These results are consistent with the previous findings of Sections 4.1 and

4.2. In fact, a closer look at the lower right edge of LowMass-2 and High-SFR 1 in Figures

13 and 18, reveals that there are more significant points from this part of di↵usion space in

the SFR study. This region is also where merger activities are prevalent (Figure 24 shows

some randomly chosen images). Hence, our result indicates that the star-formation rate is

more tightly linked to merger activities than the stellar mass is.

Figure 25 and Table 26 jointly summarize the significance results of the mass and SFR com-

parisons at the i-band sample points. As expected, there is a clear correspondence between
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Table 23: Variable importance measure in the random forest regression

Variable Importance Measure1)

Mass SFR
M 3.72 4.47
I 2.26 7.60
D 4.04 2.67

Gini 4.96 9.13
M20 9.09 4.40
C 5.74 3.52
A 2.96 2.50

1) mean decrease in node impurity measured by residual sum of squares 

Low-SFR dominated regions

High-SFR dominated regions

◼

!
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Figure 24: The lower right edge of the di↵usion map has the most merger activities. Many of the

sample points in this area are significant in the SFR study but not in the Mass study.

di↵erence regions that are labeled as “high-mass dominated” versus “low-SFR dominated,”

and similarly correlations between “low-mass dominated” versus “high-SFR dominated” re-

gions. We also see that there are more significant points in the SFR than mass comparison

(683 versus 455 significant points, respectively, out of 1,000 test points total), but there are

still many points (137 out of 1,000 test points total) where there are significant di↵erences
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between the two mass groups but not the two SFR groups. These outliers (as well as the

galaxies that fall into the nine di↵erent entries of Table 26) could potentially be studied for

further analysis.

To assess the consistency of our results with those in the astronomical literature, we con-

struct G-M
20

(Figure 27) and rest-frame UV J (Figure 28) diagrams. (Our diagrams may be

compared with, e.g., those in Figures 7 and 9 of Peth et al.)

In Figure 27, “merging,” “bulge-dominated,” and “disk-dominated” galaxy groups are de-

fined by the line

G = �0.14M
20

+ 0.33

and below it the vertical line

M = �1.68 .

Galaxies above the first line are the mergers, while those below the first line and to the left

of the second are disk-dominated and those below and to the right are bulge-dominated.

Our results are consistent with our earlier finding that M

20

is more important than G for

the Mass study in distinguishing the two (mass) populations, whereas G is more important

than M

20

for the SFR study in distinguishing the two (SFR) populations.

In Figure 28, “quenched” galaxies (as opposed to those that are “star-forming”) are identified

as lying above the locus defined by

U � V > max[1.3, 0.88(V � J) + 0.59]

and to the left of the vertical line

V � J < 1.6 .

The locus is defined by Williams et al. (2009), while the U , V , and J magnitudes are provided

as part of the CANDELS catalog. We see that the results for our SFR study are consistent

with expectation.
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Figure 25: Summary of the significance results from the mass and SFR two-sample tests, wherein

we artificially separate points at which the density of high-mass galaxies is significant, at which

there are no significant di↵erences, and at which the density of low-mass galaxies is significant.

Table 26: Summary of the significance results for the mass and SFR studies.

SFR Study

Low-SFR High-SFR Insignificance Total

Mass 
Study

High-Mass 155 5 59 219

Low-Mass 0 158 78 236

Insignificance 142 223 180 545

Total 297 386 317 1,000
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Figure 27: G-M
20

for each significant group (cf. Figure 9 of Peth et al. 2016). M

20

is more

important than G for the Mass study in distinguishing the two populations, whereas G is more

important than M

20

for the SFR study. The dotted lines divide galaxy groups: mergers (Area A),

disk-dominated (Area B), and bulge-dominated (Area C).
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Figure 28: Rest-frame UVJ diagram for the Mass and the SFR studies (cf. Figure 7 of Peth et

al. 2016). The dotted line separates galaxy groups: quenched (Area A) and star-forming galaxies

(Area B).
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5 Summary and Future Work

In this work, we investigate the connection between a galaxy’s morphology and its physical

properties�specifically, galaxy mass and star-formation rate�and show that we are able to

identify and describe statistically significant di↵erences between two defined populations of

galaxies (e.g., those belonging to high- and low-mass quartiles).

As traditional morphology classes tend to oversimplify galaxy structures, we instead use

what astronomers dub nonparametric morphology statistics to describe the appearance of a

galaxy. We utilize seven oft-used statistics (M , I, D, G, M
20

, C, A; Conselice 2003, Lotz

et al. 2004, Freeman et al. 2013), while noting that it is an open question as to how much

statistical information is preserved with these particular image summaries.

Our main results are that M

20

and concentration measure (C) are the most important

statistics for distinguishing between high- and low-mass galaxies, whereas the Gini coe�cient

(G) and the multi-mode and intensity statistics (M and I) turned out to be the most

important ones when we look at star-formation rate instead (Table 23). The latter result

is consistent with the fact that irregular and merging galaxies exhibit high rates of star-

formation due to enhancement of gas density.

Furthermore, we found evidence that star-formation rate is more closely associated with

the mentioned galaxy morphologies than galaxy mass is (Table 26). The results also show

that star-formation rate and galaxy mass are negatively correlated to each other; that is,

morphologies that are more common among high (low) mass galaxies tend to coincide with

morphologies that are more common among low (high) SFR galaxies.

In future work, our method could be used to compare distributions of galaxy morphologies

over di↵erent redshift ranges (after adjusting for those instrumental e↵ects that di↵er between

bands) as a test for evolution. Our method could also be used to test the validity of simulation

methods by comparing simulated galaxy images to observed galaxy images.
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A Exploratory Data Analysis

Since the galaxy mass is continuous variable, we can visualize the galaxy mass as a function

of morphologies via regression. Here, we use the local linear regression with 95% confidence

interval.
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Figure 29: Regression analysis of the galaxy mass: the regression function is estimated via the local

linear regression with 95% confidence intervals.

The following figures provide the information of how the individual summary statistic as

well as the physical properties are distributed in di↵usion space of morphology statistics.
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Figure 30: Di↵usion map of summary statistics.
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Figure 31: Di↵usion map of summary statistics and physical properties.
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Amultivariate two-sample test can have higher statistical power to detect di↵erences between

two populations especially when their covariates are correlated to each other. (see Figure

32.) Figure 33 provides the Pearson’s correlation coe�cient plot between seven-dimensional

morphology statistics. It shows that some of the statistics are stronlgy correlated to each

other. Thus, we might be able to detect di↵erences which cannot be found from an univariate

test by conducting a test in the multi-dimensional space.
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Figure 32: Toy example showing two populations that have the same marginal distributions; any

univariate two-sample test has no power to detect the di↵erence between these marginals.

Figure 33: Correlation between summary statistics. Some of the statistics are correlated to each

other.
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Figure 34: Distribution of test statistic Tn(x) =
bP(Y = 1|x)� bP(Y = 1) in the di↵usion map.
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Figure 35: Distribution of p-values in the di↵usion map.
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B The change of cuto↵ value

By changing the cuto↵ value c for the division of two physical groups, we found that the main

conclusion of the study remains the same. For example, high-mass galaxies are more likely

to be compact and concentrated whereas low-mass galaxies tend to be more irregular. In

fact, there is a trade-o↵ between large and small values of c: A too large c leads to ambiguity

of defining the physical group and thus less significant results. Whereas, a too small c would

not allow us to have reasoable statistical power to find a di↵erence due to the lack of the

sample size.

The following table shows that 10% cuto↵ gives us more significant points but still there

exist some points that are significant for 25% cuto↵ but not significant for 10% cuto↵. We

can notice that there is no point within the cells: [High-Mass(10%), Low-Mass(25%)] and

[Low-Mass(10%), High-Mass(25%)], which indicates the robustness of the result depending

on the choice of the cuto↵ value.

Table 36: Significant points by changing the cuto↵ value

25% cutoff
High-Mass Low-Mass Insignificance Total

10% cutoff

High-Mass 219 0 38 257

Low-Mass 0 236 118 354

Insignificance 0 0 389 389

Total 219 236 545 1,000
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C Summary Statistics

1. Multimode (M) statistic (Freeman et al. 2013)

The M statistic identifies galaxies with disturbed morphologies. Consider an intensity

quantile ql such that a proportion l of the pixel intensities imn are smaller than ql.

(Here mn denotes pixel coordinates.) For a given ql, define a new indicator variable

jmn such that

jmn =

(
1 if imn � ql

0 otherwise
.

Within the image jmn, we obtain the areas of largest and second-largest groups of

contiguous pixels, which we denote Al,(1) and Al,(2) respectively. We define the area

ratio as

Rl =
A

2

l,(2)

Al,(1)nseg

,

where nseg is the number of pixels in the segmentation map, i.e., the mask used to

define the extent of the galaxy within the image. This formulation imposes a strict

upper limit on R

1

of 1/2 that is achieved if Al,(1) = Al,(2) = nseg/2. The M statistic is

the maximum observed value of Rl over all quantiles l:

M = max
l

Rl .

2. Intensity (I) statistic (Freeman et al. 2013)

One of the shortcomings of the M statistic is that it does not consider the summed

intensity within contiguous pixel groups. For instance, a contiguous group with a large

number of pixels may have a smaller summed intensity than other, smaller groups

of pixels. To mitigate this shortcoming we utilize the I statistic. We associate each

pixel mn with a local maximum mn

max

by following the maximum gradient ascent

path. All pixels that are associated with a given local maximum mn

max

are grouped

together, and for each group, we sum the pixel intensities imn. (Note that in a data

pre-processing step, we smooth the image data with a symmetric Gaussian kernel with

� ⇠ 1 pixel, to decrease the e↵ect that pixel noise has on the construction of pixel

groups.) We rank the summed intensities in descending order and use the first and

second sorted values to compute the I statistic:

I =
I

(2)

I

(1)

.
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3. Deviation (D) statistic (Freeman et al. 2013)

The deviation D statistic is used to capture evidence of galaxy asymmetry. It is the

distance from the local maximum associated with I

(1)

to the galaxy’s center of mass:

(m
cen

, n

cen

) =

 
1

nseg

X

m

X

n

mimn,
1

nseg

X

m

X

n

nimn

!
, (7)

where the summation is over the nseg pixels within the segmentation map. The D

statistic is:

D =
q

(m
cen

�mI(1))
2 + (n

cen

� nI(1))
2

/

q
nseg/⇡ .

where the normalizing factor
p

nseg/⇡ is a galaxy radius estimate achieved by assuming

that the segmentation map is circular.

4. Gini (G) statistic (Lotz et al. 2004)

The Gini coe�cient measures the relative distribution of pixel intensities within the

segmentation map: G = 0 means that the intensities are uniform across the galaxy,

while G = 1 means that all of a galaxy’s light falls into a single pixel. The G statistic

is defined as

G =
1

īn

seg

(n
seg

� 1)

X

k

(2k � n

seg

� 1)im(k)n(k)
,

where ī is the sample mean of all intensities within the segmentation map and m

(k)n(k)

denotes the coordinates of the pixel with the k

th-smallest intensity value.

5. M

20

statistic (Lotz et al. 2004)

M

20

describes the spatial distribution of pixel intensities. First, we compute a total

second-order moment:

M

tot

=
X

m

X

n

imn

⇥
(m�m

cen

)2 + (n� n

cen

)2
⇤

where m

cen

and n

cen

are the coordinates of the galaxy’s center of mass (equation 7)

and the summation in done over all pixels mn within the segmentation map. We then

repeat the summation done above using only the brightest 20% of the pixels; we call

this sum M

bright

. Then M

20

is

M

20

= log
10

✓
M

bright

M

tot

◆
.
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6. Concentration (C) statistic (Conselice 2003)

The concentration statistic encapsulates the area over which the bulk of a galaxy’s

summed intensity lies. Its calculation assumes circular symmetry. At a given radius

r from the galaxy’s center, we define two quantities: the summed intensity within the

annulus defined by r and r + dr, and the overall average summed intensity:

µ(r) =

R
2⇡

0

R r+�r

r��r
i(r0, ✓)r0dr0d✓

R
2⇡

0

R r+�r

r��r
r

0
dr

0
d✓

µ̄(r) =

R
2⇡

0

R r+�r

0

i(r0, ✓)r0dr0d✓
R
2⇡

0

R r+�r

0

r

0
dr

0
d✓

.

(We show the calculations as integrals for conceptual clarity, but the actual calculations

are done as sums over image pixels.) r is the solution of the equation µ(r)/µ̄(r) = ✏,

where ✏ is commonly chosen to be 0.2. We compute the total summed intensity within

the radius r, then determine the smaller radii within which there are 20% and 80% of

that total summed intensity. The C statistic is:

C = 5⇥ log (r
80%

/r

20%

) .

The smaller r
20%

is relative to r

80%

, the higher the value of C, as the galaxy will appear

“more concentrated.”

7. Asymmetry (A) statistic (Conselice 2003)

The A statistic is a measure of how asymmetric a galaxy is after its image is rotated

180� the central pixel and then subtracted from the original image. For an asymmetric

galaxy, the di↵erence image will exhibit significant residual structures, leading the A

statistic to di↵er significantly from zero. The A statistic is defined as

A =

P
m

P
n |imn � i

180,mn|P
m

P
n |imn|

� B

180

,

where i and i

180

are the pixel intensities in the original and rotated images respectively

and B

180

is the average background asymmetry, defined using the intensities of pixels

lying outside the segmentation map.
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D Tuning of Parameters

For choosing tuning parameters, we consider the following loss function.

L(b�h, �) =
Z

(b�h(x)� �(x))2 dP (x)

=

Z ⇣
bPh(Y = 1|x)� P(Y = 1|x)

⌘
2

dP (x) +
h
bP(Y = 1)� P(Y = 1)

i
2

� 2
h
bP(Y = 1)� P(Y = 1)

i Z ⇣
bPh(Y = 1|x)� P(Y = 1|x)

⌘
P (x)

where b�h = bP(Y = 1|x) � bP(Y = 1) and � = P(Y = 1|x) � P(Y = 1). Using a typical

estimator of P(Y = 1) obtained by bP(Y = 1) = n

1

/n where n = n

0

+ n

1

, the loss function

can be expanded into

L(b�h, �) =
Z
bP2

h(Y = 1|x)dP (x)� 2

Z
bPh(Y = 1|x)P(Y = 1|x)dP (x)

� 2
h
bP(x)� P(x)

i Z
bPh(Y = 1|x)dP (x) +K

where K is a constant that does not depend on the tuning parameters. Since

bP(Y = 1)� P(Y = 1) = op(1) and

Z
bPh(Y = 1|x)dP (x) 2 [0, 1] ,

we estimate the loss function up to K based on cross-validation by

b
L(b�h, �) =

1

n

0

n0X

i=1

bP2

h(Y = 1|xi)�
2

n

0

n0
1X

j=1

bPh(Y = 1|xj) (8)

where n

0 = n

0
0

+ n

0
1

is the number of a validation sample. Then, we choose the tuning

parameters that minimize the estimated loss bL(b�h, �).

Let cx be a critical value of the local test at x that satisfies

PH0(|b�h(x)� �(x)| > cx|x)  ↵ (9)

where ↵ is the level of significance. In general, the statistical power of a hypothesis test is

closely related to the precision of confidence interval. So, we want to select the smallest cx
under the restriction of (9). By Chebyshev’s inequality, we have

PH0(|b�h(x)� �(x)| > cx|x) 
1

c

2

x

E
⇥
(b�h(x)� �(x))2 |x

⇤
.
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Therefore, choosing h with the smallest E
⇥
(b�h(x)� �(x))2 |x

⇤
is an indirect way of selecting

cx as small as possible. Moreover, if we use the common h over x to reduce the computation

time, the averaged mean squared error over x can be used as a surrogate loss function to

optimize the power. Specifically, the following holds.

Ex [PH0(|b�h(x)� �(x)| > cx|x)]  Ex


1

cx

E [|b�h(x)� �(x)||x]
�


p

E [c�2

x ]
p
E [L(b�h, �)].

This fact motivates us to employ bL(b�h, �) as a loss function to choose the tuning parameters.
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