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Abstract

Consider a linear model Y = Xβ + σz, where X has n rows and p columns and
z ∼ N(0, In). We assume both p and n are large, including the case of p � n. The
unknown signal vector β is assumed to be sparse in the sense that only a small fraction
of its components is nonzero. The goal is to identify such nonzero coordinates (i.e.,
variable selection).

We are primarily interested in the regime where signals are both rare and weak
so that successful variable selection is challenging but is still possible. Researches on
rare and weak signals to date have been focused on the unstructured case, where the
Gram matrix G = X ′X is nearly orthogonal. In this paper, G is only assumed to be
sparse in the sense that each row of G has relatively few large coordinates (diagonals
of G are normalized to 1). The sparsity of G naturally induces the sparsity of the so-
called graph of strong dependence (GOSD). The key insight is that there is an interesting
interplay between the signal sparsity and graph sparsity: in a broad context, the signals
decompose into many small-size components of GOSD that are disconnected to each
other.

We propose Graphlet Screening (GS) for variable selection. This is a two-step Screen
and Clean procedure, where in the first step, we screen subgraphs of GOSD with se-
quential χ2-tests, and in the second step, we clean with penalized MLE. The main
methodological innovation is to use GOSD to guide both the screening and cleaning
processes.

For any variable selection procedure β̂, we measure its performance with the Ham-
ming distance between the sign vectors of β̂ and β, and assess the optimality by the
convergence rate of the Hamming distance. Compared with more stringent criteri-
ons such as exact support recovery or oracle property, which demand strong signals,
the Hamming distance criterion is more appropriate for weak signals since it naturally
allows a small fraction of errors.

We show that in a broad class of situations, Graphlet Screening achieves the optimal
rate of convergence in terms of the Hamming distance. Well-known procedures such
as the L0-penalization method and the L1-penalization methods do not utilize graph
structure for variable selection, so they generally do not achieve the optimal rate of
convergence, even in very simple settings and even when the tuning parameters are
ideally set.

Keywords: Asymptotic minimaxity, graph of strong dependence (GOSD),
graph of least favorables (GOLF), Hamming distance, Graphlet Screening, phase
diagram, Rare and Weak signal model, Screen and Clean, sparsity.
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1 Introduction

Consider a linear regression model

Y = Xβ + σz, z ∼ N(0, In), (1.1)

where the design matrix X = Xn,p has n rows and p columns. Throughout this paper, we
assume the diagonals of the Gram matrix

G = X ′X

are normalized to 1 (and approximately 1 in the random design model). Motivated by
the recent trend of ‘Big Data’ where massive datasets consisting of millions or billions of
observations and variables are mined for associations and patterns (e.g. genomics, com-
pressive sensing), we are primarily interested in the case where both p and n are large with
p ≥ n (though this should not be taken as a restriction). The signal vector β is unknown
to us, but is presumably sparse in the sense that only a small proportion of its coordinates
is nonzero. The main interest of this paper is to identify such nonzero coordinates (i.e.,
variable selection).

1.1 The paradigm of rare and weak signals

We are primarily interested in the regime where the signals are both rare and weak: Whether
we are talking about clickstreams in web browsing or genome scans or tick-by-tick financial
data, most of what we see is noise; the signals, mostly very subtle, are hard to find, and
it’s easy to be fooled.

While rarity (or sparsity) of the signal is a well-accepted concept in high dimensional
data analysis, the weakness of the signal is a much neglected notion. Many contemporary
studies of variable selection have focused on rare and strong signals, where the so-called
oracle property or probability of exact support recovery are used as the measure of optimal-
ity. Typically, these works assume the signals are sufficiently strong, so that the variable
selection problem does not involve the subtle tradeoff between signal sparsity and signal
strength. However, such a tradeoff is of great interest from both scientific and practical
perspectives.

In this paper, we focus on the regime where the signals are so rare and weak that they are
barely separable from the noise. We are interested in the exact demarcation that separates
the region of impossibility from the region of possibility. In the region of impossibility, the
signal is so rare and weak that successful variable selection is impossible. In the region of
possibility, the signals are strong enough so that successful variable selection is possible.
in the sense of committing a much smaller number of selection errors than the number of
signals. This is a very delicate situation, where it is of major interest to develop methods
that yields successful variable selection.
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When signals are rare and weak, exact recovery is usually impossible, and oracle prop-
erty or probability of exact support recovery is no longer an appropriate criterion for as-
sessing optimality. In this paper, we use the minimax Hamming distance as a measure of
optimality. Hamming distance is the expected number of components for which the esti-
mated signs and true signs of the regression coefficients disagree. Our primary goal is to
study the rate of minimax Hamming distance and to develop procedures that achieve the
minimax rate.

1.2 Exploiting the sparsity of the graph of strong dependence

Most of the work to date on “rare and weak” effects consider the completely unstructured
case where no two features interact with each other in a significant way [11, 12, 23, 29].
However, in numerous applications, there are relationships between predictors which are
important to consider.

In this paper, we are primarily interested in the class of linear models where the Gram
matrix G is ‘sparse’, in the sense that each row of G only has relatively few large coordinates.
Linear models where G are sparse can be found in the following application areas.

• Compressive sensing. We are interested in a very high dimensional sparse vector β.
The plan is to store or transmit n linear functionals of β and then reconstruct it. For
1 ≤ i ≤ n, we choose a p-dimensional coefficient vector Xi and observe Yi = X ′iβ + zi
with an error zi. The so-called Gaussian design is often considered [9, 10, 2], where

Xi
iid∼ N(0,Ω/n) with a sparse covariance matrix Ω. In this example, the sparsity of

Ω induces that of G = X ′X.

• Genetic Regulatory Network (GRN). For 1 ≤ i ≤ n, Wi = (Wi(1), . . . ,Wi(p))
′ rep-

resents the expression level of p different genes corresponding to the i-th patient.

Approximately, Wi
iid∼ N(α,Σ), where the contrast mean vector α is sparse reflect-

ing that only few genes are differentially expressed between a normal patient and a
diseased one [30]. Frequently, the concentration matrix Ω = Σ−1 is believed to be
sparse, and can be effectively estimated in some cases (e.g. [3, 4]), or can be as-
sumed as known in others, with the so-called “data about data” available [26]. To
estimate α, one may consider Y = n−1/2

∑n
i=1Wi ∼ N(

√
nα,Σ) and use brute-force

thresholding. However, such an approach is inefficient as it neglects the correlation
structure. Alternatively, let Ω̂ be a positive-definite estimate of Ω, the problem can
be re-formulated as the following linear model: (Ω̂)1/2Y ≈ Ω1/2Y ∼ N(Ω1/2β, Ip),
where β =

√
nα and G ≈ Ω, and both are sparse.

Other examples can be found in Computer Security [25] and Factor Analysis [21].
Well-known approaches to variable selection include subset selection, the lasso, SCAD,

MC+, greedy search and more [1, 6, 13, 14, 31, 32, 36, 38, 39, 40]. While these approaches
may exploit the signal sparsity effectively, they are not designed to take advantage of the
sparsity of the graphical structure of the design variables. It is therefore of great interest to
study how to exploit such graph sparsity to substantially improve variable selection. This
is particularly important in the “rare and weak” paradigm, where it is so easy to be fooled
by noise.

In fact, in such a paradigm, even the ‘optimal’ penalized least squares methods (in-
cluding exhaustive subset selection) are non-optimal. The exhaustive subset selection is
non-optimal because it is a one-stage and non-adaptive method that does not fully utilize
the graphical structure among the design variables. See Section 1.9 for detailed discussion.
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In this paper, we propose a new approach to variable selection which we call the Graphlet
Screening (GS). This is a two-stage Screen and Clean method, where the main method-
ological innovation is the use of a graph of strong dependence (GOSD), constructed from
the Gram matrix, to guide both the screening and the cleaning processes. The procedure
limits the attention to strong correlated substructures only, and has a two-fold advantage:
modest computational cost and theoretic optimality. Below, we begin our discussion with
the so-called phenomenon of interaction of signal sparsity and graph sparsity, which plays
a central role in the proposed method.

1.3 Sparse signal model, interplay of signal sparsity and graph sparsity

Motivated by the above examples, we adopt a sparse signal model as follows (e.g., [5]). Fix
parameters ε ∈ (0, 1) and τ > 0. Let b = (b1, . . . , bp)

′ be the p× 1 random vector where

bi
iid∼ Bernoulli(ε). (1.2)

We model the signal vector β as
β = b ◦ µ, (1.3)

where ◦ denotes the Hadamard product (i.e., for any p×1 vectors x and y, x◦y is the p×1
vector such that (x ◦ y)i = xiyi, 1 ≤ i ≤ p), and µ ∈ Θp(τ) with

Θp(τ) = {µ ∈ Rp : |µi| ≥ τ, 1 ≤ i ≤ p}. (1.4)

In later sections, we may further restrict µ to a subset of Θp(τ); see (1.11).

Definition 1.1 We call (1.2)-(1.4) the Rare and Weak signal model (RW(ε, τ, µ)).

In this model, βi is either 0 or a signal with at least strength τ . The parameter ε is
unknown to us, but is presumably small so the signals are sparse. At the same time, we
take τ to be moderately large (see Section 1.5 for details) so that the signals are barely
separable from the noise. This models a situation where the signals are both rare and weak.

Naturally, a sparse Gram matrix induces a sparse graph among design vectors, which
we call the graph of strong dependence (GOSD). Towards this end, write

X = [x1, x2, . . . , xp] = [X1, X2, . . . , Xn]′ (1.5)

so that xj is the j-th column of X and X ′i is the i-th row of X. For a tuning parameter
δ > 0 (δ = 1/ log p or other small values of logarithmic order), we introduce

Ω∗ = (Ω∗(i, j))p×p, Ω∗(i, j) = G(i, j)1{|G(i, j)| ≥ δ}, (1.6)

as a regularized Gram matrix.

Definition 1.2 The GOSD is the graph G∗ = (V,E), where V = {1, 2, . . . , p} and nodes i
and j are connected if and only if Ω∗(i, j) 6= 0.

If each row of Ω∗ has no more than K nonzeros, then the graph G∗ is K-sparse.

Definition 1.3 A graph G = (V,E) is K-sparse if the degree of each node is no greater
than K.
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At first glance, it is unclear how the sparsity of G∗ may help in variable selection. In
fact, for any fixed node i, even when K is as small as 2, it is possible to have a very long
path that connects node i to another node j. Therefore, it is unclear how to remove the
influence of other nodes when we attempt to make inference about node i.

However, on a second thought, we note that what is crucial to variable selection is
not the graph G∗, but the subgraph of G∗ formed by all the signal nodes. Compared to
the whole graph, this subgraph not only has a much smaller size, but also has a much
simpler structure: It decomposes into many components, each of which is small in size, and
different components are disconnected (a component is a maximal connected subgraph).
The following notation is frequently used in this paper.

Definition 1.4 Fixing a graph G, we say I0 C G if I0 is a component of G.

In other words, due to the interplay between the signal sparsity and the graph sparsity,
the original regression problem is decomposable: the signals live in isolated units, each is
small in size (if only we know where they are!), and different units are disconnected to each
other. So to solve the original regression problem, it is sufficient to solve many small-size
regression problems parallely, where one problem has little influence over the others.

Formally, denote the support of the signal vector by

S = S(β) = {1 ≤ i ≤ p : βj 6= 0}.

Let G∗S be the subgraph of G∗ formed by all the nodes in S. The following lemma is proved
in Section 5.

Lemma 1.1 Fixing K ≥ 1, m ≥ 1, ε > 0, τ > 0, suppose G∗ is K-sparse and β is from the
Rare and Weak model RW (ε, τ, µ). Then, with at least probability 1 − p(eεK)m+1, G∗S de-
composes into many components, each has a size ≤ m, and different ones are disconnected.

For moderately sparse signals (e.g. in an asymptotic framework where as p→∞, ε = εp ≤
p−ϑ for some fixed parameter ϑ > 0), p(eεK)m+1 is small so that the decomposability in
Lemma 1.1 holds with overwhelming probability. We mention that Lemma 1.1 is not tied to
Model (1.2)-(1.4) and holds in much broader settings. For example, a similar claim can be
drawn if the vector b in β = b ◦ µ satisfies a certain Ising model [24]. The decomposability
of G∗S is mainly due to the interplay of the signal sparsity and the graph sparsity, not
the specific model of the signals. For further elaboration on this point, see the proof of
Lemma 1.1 in Section 5.

1.4 Graphlet screening

The aforementioned decomposability invites the following two-stage variable selection pro-
cedure, which we call the Graphlet Screening (GS). Conceptually, the procedure contains
a graphical screening step (GS-step) and a graphical cleaning step (GC-step).

• GS-step. This is an m-stage χ2-screening process, where m ≥ 1 is a preselected
integer. In this process, we investigate all connected subgraphs of G∗ of no more than
m nodes. For each of them, we test whether some of the nodes in the connected
subgraph are signals, or none of them is a signal. We then retain all those which we
believe to contain one or more signals.

• GC-step. The surviving nodes decompose into many components, each of which has
no more than `0 nodes, where `0 is a fixed small number. We then fit each component
with penalized MLE, in hopes of removing all falsely kept signals.
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In philosophy, the GS is similar to [34, 15] in that they have a screening and a cleaning
stage, but is more sophisticated in nature.

We now describe two steps in details. Recalling (1.5), we have the following definition.

Definition 1.5 For X in Model (1.1) and any subset I ⊂ {1, 2, ..., p}, let P I = P I(X) be
the projection from Rn to the span of {xj , j ∈ I}.

Consider the GS-step first. Let G∗ be as in (1.6) and fix m ≥ 1. The m-stage χ2-
screening is as follows.

• Initial sub-step. Let U∗p = ∅. List all connected subgraphs of G∗, say I0, in ascending
order of the number of nodes |I0|, with ties broken lexicographically, subject to |I0| ≤
m. Since a node is thought of as connected to itself, the first p connected subgraphs
on the list are simply the nodes 1, 2, . . . , p. We screen all connected subgraphs in the
order they are listed.

• Updating sub-step. Let I0 be the connected subgraph under consideration, and let U∗p
be the current set of retained indices. We update U∗p with a χ2 tests as follows. Let

F̂ = I0 ∩ U∗p and D̂ = I0 \ U∗p , so that F̂ is the set of nodes in I0 that have already

been accepted, and D̂ is the set of nodes in I0 that is currently under investigation.
Note that no action is needed if D̂ = ∅. For a threshold t(D̂, F̂ ) > 0 to be determined,
we update U∗p by adding all nodes in D̂ to it if

T (Y, D̂, F̂ ) = ‖P I0Y ‖2 − ‖P F̂Y ‖2 > t(D̂, F̂ ), (1.7)

and we keep U∗p the same otherwise (by default, ‖P F̂Y ‖ = 0 if F̂ = ∅). We continue
this process until we finish screening all connected subgraphs on the list.

In the GS-step, once a node is kept in any sub-stage of the screening process, it remains
there until the end of the GS-step (however, it may be killed in the GC-step). This has a
similar flavor to that of the Forward regression. See Table 1 for a recap of the procedure.

The GS-step uses the following set of tuning parameters:

Q ≡ {t(D̂, F̂ ) : (D̂, F̂ ) are as defined in (1.7)}.

A convenient way to set these parameters is to let t(D̂, F̂ ) = 2σ2q log p for a fixed q > 0
and all (D̂, F̂ ). More sophisticated choices are given in Section 1.7.

The computational cost of the GS-step hinges on the sparsity of G∗. In Section 1.5,
we show that with a properly chosen δ, for a wide class of design matrices, G∗ is K-sparse
for some K = Kp ≤ (log(p))α as p → ∞, where α > 0 is a constant. As a result, the
computational cost of the GS-step is moderate, because for any K-sparse graph, there are
at most p(eK)m subgraphs with size m [19].

The GS-step has two important properties: Sure Screening and Separable After Screen-
ing (SAS). With tuning parameters Q properly set, the Sure Screening property says that
U∗p retains all but a negligible fraction of the signals. Viewing U∗p as a subgraph of G∗, the
SAS property says that this subgraph decomposes into many disconnected components,
each has a size ≤ `0 for a fixed small integer `0. Together, these two properties enable us to
reduce the original large-scale regression problem to many small-size regression problems
that can be solved parallelly in the GC-step. See Section 2 for elaboration on these ideas.

We now discuss the GC-step. The following notation is frequently used in this paper.
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Table 1: Graphet Screening Algorithm

GS-step: List G∗-connected submodels I0,k with |I0,1| ≤ |I0,2| ≤ · · · ≤ m
Initialization: U∗p = ∅ and k = 1

Test H0 : I0,k ∩ U∗p against H1 : I0,k with χ2 test (1.7)

Update: U∗p ← U∗p ∪ I0,k if H0 rejected, k ← k + 1

GC-step: As a subgraph of G∗, U∗p decomposes into many components I0

Use the L0-penalized test (1.8) to select a subset Î0 of each I0

Return the union of Î0 as the selected model

Definition 1.6 For a p×m matrix X and subsets I0 ⊂ {1, 2, . . . , p} and J0 ⊂ {1, 2, . . . ,m},
XI0,J0 denotes the |I0| × |J0| sub-matrix of X formed by restricting the rows of X to I0

and columns to J0. For short, in the case where J0 = {1, 2, . . . ,m}, we write it as XI0,
and in the case where I0 = {1, 2, . . . , p}, we write it as X∗,J0. When m = 1, X is a vector,
and XI0 is the sub-vector of X formed by restricting the rows of X to I0.

For any 1 ≤ j ≤ p, we have either j /∈ U∗p , or that there is a unique connected subgraph
I0 such that j ∈ I0CU∗p (see Definition 1.3 for the notation). In the first case, we estimate
βj as 0. In the second case, for two tuning parameters ugs > 0 and vgs > 0, we estimate
the whole set of variables βI0 by minimizing the following functional:

‖P I0(Y −X∗,I0ξ)‖2 + (ugs)2‖ξ‖0. (1.8)

Here, ξ is an |I0|×1 vector each nonzero coordinate of which ≥ vgs in magnitude, and ‖ξ‖0
is the L0-norm of ξ. The resultant estimator is the final estimate of Graphlet Screening
which we denote by β̂gs = β̂gs(Y ; δ,Q, ugs, vgs, X, p, n).

The computational cost of the GC-step hinges on maximal size of the components of U∗p .
By the SAS property of the GS-step (see Lemma 2.3 for details), for a broad class of design
matrices, with the tuning parameters chosen properly, there is a fixed integer `0 such that
with overwhelming probability, |I0| ≤ `0 for any I0 C U∗p . As a result, the computational

cost of the GC-step is no greater than |U∗p | × 2`0 , which is moderate.
How does Graphlet Screening behave? Surprisingly well. In sections below, we show

that Graphlet Screening achieves the minimax Hamming errors over a wide class of Rare
and Weak models. Towards this end, we invoke the random design model. The use of
random design model is mainly for simplicity in presentation. In particular, it is much
easier to elaborate the sparsity of the Gram matrix in a random design model than a fixed
design model. On the other hand, the main results in this section can be translated to fixed
design models with careful modification of the notation. See for example Corollary 1.1 and
Section 4.

1.5 Asymptotic Rare and Weak model for regression with random design

We continue our discussion with the Rare and Weak model RW(ε, τ, µ) by introducing an
asymptotic framework. In this framework, we let p be the driving asymptotic parameter,
and parameters (ε, τ) are tied to p through some fixed parameters. In detail, fixing 0 <
ϑ < 1, we model

ε = εp = p−ϑ. (1.9)
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For any fixed ϑ, the signals become increasingly sparser as p→∞. Also, as ϑ ranges, the
sparsity level ranges from very dense to very sparse, and covers most interesting cases.

It turns out that the most interesting range for τ is τ = τp = O(
√

log(p)). In fact,
when τp � σ

√
log(p), the signals are simply too rare and weak so that successful variable

selection is impossible. On the other hand, when τp is sufficiently large, it is possible to
exactly recover the support of β under proper conditions on the design. In light of this, we
fix r > 0 and calibrate τ by

τ = τp = σ
√

2r log(p). (1.10)

At the same time, fixing a constant a > 1, in the RW (ε, τ, µ), we further restrict the
vector µ to a subset of Θp(τp), denoted by Θ∗p(τp, a), where

Θ∗p(τp, a) = {µ ∈ Θp(τp) : |µi| ≤ aτp, i = 1, 2, . . . , p}, (1.11)

and the parameter a is unknown. The constraint of |µi| ≤ aτp is mainly for technical reasons
(only needed in the proof of Lemma 2.3). Hopefully, in the near future, such a constraint
can be removed. See later part of this subsection for more discussion on the role of a.

Definition 1.7 We call model (1.2)-(1.4) and (1.9)-(1.11) the Asymptotic Rare Weak sig-
nal model ARW(ϑ, r, a, µ).

We now introduce the random design model. Fix a correlation matrix Ω that is pre-
sumably unknown to us (however, for simplicity, we assume that Ω has unit diagonals). In
the random design model, we assume that the rows of X as iid samples from a p-variate
zero means Gaussian vector with correlation matrix Ω:

Xi
iid∼ N(0,

1

n
Ω). (1.12)

The factor 1/n is chosen so that the diagonal elements of the Gram matrix G are approx-
imately one. In the literature, this is called the Gaussian design, which can be found in
Compressive Sensing [2], Computer Security [8], and other application areas.

At the same time, fixing κ ∈ (0, 1), we model the sample size n by

n = np = pκ. (1.13)

As p→∞, np becomes increasingly large but is still much smaller than p. We assume

κ > (1− ϑ), (1.14)

so that np � pεp. Note pεp is approximately the total number of signals. Condition (1.14)
is almost necessary for successful variable selection [9, 10].

Definition 1.8 We call Model (1.12)-(1.14) the Random Design model RD(ϑ, κ,Ω).

Come back to (1.11). From a practical point of view, it is preferable to assume a
moderately large (but fixed) a, since we usually don’t have sufficient knowledge on µ. For
this reason, we are primarily interested in the case where a is “appropriately” large. This
will make Θ∗p(τp, a) sufficiently broad so that neither the minimax rate nor any variable
selection procedure needs to adapt to a.

Towards this end, we impose some mild “local” regularity conditions on Ω. In detail,
for any positive definite matrix A, let λ(A) be the smallest eigenvalue, and let

λ∗k(Ω) = min{λ(A) : A is a k × k principle submatrix of Ω}. (1.15)

8



At the same time, fixing a constant c0 > 0, let (ϑ, r) be as in (1.9) and (1.10), respectively,
let m be as in the GS-step, and let g be the smallest integer such that

g ≥ max{m, (ϑ+ r)2/(2r)}. (1.16)

Introduce

Mp(c0, g) = {Ω : p× p correlation matrix, λ∗k(Ω) ≥ c0, 1 ≤ k ≤ g}.

For any two subsets V0 and V1 of {1, 2, . . . , p}, consider the optimization problem(
θ

(0)
∗ (V0, V1), θ

(1)
∗ (V0, V1)

)
= argmax{(θ(1) − θ(0))′Ω(θ(1) − θ(0))}, (1.17)

subject to the constraints that for k = 0, 1, θ(k) are p × 1 vectors satisfying |θ(k)
i | ≥ 1

for i ∈ Vk and θ
(k)
i = 0 otherwise, and that the sign vectors of θ(0) and θ(1) are unequal.

Introduce

a∗g(Ω) = max
{(V0,V1):|V0∪V1|≤g}

max{‖θ(0)
∗ (V0, V1)‖∞, ‖θ(1)

∗ (V0, V1)‖∞}.

We have the following lemma, the proof of which is elementary and thus omitted.

Lemma 1.2 For any Ω ∈Mp(c0, g), there is a constant C = C(c0, g) such that a∗g(Ω) ≤ C.

In this paper, unless stated otherwise, we assume

Ω ∈Mp(c0, g), a > a∗g(Ω). (1.18)

One exception is Theorem 1.1, where the result holds without such a constraint. In Section
1.7, we further restrict Ω to a subset of Mp(c0, g) to foster graph sparsity. Condition
(1.18) is mild for it involves only small-size principle sub-matrices of Ω, and we assume
a > a∗g(Ω) mostly for simplicity. For insight, imagine that in (1.17), we further require that

|θ(k)
i | ≤ aτp, i ∈ Vk, k = 0, 1. Then as long as a > a∗g(Ω), the optimization problem in

(1.17) has exactly the same solution, which does not depend on a. This explains (1.18).
For any fixed β and any variable selection procedure β̂, we measure the performance by

the Hamming distance between the sign vectors sgn(β̂) and sgn(β):

hp(β̂, β
∣∣X) = E

[ p∑
j=1

1
(
sgn(β̂j) 6= sgn(βj)

)∣∣X].
In the Asymptotic Rare Weak model, β = b ◦ µ, and (εp, τp) depend on p through (ϑ, r), so

the overall Hamming distance for β̂ is

Hp(β̂; εp, np, µ,Ω) = EεpEΩ

[
hp(β̂, β

∣∣X)
]
≡ EεpEΩ

[
hp(β̂, b ◦ µ

∣∣X)
]
,

where Eεp is the expectation with respect to the law of b, and EΩ is the expectation with
respect to the law of X; see (1.2) and (1.12). Finally, the minimax Hamming distance is

Hamm∗p(ϑ, κ, r, a,Ω) = inf
β̂

sup
µ∈Θ∗p(τp,a)

{
Hp(β̂; εp, np, µ,Ω)

}
.

In the above definitions, sgn(x) = 0, 1,−1 if x = 0, x > 0, and x < 0 correspondingly. Note
that the Hamming distance is no smaller than the sum of the expected number of signal
components that are misclassified as noise and the expected number of noise components
that are misclassified as signal.

9



1.6 Lower bound for the minimax Hamming distance, and GOLF

In this section, we construct a lower bound for the minimax Hamming distance. We focus
our discussion on the Random Design model, but will also address deterministic design.
The main insight is that, the lower bound depends on the structure of small-size connected
subgraphs of G∗, rather than the large-scale structures of G∗. This is a direct result of the
decomposability of G∗S mentioned earlier.

It is noteworthy that the constructed lower bound is useful provided that the so-called
graph of least favorables (GOLF) (to be introduced below) is sparse. The GOLF can be
sparse even if G∗ is heavily non-sparse, so the lower bound can be useful in rather general
context, with only minimal conditions imposed on Ω.

Below, we first derive such a lower bound without assuming (1.18). We then discuss the
case where (1.18) holds, and derive a useful alternative expression for the lower bound. The
key in the construction is to derive lower bounds for the so-called “local risk”. The “local
risk” at an index j, 1 ≤ j ≤ p, is the risk of estimating the set of variables {βk : d(k, j) ≤ g},
where g is defined in (1.16) and d(j, k) denotes the geodesic distance between j and k in
the graph G∗. Aggregating the lower bounds for the “local risk” at different j gives a lower
bound for the global risk, where the effect of repetitive counting is controlled by the sparsity
of the GOLF.

We now construct a lower bound for the “local risk” at site j. The “local risk” is
characterized by the exponent ρ∗j (ϑ, r, a,Ω), which depends on Ω in a complicated way, and
it takes relatively long preparations to describe it.

In detail, for a lower bound for the “local risk” at site j, the goal is to construct two
subsets V0 and V1 (maybe equal) of {1, 2, . . . , p} and two realization of β, β(0) and β(1),
such that their sign vectors are unequal, and

• (a) j ∈ V1 ∪ V0,

• (b) β(0) and β(1) take same values at any k /∈ V0 ∪ V1,

• (c) for any k ∈ V0 ∪ V1, β
(i)
k 6= 0 if and only if k ∈ Vi, i = 0, 1.

In the literature, it is known that how well we can estimate {βk : d(k, j) ≤ g} depends on
how well we can test the model Y = Xβ(0) + σz against the model Y = Xβ(1) + σz, where
z ∼ N(0, In). These two models can be thought of as an original model and a tampered
one, respectively. In the context of lower bound construction, we usually assume that β(0)

and β(1) are known, but we don’t know which of the two models is true. The least favorable
scenario corresponds to the “worst-case” configuration of (V0, V1, β

(0), β(1)), for which two
regression models are the most difficult to separate.

Now, for any subset V ⊂ {1, 2, . . . , p}, let IV be the p× 1 vector such that (IV )k = 1 if
k ∈ V and 0 otherwise, and let BV be the set of vectors

BV = {θ = IV ◦ µ : µ ∈ Θ∗p(τp, a)}.

Rewriting β(1) − β(0) = θ(1) − θ(0) such that θ(i) ∈ BVi , i = 0, 1, we introduce

α(θ(0), θ(1)) = τ−2
p (θ(0) − θ(1))′Ω(θ(0) − θ(1)).

In the aforementioned testing problem, it is seen that the optimal test is to reject the
original model if and only if (θ(1) − θ(0))′X ′(Y − Xβ(0)) ≥ tστp

√
α(θ(0), θ(1)) for some
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threshold t > 0 to be determined, and the sum of Type I and Type II error of any test is
no smaller than (up to some negligible differences)

inf
t

[
ε|V0|p Φ̄(t) + ε|V1|p Φ

(
t− (τp/σ)[α(θ(0), θ(1))]1/2

)]
. (1.19)

This gives a lower bound for the “local risk” at index j. Here Φ̄ = 1 − Φ is the survival
function of N(0, 1). In the above calculations, we have used that in the Random Design
model,

(θ(0) − θ(1))′G(θ(0) − θ(1)) ≈ (θ(0) − θ(1))′Ω(θ(0) − θ(1)),

since the support of θ(0) − θ(1) is contained in V0 ∪ V1, which is a small-size set.
To tighten the lower bound in (1.19), we look for the “worst-case” configuration of

(V0, V1, θ
(0), θ(1)). Towards this end, first, we fix (V0, V1) and look for the “worst-case”

(θ(0), θ(1)). To do so, define α∗(V0, V1; Ω) = α∗(V0, V1;ϑ, r, a,Ω, p) by

α∗(V0, V1; Ω) = min
{
α(θ(0), θ(1)) : θ(i) = IVi◦µ(i), µ(i) ∈ Θ∗p(τp, a), i = 0, 1, sgn(θ(0)) 6= sgn(θ(1))},

where sgn(θ) denotes the sign vector of θ. By (1.19) and monotonicity, a lower bound for
the “local risk” at index j is then

sup
{(V0,V1): j∈V0∪V1}

{
inf
t

[
ε|V0|p Φ̄(t) + ε|V1|p Φ

(
t− (τp/σ)[α∗(V0, V1; Ω)]1/2

)}
. (1.20)

Next, we find the “locally worst-case” (V0, V1) for (1.20). The following shorthand
notation is frequently used in this paper, which stands for a generic multi-log(p) term that
may vary from one occurrence to another.

Definition 1.9 Lp > 0 denotes a multi-log(p) term such that when p→∞, for any δ > 0,
Lpp

δ →∞ and Lpp
−δ → 0.

Now, introduce η(V0, V1; Ω) = η(V0, V1;ϑ, r, a,Ω, p) by

η(V0, V1; Ω) = max{|V0|, |V1|}ϑ+
1

4

[(√
α∗(V0, V1; Ω)r −

∣∣(|V1| − |V0|)
∣∣ϑ√

α∗(V0, V1; Ω)r

)
+

]2

.

Recalling τp/σ =
√

2r log p and εp = p−ϑ = exp(−ϑ log p), by Mills’s ratio the lower bound
(1.20) can be equivalently written as

Lp exp
(
− min
{(V0,V1): j∈V1∪V0}

η(V0, V1; Ω) log p
)
.

In light of this, for any 1 ≤ j ≤ p, the least favorable configuration at index j is the triplet
(ρ∗j , V

∗
0j , V

∗
1j), where

ρ∗j (ϑ, r, a,Ω) = min
{(V0,V1):j∈V1∪V0}

η(V0, V1; Ω), (1.21)

and
(V ∗0j , V

∗
1j) = argmin{(V0,V1):j∈V1∪V0}η(V0, V1; Ω).

When there is a tie, pick the pair that appears first lexicographically. Therefore, for any
1 ≤ j ≤ p, V ∗0j ∪ V ∗1j is uniquely defined. The following lemma is proved in Section 5.

Lemma 1.3 Fix p, ϑ, r, Ω, and 1 ≤ j ≤ p, max{|V ∗0j ∪ V ∗1j |} ≤ (ϑ+ r)2/(2ϑr).
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So far, we have been focused on the “worst-case” of the “local risk”, which is charac-
terized by Lpexp(−ρ∗j (ϑ, r, a,Ω) log(p)). In order for the sum of “local risk” to reflect the
global risk, we need the sparsity of the following graph.

Definition 1.10 The graph of least favorables (GOLF) is the graph G� = (V,E), where
V = {1, 2, . . . , p} and nodes j and k are connected if and only if (V ∗0j ∪V ∗1j) and (V ∗0k ∪V ∗1k)
have non-empty intersections.

Since k ∈ (V ∗0k ∪V ∗1k), j and k are connected if k ∈ (V ∗0j ∪V ∗1j). Let dp(G�) be the maximum
degree of G�. When dp(G�) is relatively small, the least favorable configurations do not
contain a hub: that is, any node k can appear in (V0j ∪ V ∗1j) for relatively few j. Such
a property holds for a broad class of Ω, including even those ill-posed ones. In this very
general context, we have the following theorem, which establishes the lower bound.

Theorem 1.1 As p → ∞, Hamm∗p(ϑ, κ, r, a,Ω) ≥ Lp
[
dp(G�)

]−1∑p
j=1 p

−ρ∗j (ϑ,r,a,Ω) in the
Random Design model RD(ϑ, κ,Ω).

A similar conclusion can be drawn for deterministic design models, the proof of which is
similar so we omit it.

Corollary 1.1 For deterministic design models, the parallel lower bound holds for the min-
imax Hamming distance with Ω replaced by G in the calculation of ρ∗j and dp(G�).

In Theorem 1.1, we have not imposed much conditions on Ω. In the remaining part
of this subsection, we assume (1.18) holds. In this case, ρ∗j (ϑ, r, a,Ω) does not depend on
a, and have an alternative expression. In detail, for any subsets D and F of {1, 2, . . . , p},
define ω(D,F ; Ω) = ω(D,F ;ϑ, r, a,Ω, p) by

ω(D,F ; Ω) = min
ξ∈R|D|,mini∈D |ξi|≥1

{
ξ′
(
ΩD,D − ΩD,F (ΩF,F )−1ΩF,D

)
ξ
}
, (1.22)

and ρ(D,F ; Ω) = ρ(D,F ;ϑ, r, a,Ω, p) by

ρ(D,F ; Ω) =
(|D|+ 2|F |)ϑ

2
+

{
1
4ω(D,F ; Ω)r, |D| is even,
ϑ
2 + 1

4

[
(
√
ω(D,F ; Ω)r − ϑ√

ω(D,F ;Ω)r
)+

]2
, |D| is odd.

(1.23)
The following lemma is proved in Section 5.

Lemma 1.4 Fix ϑ, r, g, a,Ω, c0. If (1.18) holds, then ρ∗j (ϑ, r, a,Ω) does not depend on a,
and satisfies

ρ∗j (ϑ, r, a,Ω) = min
{(D,F ):j∈D∪F ,D∩F=∅,D 6=∅,|D∪F |≤g}

ρ(D,F ; Ω).

Lemma 1.4 provides an alternative way to calculate ρ∗j (ϑ, r, a,Ω), and is particularly useful
in proving Corollaries 1.2-1.4.

1.7 Upper bound and optimality of Graphlet Screening

We are now ready for the main result of this paper. When Ω is sparse—so that the GOSD G∗
is sparse—the Hamming distance of Graphlet Screening achieves the rate of convergence
prescribed by the lower bound we derived in the preceding section, provided the tuning
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parameters are properly set. Therefore, the lower bound is tight and Graphlet Screening is
rate optimal.

In detail, fix constants γ ∈ (0, 1) and A > 0. To foster sparsity of the Gram matrix, we
shift our attention fromMp(c0, g) (where only a lower bound c0 for the lower eigenvalue of
dimension g is imposed) to the following subset:

M∗p(γ, c0, g, A) =
{

Ω ∈Mp(c0, g) :

p∑
j=1

|Ω(i, j)|γ ≤ A, 1 ≤ i ≤ p
}
. (1.24)

Note that any Ω ∈ M∗p(γ, c0, g, A) is sparse in the sense that each row of Ω has relatively
few large coordinates. The sparsity of Ω implies the sparsity of the Gram matrix G, since
small-size sub-matrices of G approximately equal to their counterparts of Ω.

In Graphlet Screening, when we regularize GOSD, we set the threshold δ as 1/ log(p);
see (1.6). Such a choice for threshold is mainly for convenience, and can be replaced by any
term that tends to 0 logarithmically fast as p→∞.

We choose the tuning parameters in the GS-step in a way such that

t(D̂, F̂ ) = 2σ2q(D̂, F̂ ) log p, (1.25)

where q = q(D̂, F̂ ) > 0 are chosen as follows: For fixed q0 > 0,
√
q0 ≤

√
q ≤
√
ωr −

√
(ϑ+ωr)2

4ωr − |D̂|+1
2 ϑ, |D̂| is odd & ωr/ϑ > |D̂|+ (|D̂|2 − 1)1/2,

√
q0 ≤

√
q ≤
√
ωr −

√
1
4ωr −

1
2 |D̂|ϑ, |D̂| is even & ωr/ϑ ≥ 2|D̂|,

(1.26)
and q can be any other number no smaller than q0 in other cases. Here ω = ω(D̂, F̂ ; Ω) are
defined in the same way as (1.22).

We set the GC-step tuning parameters by

ugs = σ
√

2ϑ log p, vgs = τp = σ
√

2r log p. (1.27)

The main result in this paper is the following theorem.

Theorem 1.2 Consider Model (1.1) where β is modeled by ARW(ϑ, r, a, µ) and X is mod-
eled by RD(ϑ, κ,Ω). Suppose that for sufficiently large p, a > a∗g(Ω) and Ω ∈M∗p(γ, c0, g, A).

Let β̂gs = β̂gs(Y ; δ,Q, ugs, vgs, X, p, n) be the Graphlet Screening procedure defined in Sec-
tion 1.3. If the tuning parameters are set as in (1.25)-(1.27), then as p→∞,

sup
µ∈Θ∗p(τp,a)

Hp(β̂
gs; εp, np, µ,Ω) ≤ Lp

[
p1−(m+1)ϑ +

p∑
j=1

p−ρ
∗
j (ϑ,r,a,Ω)

]
+ o(1).

Note that ρ∗j = ρ∗j (ϑ, r, a,Ω) does not depend on a. Also, note that in the most interesting

range,
∑p

j=1 p
−ρ∗j � 1. So if we choose m properly large (e.g. (m+ 1)ϑ > 1), then

sup
µ∈Θ∗p(τp,a)

Hp(β̂
gs; εp, np, µ,Ω) ≤ Lp

p∑
j=1

p−ρ
∗
j (ϑ,r,a,Ω).

Together with Theorems 1.1, this says that Graphlet Screening achieves the optimal rate of
convergence, adaptively to all Ω inM∗p(γ, c0, g, A) and β ∈ Θ∗p(τp, a). We call this property

13



optimal adaptivity. Note that since the diagonals of Ω are scaled to 1 approximately,
κ ≡ log(np)/ log(p) does not have a major influence over the convergence rate, as long as
(1.14) holds.

Theorem 1.2 addresses the case where a > a∗g(Ω). We now briefly discuss the case
where a < a∗g(Ω). In this case, the set Θ∗p(τp, a) becomes sufficiently narrow and a starts
to have some influence over the optimal rate of convergence, at least for some choices of
(ϑ, r). To reflect the role of a, we modify Graphlet Screening as follows: (a) in the GC-step
(1.8), limit ξ to the class where either ξi = 0 or τp ≤ |ξi| ≤ aτp, and (b) in the GS-step,
replacing the χ2-screening by the likelihood based screening procedure; that is, when we
screen I0 = D̂ ∪ F̂ , we accept nodes in D̂ only when h(F̂ ) > h(I0), where for any subset
D ⊂ {1, 2, . . . , p},

h(D) = min
{ξ=ID◦µ,µ∈Θ∗p(τp,a)}

1

2
‖PD(Y −X∗,Dξ)‖2 + ϑσ2 log(p)|D|.

From a practical point of view, this modified procedure depends more on the underlying
parameters and is harder to implement. However, this is the price we need to pay when a is
small. Since we are primarily interested in the case of relatively larger a (so that a > a∗g(Ω)
holds), we skip further discussion along this line.

1.8 Phase diagram and examples where ρ∗j(ϑ, r, a,Ω) have simple forms

In general, the exponents ρ∗j (ϑ, r, a,Ω) may depend on Ω in a complicated way. Still, from
time to time, one may want to find a simple expression for ρ∗j (ϑ, r, a,Ω). It turns out that in
a wide class of situations, simple forms for ρ∗j (ϑ, r, a,Ω) are possible. The surprise is that,
in many examples, ρ∗j (ϑ, r, a,Ω) depends more on the trade-off between the parameters ϑ
and r (calibrating the signal sparsity and signal strength, respectively), rather than on the
large coordinates of Ω.

We begin with the following theorem, which is proved in [25, Theorem 1.1].

Theorem 1.3 Fix ϑ ∈ (0, 1), r > 0, and a > 1. Then for any correlation matrix Ω,

Hamm∗p(ϑ, κ, r, a,Ω)

p1−ϑ &

{
1, 0 < r < ϑ,

Lpp
−(r−ϑ)2/(4r), r > ϑ.

Note that p1−ϑ is approximately the number of signals. Therefore, when r < ϑ, the number
of selection errors can not get substantially smaller than the number of signals. This is the
most difficult case where no variable selection method can be successful.

In this section, we focus on the case r > ϑ, so that successful variable selection is
possible. In this case, Theorem 1.3 says that a universal lower bound for the Hamming
distance is

Lpp
1−(ϑ+r)2/(4r).

An interesting question is, to what extend, this lower bound is tight.
Recall that λ∗k(Ω) denotes the minimum of smallest eigenvalues across all k×k principle

submatrices of Ω, as defined in (1.15). The following corollaries are proved in Section 5.

Corollary 1.2 Fix ϑ ∈ (0, 1) and r > 0 such that 1 < r/ϑ < 3 + 2
√

2 ≈ 5.828. Suppose
that in addition to the conditions of Theorem 1.2, |Ω(i, j)| ≤ 4

√
2 − 5 ≈ 0.6569, for all

1 ≤ i, j ≤ p, i 6= j, then Hamm∗p(ϑ, κ, r, a,Ω) = Lpp
1−(ϑ+r)2/(4r).
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Corollary 1.3 Fix ϑ ∈ (0, 1) and r > 0 such that 1 < r/ϑ < 5 + 2
√

6 ≈ 9.898. Suppose
that in addition to the conditions of Theorem 1.2, λ∗3 ≥ 2(5 − 2

√
6) ≈ 0.2021, λ∗4 ≥ 5 −

2
√

6 ≈ 0.1011, and for all 1 ≤ i, j ≤ p, i 6= j, |Ω(i, j)| ≤ 8
√

6 − 19 ≈ 0.5959, then
Hamm∗p(ϑ, κ, r, a,Ω) = Lpp

1−(ϑ+r)2/(4r).

The conditions in these corollaries are rather relaxed. Somewhat surprisingly, the off-
diagonals of Ω do not necessarily have a major influence on the optimal rate convergence,
as one might have expected.
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Figure 1: Phase diagram for Ω = Ip (left), for Ω satisfying conditions of Corollary 1.2
(middle), and for Ω satisfying conditions of Corollary 1.3 (right). Red line: r = ϑ. Solid
red curve: r = ρ(ϑ,Ω). In each of the last two panels, the blue line intersects with the red
curve at (ϑ, r) = (1/2, [3 + 2

√
2]/2) (middle) and (ϑ, r) = (1/3, [5 + 2

√
6]/3) (right), which

splits the red solid curve into two parts; the part to the left is illustrative for it depends on
Ω in a complicated way; the part to the right, together with the dashed red curve, represent
r = (1 +

√
1− ϑ)2 (in the left panel, this is illustrated by the red curve).

Together, Theorem 1.3 and Corollaries 1.2-1.3 have an interesting implication on the so-
called phase diagram. Call the two-dimensional parameter space {(ϑ, r) : 0 < ϑ < 1, r > 0}
the phase space. There are two curves r = ϑ and r = ρ(ϑ,Ω) (the latter can be thought

of as the solution of
∑p

j=1 p
−ρ∗j (ϑ,r,a,Ω) = 1; recall that ρ∗j (ϑ, r, a,Ω) does not depend on a)

that partition the whole phase space into three different regions:

• Region of No Recovery. {(ϑ, r) : 0 < r < ϑ, 0 < ϑ < 1}. In this region, as p → ∞,
for any Ω and any procedures, the minimax Hamming error equals approximately to
the total expected number of signals. This is the most difficult region, in which no
procedure can be successful in the minimax sense.

• Region of Almost Full Recovery. {(ϑ, r) : ϑ < r < ρ(ϑ,Ω)}. In this region, as p→∞,
the minimax Hamming distance satisfies 1 � Hamm∗p(ϑ, κ, r, a,Ω) � p1−ϑ, and it is
possible to recover most of the signals, but it is impossible to recover all of them.

• Region of Exact Recovery. In this region, as p→∞, the minimax Hamming distance
Hamm∗p(ϑ, κ, r, a,Ω) = o(1), and it is possible to exactly recover all signals with
overwhelming probability.

In general, the function ρ(ϑ,Ω) depends on Ω in a complicated way. However, by Theorem
1.3 and Corollaries 1.2-1.3, we have the following conclusions. First, for all Ω and a > 1,

ρ(ϑ,Ω) ≥ (1 +
√

1− ϑ)2, for all 0 < ϑ < 1.
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Second, in the simplest case where Ω = Ip, Hamm∗p(ϑ, κ, r, a,Ω) = Lpp
1−(ϑ+r)2/(4r), and

ρ(ϑ,Ω) = (1 +
√

1− ϑ)2, for all 0 < ϑ < 1.

Third, under the conditions of Corollary 1.2,

ρ(ϑ,Ω) = (1 +
√

1− ϑ)2, if 1/2 < ϑ < 1,

Last, under the conditions of Corollary 1.3,

ρ(ϑ,Ω) = (1 +
√

1− ϑ)2, if 1/3 < ϑ < 1.

The phase diagram for the last three cases are illustrated in Figure 1. The blue lines are
r/ϑ = 3 + 2

√
2 (middle) and r/ϑ = 5 + 2

√
6 (right).

Corollaries 1.2-1.3 can be extended to more general situations, where r/ϑ may get
arbitrary large, but consequently, we need stronger conditions on Ω. Towards this end, we
note that for any (ϑ, r) such that r > ϑ, we can find a unique integer N = N(ϑ, r) such
that

2N − 1 ≤ (ϑ/r + r/ϑ)/2 < 2N + 1.

Suppose that for any 2 ≤ k ≤ 2N − 1,

λ∗k(Ω) ≥ max
{(k+1)/2≤j≤min{k,N}}

{(r/ϑ+ ϑ/r)/2− 2j + 2 +
√

[(r/ϑ+ ϑ/r)/2− 2j + 2]2 − 1

(2k − 2j + 1)(r/ϑ)

}
,

(1.28)
and that for any 2 ≤ k ≤ 2N ,

λ∗k(Ω) ≥ max
{k/2≤j≤min{k−1,N}}

{(r/ϑ+ ϑ/r)/2 + 1− 2j

(k − j)(r/ϑ)

}
. (1.29)

Then we have the following corollary.

Corollary 1.4 Fix ϑ ∈ (0, 1) and r > 0 such that r > ϑ. Suppose (1.28)-(1.29) hold,
additional to the conditions of Theorem 1.2, then Hamm∗p(ϑ, κ, r, a,Ω) = Lpp

1−(ϑ+r)2/(4r).

Corollary 1.4 implies a similar partition of the phase diagram as do Corollaries 1.2-1.3, say,
that (1.28)-(1.29) hold for all (ϑ, r) satisfying r/ϑ ≤ s0, for some fixed constant s0 > 0.

1.9 Non-optimaility of subset selection and the lasso

Subset selection (also called the L0-penalization method) is a well-known method for vari-
able selection, which selects variables by minimizing the following functional:

1

2
‖Y −Xβ‖2 +

1

2
(λss)

2‖β‖0, (1.30)

where ‖β‖q denotes the Lq-norm, q ≥ 0, and λss > 0 is a tuning parameter. The AIC,
BIC, and RIC are methods of this type [1, 31, 16]. Subset selection is believed to have good
“theoretic property”, but the main drawback of this method is that it is computationally NP
hard. To overcome the computational challenge, many relaxation methods are proposed,
including but are not limited to the lasso [7, 32], SCAD [14], MC+ [36], and Dantzig selector
[6]. Take the lasso for example. The method selects variables by minimizing the following
functional:

1

2
‖Y −Xβ‖2 + λlasso‖β‖1, (1.31)
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where the L0-penalization is replaced by the L1-penalization, so the functional is convex
and the optimization problem is solvable in polynomial time under proper conditions.

Somewhat surprisingly, subset selection is generally rate non-optimal in terms of selec-
tion errors. This sub-optimality of subset selection is due to its lack of flexibility in adapting
to the “local” graphic structure of the design variables. Similarly, other global relaxation
methods are sub-optimal as well, as the subset selection is the “idol” these methods try
to mimic. To save space, we only discuss subset selection and the lasso, but a similar
conclusion can be drawn for SCAD, MC+, and Dantzig selector.

For mathematical simplicity, we illustrate the point with an idealized regression model
where the Gram matrix G = X ′X is diagonal block-wise and has the following form

G(i, j) = 1{i = j}+ h0 · 1{|j − i| = 1, max(i, j) is even}, |h0| < 1, 1 ≤ i, j ≤ p. (1.32)

Using an idealized model is mostly for technical convenience, but the non-optimality of
subset selection or the lasso holds much more broadly than what is considered here. Since
our goal is to show such methods are non-optimal, using a simple model is sufficient: if a
procedure is non-optimal in an idealized case, we can not expect it to be optimal in a more
general context.

At the same time, we continue to model β with the Asymptotic Rare and Weak model
ARW(ϑ, r, a, µ), but where we relax the assumption of µ ∈ Θ∗p(τp, a) to that of µ ∈ Θp(τp)
so that the strength of each signal ≥ τp (but there is no upper bound on the strength).

Consider a variable selection procedure β̂?, where ? = gs, ss, lasso, representing Graphlet
Screening, subset selection, and the lasso (where the tuning parameters for each method
are ideally set; for the worst-case risk considered below, the ideal tuning parameters depend
on (ϑ, r, p, h0) but do not depend on µ). For some exponents ρ? = ρ?(ϑ, r, h0) that does not
depend on p, it is seen that for large p, the worst-case Hamming selection error of β̂? has
the form of

sup
{µ∈Θp(τp)}

Hp(β̂
?; εp, µ,G) = Lpp

1−ρ?(ϑ,r,h0).

Here, Hp is slightly different from that in Section 1.5 since the settings are slightly different.
We now study ρ?(ϑ, r, h0). Towards this end, we first introduce

ρ
(3)
lasso(ϑ, r, h0) =

{
(2|h0|)−1[(1− h2

0)
√
r −

√
(1− h2

0)(1− |h0|)2r − 4|h0|(1− |h0|)ϑ]
}2
,

and

ρ
(4)
lasso(ϑ, r, h0) = ϑ+

(1− |h0|)3(1 + |h0|)
16h2

0

[
(1 + |h0|)

√
r−
√

(1− |h0|)2r − 4|h0|ϑ/(1− h2
0)
]2
.

We then let

ρ(1)
ss (ϑ, r, h0) =

{
2ϑ, r/ϑ ≤ 2/(1− h2

0)
[2ϑ+ (1− h2

0)r]2/[4(1− h2
0)r], r/ϑ > 2/(1− h2

0)
,

ρ(2)
ss (ϑ, r, h0) =

{
2ϑ, r/ϑ ≤ 2/(1− |h0|)
2[
√

2(1− |h0|)r −
√

(1− |h0|)r − ϑ]2, r/ϑ > 2/(1− |h0|)
,

ρ
(1)
lasso(ϑ, r, h0) =

{
2ϑ, r/ϑ ≤ 2/(1− |h0|)2

ρ
(3)
lasso(ϑ, r, h0), r/ϑ > 2/(1− |h0|)2 ,
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and

ρ
(2)
lasso(ϑ, r, h0) =

{
2ϑ, r/ϑ ≤ (1 + |h0|)/(1− |h0|)3

ρ
(4)
lasso(ϑ, r, h0), r/ϑ > (1 + |h0|)/(1− |h0|)3 .

The following theorem is proved in Section 5.

Theorem 1.4 Fix ϑ ∈ (0, 1) and r > 0 such that r > ϑ. If G satisfies (1.32), then

ρgs(ϑ, r, h0) = min
{(ϑ+ r)2

4r
, ϑ+

(1− |h0|)
2

r, 2ϑ+
{[(1− h2

0)r − ϑ]+}2

4(1− h2
0)r

}
, (1.33)

ρss(ϑ, r, h0) = min
{(ϑ+ r)2

4r
, ϑ+

(1− |h0|)
2

r, ρ(1)
ss (ϑ, r, h0), ρ(2)

ss (ϑ, r, h0)
}
, (1.34)

and

ρlasso(ϑ, r, h0) = min{(ϑ+ r)2

4r
, ϑ+

(1− |h0|)r
2(1 +

√
1− h2

0)
, ρ

(1)
lasso(ϑ, r, h0), ρ

(2)
lasso(ϑ, r, h0)

}
.

(1.35)

It can be shown that ρgs(ϑ, r, h0) ≥ ρss(ϑ, r, h0) ≥ ρlasso(ϑ, r, h0), where depending
on the choices of (ϑ, r, h0), we may have equality or strict inequality (note that a larger
exponent means a better error rate). This fits well with our expectation, where as far as the
convergence rate is concerned, Graphlet Screening is optimal for all (ϑ, r, h0), so it beats
the subset selection, which in turn beats the lasso. Table 2 summarizes the exponents for
some representative (ϑ, r, h0). It is seen that differences between these exponents become
increasingly prominent when h0 increase and ϑ decrease.

ϑ/r/h0 .1/11/.8 .3/9/.8 .5/4/.8 .1/4/.4 .3/4/.4 .5/4/.4 .1/3/.2 .3/3/.2

? = gs 1.1406 1.2000 0.9000 0.9907 1.1556 1.2656 0.8008 0.9075
? = ss 0.8409 0.9047 0.9000 0.9093 1.1003 1.2655 0.8007 0.9075

? = lasso 0.2000 0.6000 0.7500 0.4342 0.7121 1.0218 0.6021 0.8919

Table 2: The exponents ρ?(ϑ, r, h0) in Theorem 1.4, where ? = gs, ss, lasso.

Similar to that in Section 1.8, each of these methods has a phase diagram, where the
phase space partitions into three regions: Region of Exact Recovery, Region of Almost Full
Recovery, and Region of No Recovery. Interestingly, the separating boundary for the last
two regions are the same for three methods, which is the line r = ϑ. The boundary that
separates the first two regions, however, vary significantly for different methods. For any
h0 ∈ (−1, 1) and ? = gs, ss, lasso, the equation for this boundary can be obtained by setting
ρ?(ϑ, r, h0) = 1 (the calculations are elementary so we omit them). Note that the lower the
boundary is, the better the method is, and that the boundary corresponding to the lasso
is discontinuous at ϑ = 1/2. Compare the phase diagrams in Figure 2.

Subset selection and the lasso are rate non-optimal for they are so-called one-step or
non-adaptive methods [25], which use only one tuning parameter, and which do not adapt
to the local graphic structure. The non-optimality can be best illustrated with the diagonal
block-wise model presented here, where each block is a 2× 2 matrix. Correspondingly, we
can partition the vector β into many size 2 blocks, each of which is of the following three
types (i) those have no signal, (ii) those have exactly one signal, and (iii) those have two
signals. Take the subset selection for example. To best separate (i) from (ii), we need to
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set the tuning parameter ideally. But such a tuning parameter may not be the “best” for
separating (i) from (iii). This explains the non-optimality of subset selection.

Seemingly, more complicated penalization methods that use multiple tuning parameters
may have better performance than the subset selection and the lasso. However, it remains
open how to design such extensions to achieve the optimal rate for general cases. To save
space, we leave the study along this line to the future.
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Figure 2: Phase diagrams for Graphlet Screening (top left), subset selection (top right),
and the lasso (bottom; zoom-in on the left and zoom-out on the right), where h0 = 0.5.

1.10 Summary

We propose Graphlet Screening as a new approach to variable selection. The key method-
ological innovation is to use the GOSD to guide the multivariate screening. While a brute-
force m-variate screening has a computational cost of O(pm), Graphlet Screening only has
a computation cost of Lpp, by utilizing graph sparsity.

We use asymptotic minimaxity of the Hamming distance as the criterion for assessing
optimality. Compared with existing literature on variable selection where the oracle prop-
erty or probability of exact support recovery is used to assess optimality, our approach is
both mathematically more demanding and scientifically more relevant.

We have proved that Graphlet Screening achieves the optimal rate of convergence of
Hamming errors, especially when signals are rare and weak, provided that the Gram matrix
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is sparse. Somewhat surprisingly, the well-known methods of subset selection and the lasso
are not rate optimal, even with very simple Gram matrix G and even when the tuning
parameters are ideally set. The sub-optimality of these methods is due to that they do not
take advantage of the ‘local’ graphical structure as Graphlet Screening does.

The GS methodology has three key tuning parameters: the parameter q for the threshold
level t(D̂, F̂ ) = 2σ2q log p in the GS-step, and (ugs, vgs) = (σ

√
2ϑ log p, σ

√
2r log p) in the

GC-step. While the choice of q is reasonably flexible and a sufficiently small fixed q > 0
is usually adequate, the choice of ugs and vgs are more directly tied to the signal sparsity
and signal strength. Adaptive choice of these tuning parameters is a challenging direction
of further research. One of our ideas to be developed in this direction is a subsampling
scheme similar to the Stability Selection [28]. On the other hand, as shown in our numeric
results in Section 3, the performance of the GS is relatively insensitive to mis-specification
of (εp, τp); see details therein.

1.11 Content

The remaining part of the paper is organized as follows. In Section 2, we introduce the
so-called Sure Screning property and the Separable After Screening property of Graphlet
Screening, and use these two properties to prove Theorem 1.2. Section 3 contains numeric
results, Section 4 discusses more connections to existing literature and possible extensions
of Graphlet Screening, and Section 5 contains technical proofs.

For a vector ξ, ‖ξ‖q denotes the Lq-norm, and when q = 2, we drop q for simplicity.
For a p × p matrix A, ‖A‖∞ denotes the matrix L∞-norm, and ‖A‖ denotes the spectral
norm [22]. Also, G∗ is the graph of strong dependence (GOSD), G∗S is its subgraph formed
by all nodes in S = S(β), and G� is the graph of least favorables (GOLF).

2 Properties of Graphlet Screening, proof of Theorem 1.2

Graphlet Screening attributes the success to two important properties: the Sure Screening
property and the Separable After Screening (SAS) property.

The Sure Screening property means that in the m-stage χ2 screening, by picking an
appropriate threshold, the set U∗p (which is the set of retained indices after the GS-step)
contains all but a small fraction of true signals. Asymptotically, this fraction is comparably
smaller than the minimax Hamming errors, and so it is negligible. The SAS property means
that except for a negligible probability, as a subgraph of the GOSD, U∗p decomposes into
many disconnected components of the GOSD, where the size of each component does not
exceed a fixed integer. Together, these two properties ensure that the original regression
problem reduces to many small-size regression problems, and thus pave the way for the
GC-step.

Below, we explain these ideas in detail, and conclude the section by the proof of Theorem
1.2. Since the only place we need the knowledge of σ is in setting the tuning parameters,
so without loss of generality, we assume σ = 1 throughout this section.

First, we discuss the GS-step. For short, we write β̂ = β̂gs(Y ; δ,Q, ugs, vgs, X, p, n)
throughout this section. We first discuss the computational cost of the GS-step. As in
Theorem 1.2, we take the threshold δ in the definition of G∗ (see (1.6)) to be δ = δp =
1/ log(p). The proof of the following lemma is similar to that [25, Lemma 2.2], so we omit
it.
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Lemma 2.1 As p → ∞, for any Ω ∈ M∗p(γ, c0, g, A), with probability 1 − o(1/p2), ‖Ω −
Ω∗‖∞ ≤ C(log(p))−(1−γ), and G∗ is K-sparse, where K ≤ C(log(p))1/γ.

Combining Lemma 2.1 and [19], it follows that with probability 1−o(1/p2), G∗ has at most

p(Ce(log(p))1/γ)m

connected subgraphs of size ≤ m, where we note that the second factor is at most logarith-
mically large. Therefore, the computational cost in the GS-step is at most Lpp flops.

We now consider the performance of the GS-step. The goal of this step is two-fold:
on one hand, it tries to retain as many signals as possible during the screening; on the
other hand, it tries to minimize the computational cost of the GC-step by controlling the
maximum size of all components of U∗p . The key in the GS-step is to set the collection
of thresholds Q. The tradeoff is that, setting the thresholds too high may miss too many
signals during the screening, and setting the threshold too low may increase the maximum
size of the components in U∗p , and so increase the computational burden of the GC-step.
The following lemma characterizes the Sure Screening property of GS, and is proved in
Section 5.

Lemma 2.2 (Sure Screening). Fix m ≥ 1, A > 0, r > 0, (ϑ, γ) ∈ (0, 1)2 and κ > 1−ϑ. In
the m-stage χ2 screening of the GS-step, if we set the thresholds t(D̂, F̂ ) as in (1.25) and
the conditions of Theorem 1.2 hold, then as p→∞, for any Ω ∈M∗p(γ, c0, g, A)

p∑
j=1

P (βj 6= 0, j /∈ U∗p ) ≤ Lp[p1−(m+1)ϑ +

p∑
j=1

p−ρ
∗
j ] + o(1).

Next, we formally state the SAS property. Viewing it as a subgraph of G∗, U∗p decom-

poses into many disconnected components I(k), 1 ≤ k ≤ N , where N is an integer that
may depend on the data.

Lemma 2.3 (SAS). Fix m ≥ 1, A > 0, r > 0, (ϑ, γ) ∈ (0, 1)2 and κ > 1 − ϑ. In the m-
stage χ2 screening in the GS-step, suppose we set the thresholds t(D̂, F̂ ) as in (1.25) such
that q(D̂, F̂ ) ≥ q0 for some constant q0 = q0(ϑ, r) > 0. As p→∞, under the conditions of
Theorem 1.2, for any Ω ∈M∗p(γ, c0, g, A), there is a constant `0 = `0(ϑ, r, κ, γ,A, c0, g) > 0
such that with probability at least 1− o(1/p),

|I(k)| ≤ `0, 1 ≤ k ≤ N.

We remark that a more convenient way of picking q is to let{
q0 ≤ q ≤ (ωr+ϑ2ωr )2ωr, |D̂| is odd & ωr/ϑ > |D̂|+ (|D̂|2 − 1)1/2,

q0 ≤ q ≤ 1
4ωr, |D̂| is even & ωr/ϑ ≥ 2|D̂|,

(2.36)

and let q be any other number otherwise, with which both lemmas continue to hold with
this choice of q. Here, for short, ω = ω(D̂, F̂ ; Ω). Note that numerically this choice is
comparably more conservative.

Together, the above two lemmas say that the GS-step makes only negligible false non-
discoveries, and decomposes U∗p into many disconnected components, each has a size not
exceeding a fixed integer. As a result, the computational cost of the following GC-step is
moderate, at least in theory.
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We now discuss the GC-step. The key to understanding the GC-step is that the original
regression problem reduces to many disconnected small-size regression problem. To see the
point, define Ỹ = X ′Y and recall that G = X ′X. Let I0 C U∗p be a component, we limit
our attention to I0 by considering the following regression problem:

Ỹ I0 = GI0β + (X ′z)I0 , (2.37)

where (X ′z)I0 ∼ N(0, GI0,I0) ≈ N(0,ΩI0,I0), and GI0 is a |I0| × p matrix according to our
notation. What is non-obvious here is that, the regression problem still involves the whole
vector β, and is still high-dimensional. To see the point, letting V = {1, 2, . . . , p} \ U∗p , we
write

GI0β = GI0,I0βI0 + I + II, I =
∑

J0:J0CU∗p ,J0 6=I0

GI0,J0βJ0 , II = GI0,V βV .

First, by Sure Screening property, βV contains only a negligible number of signals, so we
can think II as negligible. Second, for any J0 6= I0 and J0 C U∗p , by the SAS property, I0

and J0 are disconnected and so the matrix GI0,J0 is a small size matrix whose coordinate
are uniformly small. This heuristic is made precise in the proof of Theorem 1.2. It is now
seen that the regression problem in (2.37) is indeed low-dimensional:

Ỹ I0 ≈ GI0,I0βI0 + (X ′z)I0 ≈ N(ΩI0,I0βI0 ,ΩI0,I0), (2.38)

The above argument is made precise in Lemma 2.4, see details therein. Finally, approxi-
mately, the GC-step is to minimize

1

2
(Ỹ I0 − ΩI0,I0ξ)′(ΩI0,I0)−1(Ỹ I0 − ΩI0,I0ξ) +

1

2
(ugs)2‖ξ‖0,

where each coordinate of ξ is either 0 or ≥ vgs in magnitude. Comparing this with (2.38),
the procedure is nothing but the penalized MLE of a low dimensional normal model, and
the main result follows by exercising basic statistical inferences.

We remark that in the GC-step, removing the constraints on the coordinates of ξ will
not give the optimal rate of convergence. This is one of the reasons why the classical subset
selection procedure is rate non-optimal. Another reason why the subset selection is non-
optimal is that, the procedure has only one tuning parameter, but Graphlet Screening has
the flexibility of using different tuning parameters in the GS-step and the GC-step. See
Section 1.9 for more discussion.

We are now ready for the proof of Theorem 1.2.

2.1 Proof of Theorem 1.2

By Lemma 2.2,

p∑
j=1

P (βj 6= 0, j /∈ U∗p ) ≤ Lp[p1−(m+1)ϑ +

p∑
j=1

p−ρ
∗
j ] + o(1). (2.39)

So to show the claim, it is sufficient to show

p∑
j=1

P (j ∈ U∗p , sgn(βj) 6= sgn(β̂j)) ≤ Lp[
p∑
j=1

p−ρ
∗
j + p1−(m+1)ϑ] + o(1). (2.40)
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Towards this end, let S(β) be the support of β, Ω∗ be as in (1.6), and G∗ be the GOSD.
Let U∗p be the set of retained indices after the GS-step. Note that when sgn(β̂j) 6= 0, there
is a unique component I0 such that j ∈ I0 C U∗p . For any connected subgraph I0 of G∗, let

B(I0) = {k: k /∈ I0, Ω∗(k, `) 6= 0 for some ` ∈ I0, 1 ≤ k ≤ p}.

Note that when I0 is a component of U∗p , we must have B(I0) ∩ U∗p = ∅ as any node in
B(I0) is connected to some nodes in the component I0. As a result,

P (j ∈ I0 C U∗p , B(I0) ∩ S(β) 6= ∅) ≤
∑
I0:j∈I0

∑
k∈B(I0)

P (k /∈ U∗p , βk 6= 0), (2.41)

where the first summation is over all connected subgraphs that contains node j. By Lemma
2.3, with probability at least 1− o(1/p), G∗ is K-sparse with K = C(log(p))1/γ , and there
is a finite integer `0 such that |I0| ≤ `0. As a result, there are at most finite I0 such that
the event {j ∈ I0 C U∗p} is non-empty, and for each of such I0, B(I0) contains at most Lp
nodes. Using (2.41) and Lemma 2.2, a direct result is

p∑
j=1

P (j ∈ I0 C U∗p , B(I0) ∩ S(β) 6= ∅) ≤ Lp[
p∑
j=1

p−ρ
∗
j + p1−(m+1)ϑ] + o(1). (2.42)

Comparing (2.42) with (2.40), to show the claim, it is sufficient to show that

p∑
j=1

P (sgn(βj) 6= sgn(β̂j), j ∈ I0CU∗p , B(I0)∩S(β) = ∅) ≤ Lp[
p∑
j=1

p−ρ
∗
j + p1−(m+1)ϑ] + o(1).

(2.43)
Fix 1 ≤ j ≤ p and a connected subgraph I0 such that j ∈ I0. For short, let S be the
support of βI0 and Ŝ be the support of β̂I0 . The event {sgn(βj) 6= sgn(β̂j), j ∈ I0 C U∗p} is

identical to the event of {sgn(βj) 6= sgn(β̂j), j ∈ S∪ Ŝ}. Moreover, Since I0 has a finite size,
both S and Ŝ have finite possibilities. So to show (2.43), it is sufficient to show that for
any fixed 1 ≤ j ≤ p, connected subgraph I0, and subsets S0, S1 ⊂ I0 such that j ∈ S0 ∪S1,

P (sgn(βj) 6= sgn(β̂j), S = S0, Ŝ = S1, j ∈ I0CU∗p , B(I0)∩S(β) = ∅) ≤ Lp[p−ρ
∗
j +p−(m+1)ϑ].

(2.44)
We now show (2.44). The following lemma is proved in [25, A.4].

Lemma 2.4 Over the event {j ∈ I0CU∗p}∩{B(I0)∩S(β) = ∅}, ‖(Ωβ)I0−ΩI0,I0βI0‖∞ ≤
Cτp(log(p))−(1−γ).

Write for short M̂ = GI0,I0 and M = ΩI0,I0 . By definitions, β̂I0 is the minimizer of the
following functional

Q(ξ) ≡ 1

2
(Ỹ I0 − M̂ξ)′M̂−1(Ỹ I0 − M̂ξ) +

1

2
(ugs)2‖ξ‖0,

where ξ is an |I0| × 1 vector whose coordinates are either 0 or ≥ vgs in magnitude, ugs =√
2ϑ log(p), and vgs =

√
2r log(p). In particular,

Q(βI0) ≥ Q(β̂I0),

or equivalently

(β̂I0 − βI0)′(Ỹ I0 − M̂βI0) ≥ 1

2
(β̂I0 − βI0)′M̂(β̂I0 − βI0) + (|S1| − |S0|)ϑ log(p). (2.45)
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Now, write for short δ = τ−2
p (β̂I0 − βI0)′M(β̂I0 − βI0). First, by Schwartz inequality,

[(β̂I0 − βI0)′(Ỹ I0 − M̂βI0)]2 ≤ δτ2
p (Ỹ I0 − M̂βI0)′M−1(Ỹ I0 − M̂βI0). Second, by Lemma

2.4, Ỹ I0 = w + MβI0 + rem, where w ∼ N(0,M) and with probability 1 − o(1/p),
|rem| ≤ C(log(p))−(1−γ)τp. Last, with probability at least (1 − o(1/p)), |M̂ − M |∞ ≤
C
√

log(p)p−[κ−(1−ϑ)]/2. Inserting these into (2.45) gives that with probability at least
(1− o(1/p))

w′M−1w ≥ 1

4

[(√
δr +

(|S1| − |S0|)ϑ√
δr

)
+

]2

(2 log(p)) +O((log(p))γ).

Since γ < 1, O((log(p))γ) is negligible. We note that w′M−1w ∼ χ2
|I0|(0). Inserting this

back to (2.44), the left hand side

≤ ε|S0|
p P (χ2

|I0|(0) ≥ [(
√
δr + (|S1| − |S0|)ϑ/

√
δr)+]2(log(p)/2)) + o(1/p).

Assume sgn(βj) 6= sgn(β̂j), and fix all parameters except δ, S0 and S1. By arguments
similar to the proof of Lemma 1.4, the above quantity cannot achieve its maximum in the
cases where S0 = S1. Hence we only need to consider the cases where S0 6= S1. We also
only need to consider the cases where max(|S0|, |S1|) ≤ m, since the sum of the probabilities
of other cases is well controlled by p1−(m+1)ϑ. The claim follows by the definitions of ρ∗j .

�

3 Simulations

We conducted a small-scale simulation study to investigate the numerical performance of
Graphlet Screening and compare it with the lasso. The subset selection is not included
for comparison since it is computationally NP hard. We consider experiments for both
random design and fixed design, where as before, the parameters (εp, τp) are tied to (ϑ, r)
by εp = p−ϑ and τp =

√
2r log(p) (we assume σ = 1 for simplicity in this section). The

experiments with random design contain the following steps.

1. Fix (p, ϑ, r, µ,Ω) such that µ ∈ Θp(τp). Generate a vector b = (b1, b2, . . . , bp)
′ such

that bi
iid∼ Bernoulli(εp), and set β = b ◦ µ.

2. Fix κ and let n = np = pκ. Generate an n×p matrix with iid rows from N(0, (1/n)Ω).

3. Generate Y ∼ N(Xβ, Ip), and apply Graphlet Screening and the lasso.

4. Repeat 1-3 independently, and record the average Hamming distances.

The steps for fixed design experiments are similar, except for that np = p and X = Ω1/2.
Graphlet Screening uses tuning parameters (m,Q, ugs, vgs). We set m = 3 for our

experiments, which is usually large enough due to signal sparsity. The choice of Q is not
critical, as long as the corresponding parameter q satisfies (1.26). Numerical studies below
(e.g. Experiment 4a) support this point. In principle, the optimal choices of (Q, ugs, vgs)
depend on the unknown parameters (εp, τp), and how to estimate them in general settings
is a lasting open problem (even for linear models with orthogonal designs). Fortunately,
our studies (e.g. Experiment 4b-4d) show that mis-specifying parameters (εp, τp) by a
reasonable amount does not significantly affect the performance of the procedure. For this
reason, in most experiments below, we set the tuning parameters in a way by assuming
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(εp, τp) as known. To be fair in comparison, we also set the tuning parameters of the lasso
ideally assuming (εp, τp) as known. We use glmnet package [18] to perform lasso.

The simulations contain 4 different experiments which we now describe separately.
Experiment 1. In this experiment, we investigate how different choices of signal vector

β affect the comparisons of two methods. We use a random design model, and Ω is a
symmetric tri-diagonal correlation matrix where the vector on each sub-diagonal consists
of blocks of (.4, .4,−.4)′. Fix (p, κ) = (0.5 × 104, 0.975) (note n = pκ ≈ 4, 000). We let
εp = p−ϑ with ϑ ∈ {0.35, 0.5} and let τp ∈ {6, 8, 10}. For each combination of (εp, τp), we
consider two choices of µ. For the first choice, we let µ be the vector where all coordinates
equal to τp (note β is still sparse). For the second one, we let µ be the vector where the

signs of µi = ±1 with equal probabilities, and |µi|
iid∼ 0.8ντp + 0.2h, where ντp is the point

mass at τp and h(x) is the density of τp(1 +V/6) with V ∼ χ2
1. For Graphlet Screening, the

tuning parameters (m,ugs, vgs) are set as (3,
√

2 log(1/εp), τp), and the tuning parameter q
in Q are set as maximal possible value satisfying (1.26). The average Hamming errors for
both procedures across 40 repetitions are tabulated in Table 3.

τp 6 8 10

Signal Strength Equal Unequal Equal Unequal Equal Unequal

ϑ = 0.35
Graphic Screening 0.0810 0.0825 0.0018 0.0034 0 0.0003

lasso 0.2424 0.2535 0.1445 0.1556 0.0941 0.1109

ϑ = 0.5
Graphic Screening 0.0315 0.0297 0.0007 0.0007 0 0

lasso 0.1107 0.1130 0.0320 0.0254 0.0064 0.0115

Table 3: Ratios between the average Hamming errors and pεp (Experiment 1), where
“Equal” and “Unequal” stand for the first and the second choices of µ, respectively.

Experiment 2. In this experiment, we generate β the same way as in the second
choice of Experiment 1, and investigate how different choices of design matrices affect
the performance of the two methods. Setting (p, ϑ, κ) = (0.5 × 104, 0.35, 0.975) and τp ∈
{6, 7, 8, 9, 10, 11, 12}, we use Gaussian random design model for the study. For each method,
the tuning parameters are set in the same way as in Experiment 1. The experiment contains
3 sub-experiments 2a-2c.

In Experiment 2a, we set Ω as the symmetric diagonal block-wise matrix, where each
block is a 2×2 matrix, with 1 on the diagonals, and ±0.5 on the off-diagonals (the signs al-
ternate across different blocks). The average Hamming errors of 40 repetitions are reported
in Figure 3.

In Experiment 2b, we set Ω as a symmetric penta-diagonal correlation matrix, where
the main diagonal are ones, the first sub-diagonal consists of blocks of (.4, .4,−.4)′, and the
second sub-diagonal consists of blocks of (.05,−.05)′. The average Hamming errors across
40 repetitions are reported in Figure 3.

In Experiment 2c, we generate Ω as follows. First, we generate Ω using the function
sprandsym(p,K/p) in matlab. We then set the diagonals of Ω to be zero, and remove some
of entries so that Ω is K-sparse for a pre-specified K. We then normalize each non-zero
entry by the sum of the absolute values in that row or that column, whichever is larger,
and multiply each entry by a pre-specified positive constant A. Last, we set the diagonal
elements to be 1. We choose K = 3 and A = 0.7, draw 5 different Ω with this method, and
for each of them we repeat the simulation 10 times independently. The average Hamming
errors are reported in Figure 3.
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The results suggest that Graphlet Screening is consistently better than the lasso.
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Figure 3: x-axis: τp. y-axis: ratios between the average Hamming errors and pεp (from left
to right: Experiment 2a, 2b, and 2c).

Experiment 3. In this experiment, we investigate what are the minimum signal strength
levels τp required by Graphlet Screening and the lasso to yield exact recovery, respectively.
Fixing p = 104, we let εp = p−ϑ for ϑ = 0.25, 0.45, 0.65, and let τp ∈ {5, 6, 7, 8, 9, 10, 11, 12}.
We use a fixed design model where Ω is the block-wise matrix as in Experiment 2a. For
each pair of (εp, τp), we generate β as in the second choice of Experiment 1. The tuning
parameters for Graphlet Screening and the lasso are set in the same way as in Experiment
1. The average Hamming errors across 20 repetitions are tabulated in Table.4.

Suppose we say a method yields ‘exact recovery’ if the average Hamming error ≤ 3.
Then the minimum τp for Graphlet Screening to yield exact recovery is τp ≈ 9, but that
for the lasso is much larger (≥ 12). For larger ϑ, the differences are less prominent, but
the minimum τp for Graphlet Screening to yield exact recovery is consistently smaller than
that of the lasso.

τp 5 6 7 8 9 10 11 12

ϑ = 0.25
Graphic Screening 58 21.4 9.2 3.5 3 1.8 1.0 0.6

lasso 75.2 34.4 21.6 15 14.3 12.6 10.1 8.9

ϑ = 0.45
Graphic Screening 11 3.7 0.7 0.2 0.1 0 0 0

lasso 13.9 5.2 1.3 0.6 0.1 0.4 0.2 0.2

ϑ = 0.65
Graphic Screening 3.4 0.8 0.1 0.1 0 0 0 0

lasso 3.7 1 0.3 0.1 0 0 0 0

Table 4: Comparison of average Hamming errors (Experiment 3).

Experiment 4. In this experiment, we investigate how sensitive Graphlet Screening is
with respect to the tuning parameters. The experiment contains 4 sub-experiments, 4a-4d.
In Experiment 4a, we investigate how sensitive the procedure is with respect to the tuning
parameter q in Q (recall that the main results hold as long as q fall into the range given in
(1.26)), where we assume (εp, τp) are known. In Experiment 4b-4d, we mis-specify (εp, τp) by
a reasonably small amount, and investigate how the mis-specification affect the performance
of the procedure. For the whole experiment, we choose β the same as in the second choice
of Experiment 1, and Ω the same as in Experiment 2b. We use a fixed design model in
Experiment 4a-4c, and a random design model in Experiment 4d. For each sub-experiment,
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the results are based on 40 independent repetitions. We now describe the sub-experiments
with details.

In Experiment 4a, we choose ϑ ∈ {0.35, 0.6} and r ∈ {1.5, 3}. In Graphlet Screening,
let qmax = qmax(D̂, F̂ ) be the maximum value of q satisfying (1.26). For each combination
of (ϑ, r) and (D̂, F̂ ), we choose q(D̂, F̂ ) = qmax(D̂, F̂ ) × {0.7, 0.8, 0.9, 1, 1.1, 1.2} for our
experiment. The results are tabulated in Table 5, which suggest that different choices of q
have little influence over the variable selection errors. We must note that the larger we set
q(D̂, F̂ ), the faster the algorithm.

q(F̂ , D̂)/qmax(F̂ , D̂) 0.7 0.8 0.9 1 1.1 1.2

(ϑ, r) = (0.35, 1.5) 0.0782 0.0707 0.0661 0.0675 0.0684 0.0702

(ϑ, r) = (0.35, 3) 0.0066 0.0049 0.0036 0.0034 0.0033 0.0032

(ϑ, r) = (0.6, 1.5) 0.1417 0.1417 0.1417 0.1417 0.1417 0.1417

(ϑ, r) = (0.6, 3) 0.0089 0.0089 0.0089 0.0089 0.0089 0.0089

Table 5: Ratios between the average Hamming errors of Graphlet Screening and pεp (Ex-
periment 4a).

In Experiment 4b, we use the same settings as in Experiment 4a, but we assume ϑ
(and so εp) is unknown (the parameter r is assumed as known, however), and let ϑ∗ is
the misspecified value of ϑ. We take ϑ∗ ∈ ϑ × {0.85, 0.925, 1, 1.075, 1.15, 1.225} for the
experiment.

In Experiment 4c, we use the same settings as in Experiment 4a, but we assume r
(and so τp) is unknown (the parameter ϑ is assumed as known, however), and let r∗ is the
misspecified value of r. We take r∗ = r × {0.8, 0.9, 1, 1.1, 1.2, 1.3} for the experiment.

In Experiment 4b-4c, we run Graphlet Screening with tuning parameters set as in Exper-
iment 1, except ϑ or r are replaced by the misspecified counterparts ϑ∗ and r∗, respectively.
The results are reported in Table 6, which suggest that the misspecifications have little
effect as long as r∗/r and ϑ∗/ϑ are reasonably close to 1.

ϑ∗/ϑ 0.85 0.925 1 1.075 1.15 1.225

(ϑ, r) = (0.35, 1.5) 0.0799 0.0753 0.0711 0.0710 0.0715 0.0746

(ϑ, r) = (0.35, 3) 0.0026 0.0023 0.0029 0.0030 0.0031 0.0028

(ϑ, r) = (0.6, 1.5) 0.1468 0.1313 0.1272 0.1280 0.1247 0.1296

(ϑ, r) = (0.6, 3) 0.0122 0.0122 0.0139 0.0139 0.0130 0.0147

r∗/r 0.8 0.9 1 1.1 1.2 1.3

(ϑ, r) = (0.35, 1.5) 0.0843 0.0731 0.0683 0.0645 0.0656 0.0687

(ϑ, r) = (0.35, 3) 0.0062 0.0039 0.0029 0.0030 0.0041 0.0054

(ϑ, r) = (0.6, 1.5) 0.1542 0.1365 0.1277 0.1237 0.1229 0.1261

(ϑ, r) = (0.6, 3) 0.0102 0.0076 0.0085 0.0059 0.0051 0.0076

Table 6: Ratios between of the average Hamming error of the Graphlet Screening and pεp
(Experiment 4b (top) and Experiment 4c (bottom)).

In Experiment 4d, we re-examine the misspecification issue with a random design. We
use the same settings as in Experiment 4b and Experiment 4c, except for (a) while we
use the same Ω as in Experiment 4b, the design matrix X are generated according to the
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random design model as in Experiment 2b, and (b) we only investigate for the case of r = 2
and ϑ ∈ {0.35, 0.6}. The results are summarized in Table 7, which is consistent with the
results in 4b-4c.

ϑ∗/ϑ 0.85 0.925 1 1.075 1.15 1.225

(ϑ, r) = (0.35, 2) 0.1730 0.1367 0.1145 0.1118 0.0880 0.0983

(ϑ, r) = (0.6, 2) 0.0583 0.0591 0.0477 0.0487 0.0446 0.0431

r∗/r 0.8 0.9 1 1.1 1.2 1.3

(ϑ, r) = (0.35, 2) 0.1881 0.1192 0.1275 0.1211 0.1474 0.1920

(ϑ, r) = (0.6, 2) 0.0813 0.0515 0.0536 0.0397 0.0442 0.0510

Table 7: Ratios between the average Hamming errors of Graphlet Screening and pεp (Ex-
periment 4d).

4 Connection to existing literature and possible extensions

Our idea of utilizing graph sparsity is related to the graphical lasso [27, 17], which also
attempts to exploit graph structure. However, the setting we consider here is different from
that in [27, 17], and our emphasis on precise optimality and calibration is also very different.
Our method allows nearly optimal detection of very rare and weak effects, because they
are based on careful analysis that has revealed a number of subtle high-dimensional effects
(e.g. phase transitions) that we properly exploit. Existing methodologies are not able to
exploit or capture these phenomena, and can be shown to fail at the levels of rare weak
effects where we are successful.

The paper is closely related to the recent work by Ji and Jin [25] (see also [15, 20]),
and two papers use a similar rare and weak signal framework and a similar random design
model. However, they are different in important ways, since the technical devise developed
in [25] can not be extended to the current study. For example, the lower bound derived in
this paper is different and sharper than that in [25]. Also, the procedure in [25] relies on
marginal regression for screening. The limitation of marginal regression is that it neglects
the graph structure of GOSD for the regularized Gram matrix (1.5), so that it is incapable
of picking variables that have weak marginal correlation but significant joint correlation to
Y . Correct selection of such hidden significant variables, termed as the challenge of signal
cancellation [34], is the difficulty at the heart of the variable selection problem. One of
the main innovation of Graphlet Screening is that it uses the graph structure to guide the
screening, so that it is able to successfully overcome the challenge of signal cancelation.

Additionally, two papers have very different objectives, and consequently the underlying
analyses are very different. The main results of each of these two papers can not be deduced
from the other. For example, to assess optimality [25] uses the criterion of the partition of
the phase diagram, while the current paper uses the minimax Hamming distance. Given
the complexity of the high dimensional variable selection, one type of optimality does not
imply the other, and vice versa. Also, the main result in [25] focuses on conditions under
which the optimal rate of convergence is Lpp

1−(ϑ+r)2/(4r) for the whole phase space. While
this overlaps with our Corollaries 1.2 and 1.3, we must note that [25] deals with the much
more difficult cases where r/ϑ can get arbitrary large; and to ensure the success in that
case, they assume very strong conditions on the design matrix and the range of the signal
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strength. On the other hand, the main focus of the current paper is on optimal variable
selection under conditions (of the Gram matrix G as well as the signal vector β) that are
as general as possible.

While the study in this paper has been focused on the Random Design model RD(ϑ, κ,Ω),
extensions to deterministic design models are straightforward (in fact, in Corollary 1.1, we
have already stated some results on deterministic design models), and the omission of dis-
cussion on the latter is largely for technical simplicity and the sake of space. In fact, for
models with deterministic designs, since the likelihood ratio test in the derivation of the
lower bound matches the penalized MLE in the cleaning step of the GS, the optimality of
the GS follows from the Sure Screening and Separable After Screening properties of the GS.
The proof of these properties, and therefore the optimality of the GS, follows the same line
as those for random design as long as maxj |

∑
i βiG(i, j)I{Ω∗(i, j) = 0}|/τp is small. This

last condition onG holds when p1−ϑ‖G−Ω‖∞ = o(1) with a certain Ω ∈M∗p(γ, c0, g, A). Al-

ternatively, this condition holds when p1−ϑ‖G−Ω‖2∞ log p = o(1) with Ω ∈M∗p(γ, c0, g, A),
provided that sgn(βj) are iid symmetric random variables as in [5].

Another interesting direction of future research is the extension of the GS methodology
to more general models such as logistic regression. The extension of the lower bound in
Theorem 1.1 is relatively simple since the degree of GOLF can be bounded using the true
β. This indicates the optimality of the GS method in logistic and other generalized linear
models as long as proper generalized likelihood ratio or Bayes tests are used in both the
GS- and GC-steps.

5 Proofs

In this section, we provide all technical proofs. For simplicity, we assume σ = 1 in this
section.

5.1 Proof of Lemma.1.1

When G∗S contains a connected subgraph of size ≥ m + 1, it must contain a connected
subgraph with size m + 1. By [19], there are ≤ p(eK)m+1 connected subgraph of size
m + 1. Therefore, the probability that G∗S has a connected subgraph of size (m + 1)
≤ p(eK)m+1εm+1

p . Combining these gives the claim. �

5.2 Proof of Theorem 1.1

Write for short ρ∗j = ρ∗j (ϑ, r, a,Ω). Without loss of generality, assume ρ∗1 ≤ ρ∗2 ≤ . . . ≤ ρ∗p.
We construct indices i1 < i2 < . . . < im as follows. (a) start with B = {1, 2, . . . , p} and let
i1 = 1, (b) updating B by removing i1 and all nodes j that are connected to i1 in GOLF,
let i2 be the smallest indices, (c) defining i3, i4, . . . , im by repeating (b), and terminates the
process when no indices is left in B. Since each time we remove at most dp(G�) nodes, it
follows that

p∑
j=1

p−ρ
∗
j ≤ dp(G�)

m∑
k=1

p
−ρ∗ik . (5.46)

For each 1 ≤ j ≤ p, as before, let (V ∗0j , V
∗

1j) be the least favorable configuration, and let

(θ
(0)
∗j , θ

(1)
∗j ) = argmin{θ(0)∈BV ∗

0j
,θ(1)∈BV ∗

1j
,sgn(θ(0))6=sgn(θ(1))}α(θ(0), θ(1); Ω). By our notations,
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it is seen that

ρ∗j = η(V ∗0j , V
∗

1j ; Ω), α∗(V ∗0j , V
∗

1j ; Ω) = α(θ
(0)
∗j , θ

(1)
∗j ; Ω). (5.47)

We construct a p × 1 vector µ∗ as follows. Fix j ∈ {i1, · · · , im}. For all indices in V ∗0j , set

the constraint of µ∗ on these indices to be θ
(0)
∗j . For any index i /∈ ∪mk=1V

∗
0ik

, set µ∗i = τp.
Since

Hamm∗p(ϑ, κ, r, a,Ω) ≥ inf
β̂
Hp(β̂; εp, np, µ

∗,Ω) = inf
β̂

p∑
i=1

P (sgn(β̂j) 6= sgn(βj)), (5.48)

it follows that

Hamm∗p(ϑ, κ, r, a,Ω) ≥
m∑
k=1

∑
j∈V0ik∪V1ik

P (sgn(β̂j) 6= sgn(βj)), (5.49)

where β = b ◦ µ∗ as in (5.48)-(5.49). Combining (5.46) and (5.49), to show the claim, we
only need to show that for any 1 ≤ k ≤ m and any procedure β̂,∑

j∈V0ik∪V1ik

P (sgn(β̂j) 6= sgn(βj)) ≥ Lpp
−ρ∗ik . (5.50)

Towards this end, we write for short V0 = V0ik , V1 = V1ik , V = V0 ∪ V1, θ(0) = θ
(0)
∗ik , and

θ(1) = θ
(1)
∗ik . Note that by Lemma 1.3,

|V | ≤ (ϑ+ r)2/(2ϑr). (5.51)

Consider a test setting where under the nullH0, β = β(0) = b◦µ∗ and IV ◦β(0) = IV ◦θ(0), and
under the alternative H1, β = β(1) which is constructed by keeping all coordinates of β(0)

unchanged, except those coordinates in V are perturbed in a way so that IV ◦β(1) = IV ◦θ(1).
In this construction, both β(0) and β(1) are assumed as known, but we don’t know which
of H0 and H1 is true. In the literature, it is known that inf β̂

∑
j∈V P (sgn(β̂j) 6= sgn(βj))

is not smaller than the minimum sum of Type I and Type II errors associated with this
testing problem.

Note that by our construction and (5.47), the right hand side is α∗(V0, V1; Ω). At
the same time, it is seen the optimal test statistic is Z ≡ (θ(1) − θ(0))′X ′(Y − Xβ(0)).
It is seen that up to some negligible terms, Z ∼ N(0, α∗(V0, V1; Ω)τ2

p ) under H0, and
Z ∼ N(α∗(V0, V1; Ω)τ2

p , α
∗(V0, V1; Ω)τ2

p ) under H1. The optimal test is to reject H0 when

Z ≥ t[α∗(V0, V1; Ω)]1/2τp for some threshold t, and the minimum sum of Type I and Type
II error is

inf
t

{
ε|V0|p Φ̄(t) + ε|V1|p Φ(t− [α∗(V0, V1; Ω)]1/2τp)

}
, (5.52)

Here, we have used P (H0) ∼ ε
|V0|
p and P (H1) ∼ ε

|V1|
p , as a result of the Binomial structure

in β. It follows that∑
j∈V

P (sgn(β̂j) 6= sgn(βj)) & inf
t

{
ε|V0|p Φ̄(t) + ε|V1|p Φ(t− [α∗(V0, V1; Ω)]1/2τp)

}
.

Using Mills’ ratio and definitions, the right hand side ≥ Lpp
−η(V0,V1;Ω), and (5.50) follows

by recalling (5.47). �
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5.3 Proof of Lemma 1.3

Let V0 = ∅ and V1 = {j}. It is seen that α∗(V0, V1; Ω) = 1, and η(V0, V1; Ω) ≤ (ϑ+r)2/(4r).
Using this and the definitions of V ∗0j and V ∗1j , max{|V ∗0j |, |V ∗1j |}ϑ ≤ (ϑ + r)2/(4r) and the
claim follows. �

5.4 Proof of Lemma 1.4

Let sets V0 and V1 and vectors θ(0) and θ(1) be as in Section 1.6, and let V = V0 ∪ V1. By
the definition of ρ∗j (ϑ, r, a,Ω),

ρ∗j (ϑ, r, a,Ω) = min(I, II),

where

I = min
{(V0,V1):j∈V1∪V0,V0 6=V1}

η(V0, V1; Ω), II = min
{V0:j∈V0∪V1,V0=V1}

η(V0, V1; Ω).

So to show the claim, it is sufficient to show

I = min
{(D,F ):j∈D∪F,D∩F=∅,D 6=∅,|D∪F |≤g}

ρ(D,F ; Ω), II ≥ I. (5.53)

Consider the first claim in (5.53). Write for short F = F (V0, V1) = V0 ∩ V1 and D =
D(V0, V1) = V \ F . By the definitions, D 6= ∅. The key is to show that when |V0 ∪ V1| ≤ g,

α∗(V0, V1; Ω) = ω(D,F ; Ω). (5.54)

Towards this end, note that by definitions, α∗(V0, V1; Ω) = α(θ
(0)
∗ , θ

(1)
∗ ), where

(θ
(0)
∗ , θ

(1)
∗ ) = argmin{θ(0)∈BV0

,θ(1)∈BV1
}α(θ(0), θ(1)).

By a > a∗g(Ω) and the way a∗g(Ω) is defined, (θ
(0)
∗ , θ

(1)
∗ ) remains as the solution of the

optimization problem if we relax the conditions θ(i) ∈ BVi to that of θ(i) = IVi ◦ µ(i), where
µ(i) ∈ Θp(τp) (so that upper bounds on the signal strengths are removed), i = 0, 1. As a
result,

α∗(V0, V1; Ω) = min
{θ(i)∈IVi◦µ

(i),µ(i)∈Θp(τp),i=0,1,}
α(θ(0), θ(1)). (5.55)

We now study (5.55). For short, write ξ = τ−1
p (θ(1)− θ(0))V , ΩV V = ΩV,V , ξD = τ−1

p (θ(1)−
θ(0))D, and similarly for ΩDD, ΩDF , ΩFD, ΩFF , and ξF . Without loss of generality, assume
the indices in D come first in V . It follows

ΩV V =

(
ΩDD ΩDF

ΩFD ΩFF

)
,

and
α(θ(0), θ(1)) = ξ′ΩV V ξ = ξ′DΩDDξD + 2ξ′DΩDF ξF + ξ′FΩFF ξF . (5.56)

By definitions, it is seen that there is no constraint on the coordinates of ξF , so to optimize
the quadratic form in (5.54), we need to choose ξ is a way such that ξF = −Ω−1

FFΩFDξD,
and that ξD minimizes

ξ′D(ΩDD − ΩDFΩ−1
FFΩFD)ξD,
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where every coordinate of ξD ≥ 1 in magnitude. Combining these with (5.55) gives (5.54).
At the same time, we rewrite

I = min
{(D,F ):j∈D∪F,D 6=∅,D∩F=∅}

{
min

{(V0,V1):V0∪V1=D∪F,V0∩V1=F}
η(V0, V1; Ω)

}
. (5.57)

By similar arguments as in the proof of Lemma 1.3, the subsets (V0, V1) that achieve the
minimum of η(V0, V1; Ω) must satisfy |V0 ∪ V1| ≤ g. Using (5.54), for any fixed D and F
such that |D∪F | ≤ g, D 6= ∅ and D∩F = ∅, the term in the big bracket on the right hand
side is

min
{(V0,V1):V0∪V1=D∪F,V0∩V1=F}

{(2|F |+ |D|)ϑ
2

+

∣∣|V1| − |V0|
∣∣ϑ

2
+

1

4
[(
√
ρ(D,F ; Ω)r−

∣∣|V1| − |V0|
∣∣ϑ√

ρ(D,F ; Ω)r
)+]2},

It is worth noting that for fixed D and F , the above quantity is monotone increasing with∣∣|V1| − |V0|
∣∣. When |D| is even, the minimum is achieved at (V0, V1) with |V0| = |V1|, and

when |D| is odd, the minimum is achieved at (V0, V1) with
∣∣|V1| − |V0|

∣∣ = 1, and in both
cases, the minimum is ρ(D,F ; Ω). Inserting this to (5.57), it is seen that

I = min
{(D,F ):j∈D∪F,D∩F=∅,D 6=∅,|D∪F |≤g}

ρ(D,F ; Ω), (5.58)

which is the first claim in (5.53).
Consider the second claim of (5.53). In this case, by definitions, V0 = V1 but sgn(θ(0)) 6=

sgn(θ(1)). Redefine D as the subset of V0 where the signs of the coordinates of θ(0) do not
equal to those of θ(1), and let F = V \ D. By definitions, it is seen that α∗(V0, V0; Ω) =
4α∗(F, V0; Ω), where we note D 6= ∅ and F 6= V0. By the definition of η(V0, V1; Ω), it follows
that η(V0, V0; Ω) ≥ η(F, V0; Ω), and the claim follows. �

5.5 Proof of Corollaries 1.2, 1.3, and 1.4

Write for short ω = ρ(D,F ; Ω) and T = r/ϑ. The following inequality is frequently used
below, the proof of which is elementary so we omit it:

ω ≥ λ∗k|D|, where k = |D|+ |F |. (5.59)

To show these corollaries, it is sufficient to show for all subsets D and F of {1, 2, . . . , p},

ρ(D,F ; Ω) ≥ (ϑ+ r)2/(4r), |D| ≥ 1. (5.60)

where ρ(D,F ; Ω) is as in (1.23). By basic algebra, (5.60) is equivalent to{
(ωT + 1/(ωT )− 2)1{ωT ≥ 1} ≥ (T + 1/T − 2(|D|+ 2|F |)), |D| is odd,
ω ≥ 2

T [(T + 1/T )/2 + 1− (|D|+ 2|F |)], |D| is even.
(5.61)

Note that when (|D|, |F |) = (1, 0), this claim holds trivially, so it is sufficient to consider
the case where

|D|+ |F | ≥ 2. (5.62)

We now show that (5.61) holds under the conditions of each of corollaries.
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5.5.1 Proof of Corollary 1.2

In this corollary, 1 < (T + 1/T )/2 ≤ 3, and if either (a) |D| + 2|F | ≥ 3 and |D| is odd
or (b) |D| + 2|F | ≥ 4 and |D| is even, the right hand side of (5.61) ≤ 0, so the claim
holds trivially. Therefore, all we need to show is the case where (|D|, |F |) = (2, 0). In
this case, since each off-diagonal coordinate ≤ 4

√
2 − 5 ≡ ρ0, it follows from definitions

and basic algebra that ω ≥ 2(1 − ρ0) = 4(3 − 2
√

2), and (5.61) follows by noting that
2
T [(T + 1/T )/2 + 1− (|D|+ 2|F |)] = (1− 1/T )2 ≤ 4(3− 2

√
2). �

5.5.2 Proof of Corollary 1.3

In this corollary, 1 < (T + 1/T )/2 ≤ 5. First, we consider the case where |D| is odd. By
similar argument, (5.61) holds trivially when |D| + 2|F | ≥ 5, so all we need to consider is
the case (|D|, |F |) = (1, 1) and the case (|D|, |F |) = (3, 0). In both cases, |D| + 2|F | = 3.
By (5.59), when ωT < 1, there must be T < 1/min(λ∗2, 3λ

∗
3). By the conditions of this

corollary, it follows T < (5 + 2
√

6)/4 < 3 + 2
√

2. When 1 < T < 3 + 2
√

2, there is
T + 1/T − 6 < 0, and thus (5.61) holds for ωT < 1. When ωT ≥ 1, (5.61) holds if and only
if ωT + 1

ωT − 2 ≥ T + 1/T − 6. By basic algebra, this holds if

ω ≥ 1

4

[
(1− 1/T ) +

√
(1− 1/T )2 − 4/T

]2
. (5.63)

Note that the right hand of (5.63) is a monotone in T and has a maximum of (3+2
√

2)(5−
2
√

6) at T = (5 + 2
√

6). Now, on one other hand, when (|D|, |F |) = (1, 0), by (5.59)
and conditions of the corollary, ω ≥ 3λ∗3 > (3 + 2

√
2)(5 − 2

√
6). On the other hand,

when (|D|, |F |) = (1, 1), by basic algebra and that each off-diagonal coordinate of Ω ≤√
1 + (

√
6−
√

2)/(1 +
√

3/2) ≡ ρ1 in magnitude, ω ≥ 1 − ρ2
1 = (3 + 2

√
2)(5 − 2

√
6).

Combining these gives (5.61).
We now consider the case where |D| is even. By similar argument, (5.61) holds when

|D|+ 2|F | ≥ 6, so all we need is to show is that (5.61) holds for the following three cases:
(|D|, |F |) = (4, 0), (2, 1), (2, 0). Equivalently, this is to show that ω ≥ 2

T [(T + 1/T )/2 − 3]
in the first two cases and that ω ≥ 2

T [(T + 1/T )/2 − 1] in the last case. Similarly, by
the monotonicity of the right hand side of these inequalities, all we need to show is ω ≥
4(5 − 2

√
6) in the first two cases, and ω ≥ 8(5 − 2

√
6) in the last case. Now, on one

hand, using (5.59), ω ≥ 4λ∗4 in the first case, and ω ≥ 2λ∗3 in the second case, so by the
conditions of the corollary, ω ≥ 4(5 − 2

√
6) in the first two cases. On the other hand, in

the last case, since all off-diagonal coordinates of Ω ≤ 8
√

6 − 19 ≡ ρ0 in magnitude, and
ω ≥ 2(1− ρ0) = 8(5− 2

√
6). Combining these gives (5.61). �

5.5.3 Proof of Corollary 1.4

Let N be the unique integer such that 2N − 1 ≤ (T + 1/T )/2 < 2N + 1. First, we consider
the case where |D| is odd. Note that when |D| + 2|F | ≥ 2N + 1, the right hand side of
(5.61) ≤ 0, so all we need to consider is the case |D| + 2|F | ≤ 2N − 1. Write for short
k = k(D,F ) = |D|+ |F | and j = j(D,F ) = (|D|+ 2|F |+ 1)/2. By (5.62), definitions, and
that |D|+ 2|F | ≤ 2N − 1, it is seen that 2 ≤ k ≤ 2N − 1 and (k + 1)/2 ≤ j ≤ min{k,N}.
By the condition of the corollary,

λ∗k ≥
(T + 1/T )/2− 2j + 2 +

√
[(T + 1/T )/2− 2j + 2]2 − 1

T (2k − 2j + 1)
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Note that |D| = 2k − 2j + 1. Combining these with (5.59) gives

ωT ≥ (2k − 2j + 1)λ∗kT ≥ (T + 1/T )/2− 2j + 2 +
√

[(T + 1/T )/2− 2j + 2]2 − 1 ≥ 1.

and (5.61) follows by basic algebra.
We now consider the case where |D| is even. Similarly, the right hand side of (5.61)

is negative when |D| + 2|F | ≥ 2(N + 1), so we only need to consider the case where
|D|+2|F | ≤ 2N . Similarly, write for short k = k(D,F ) = |D|+ |F | and j = (|D|+2|F |)/2.
It is seen that 2 ≤ k ≤ 2N and k/2 ≤ j ≤ min{k−1, N}. By the conditions of the corollary,

λ∗k ≥
(T + 1/T )/2 + 1− 2j

T (k − j)
.

Note that |D| = k−j. It follows from (5.59) that ω ≥ 2(k−j)λ∗k ≥
2
T [(T +1/T )/2+1−2j],

and (5.61) follows. �

5.6 Proof of Lemma 2.2

To show the claim, it is sufficient to show that for any fixed 1 ≤ j ≤ p,

P (j /∈ U∗p , βj 6= 0) ≤ Lp[p−ρ
∗
j + p−(m+1)ϑ + o(1/p)]. (5.64)

Using Lemma 2.1 and [25, Lemma 3.1], there is an event Ap that depends on (X,β) such
that P (Acp) ≤ o(1/p) and that over the event, Ω∗ is K-sparse with K = C(log(p))1/γ ,

‖Ω∗ − Ω‖∞ ≤ (log(p))−(1−γ), ‖(X ′X − Ω)β‖∞ ≤ C‖Ω‖
√

2 log(p)p−[(κ−(1−ϑ)]/2,

and for all subset B with size ≤ m,

‖GB,B − ΩB,B‖∞ ≤ Lpp−κ/2.

Recall that G∗ is the GOSD and G∗S is the subgraph of the GOSD formed by the nodes in
the support of β, S(β) = {1 ≤ j ≤ p : βj 6= 0}. When βj 6= 0, there is a unique component
I0 such that j ∈ I0CG∗S (ACB means that A is component or maximal connected subgraph
of B). Let Bp be the event |I0| ≤ m. By Frieze [19], it is seen that

P (Bc
p ∩Ap) ≤ Lpp−(m+1)ϑ.

So to show (5.64), it is sufficient to show that

P (j /∈ U∗p , j ∈ I0 C G∗S , Ap ∩Bp) ≤ Lpp
−ρ∗j . (5.65)

Now, in the screening procedure, when we screen I0, we have I0 = D̂ ∪ F̂ as in (1.7).
Since the event {j /∈ U∗p , j ∈ I0 C G∗S} is contained in the event {T (Y, D̂, F̂ ) < t(D̂, F̂ )},

P (j /∈ U∗p , j ∈ I0 C G∗S , Ap ∩Bp) ≤ P (T (Y, D̂, F̂ ) ≤ t(D̂, F̂ ), j ∈ I0 C G∗S , Ap ∩Bp),

where the right hand side does not exceed∑
(I0,D,F ):j ∈ I0 & I0 = D ∪ F is a partition

P (T (Y,D, F ) ≤ t(D,F ), j ∈ I0 C G∗S , Ap ∩Bp);

(5.66)
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note that (I0, D, F ) do not depend on z (but may still depend on (X,β)). First, note that
over the event Ap, there are at most (eK)m+1 I0 such that j ∈ I0 and |I0| ≤ m. Second,
note that for each I0, there are only finite ways to partition it to D and F . Last, note

that for any fixed j and I0, P (j ∈ I0 C G∗S) ≤ ε|I0|p . Combining these observations, to show
(5.65), it is sufficient to show that for any such triplet (I0, D, F ),

ε|I0|p P
(
T (Y,D, F ) ≤ t(D,F )

∣∣{j ∈ I0 C G∗S} ∩Ap ∩Bp
)
≤ Lpp−ρ

∗
j . (5.67)

We now show (5.67). Since λm ≥ C > 0, it follows from the definition of Ap and basic
algebra that for any realization of (X,β) in Ap ∩Bp,

‖(GI0,I0)−1‖∞ ≤ C. (5.68)

Recall that Ỹ = X ′Y and denote for short y = (GI0,I0)−1Ỹ I0 . It is seen that

y = βI0 + w + rem, w ∼ N(0, (GI0,I0)−1), rem ≡ (GI0,I0)−1GI0,I
c
0βI

c
0 . (5.69)

Since I0 is a component of G∗S , (Ω∗)I0,I
c
0βI

c
0 = 0. Therefore, we can write rem = (GI0,I0)−1(I+

II), where I = (GI0,I
c
0−ΩI0,I

c
0)βI

c
0 and II = [ΩI0,I

c
0−(Ω∗)I0,I

c
0 ]βI

c
0 . By the definition of Ap,

‖I‖∞ ≤ C
√

2 log(p)p−[κ−(1−ϑ)]/2, and ‖II‖∞ ≤ ‖Ω − Ω∗‖∞‖βI
c
0‖∞ ≤ Cτp(log(p))−(1−γ).

Combining these with (5.68) gives ‖rem‖∞ ≤ Cτp(log(p))−(1−γ).
At the same time, let y1, w1, and rem1 be the restriction of y, w, and rem to indices

in D, correspondingly, and let H = [GD,D − GD,F (GF,F )−1GF,D]. By (5.69) and direct
calculations,

T (Y,D, F ) = y′1Hy1, y1 ∼ N(βD + rem1, H−1),

and so T (Y,D, F ) is distributed as χ2
|D|(δ), where the non-central parameter is

(βD + rem1)′H(βD + rem1) = δ +O((log(p))γ), δ ≡ (βD)′HβD;

where since λ∗m ≥ C, δ ≥ Cτ2
p and is the dominating terms. It follows that

P (T (Y,D, F ) ≤ t(D,F )
∣∣{j ∈ I0 C G∗S} ∩Ap ∩Bp

)
. P

(
χ2
|D|(δ) ≤ t(D,F )

)
. (5.70)

Now, first, by definitions, δ ≥ 2ω(D,F ; Ω)r log(p), so by basic knowledge on non-central
χ2,

P (χ2
|D|(δ) ≤ t(D,F )) ≤ P (χ2

|D|(2ω(D,F ; Ω)r log(p)) ≤ t(D,F )). (5.71)

Second, recalling t(D,F ) = 2q log(p), we have

P (χ2
|D|(2ω(D,F ; Ω)r log(p)) ≤ t(D,F )) ≤ Lpp−[(

√
ω(D,F ;Ω)r−√q)+]2 . (5.72)

Inserting (5.71)-(5.72) into (5.70) and recalling εp = p−ϑ,

ε|I0|p P (T (Y,D, F ) ≤ t(D,F )
∣∣{j ∈ I0 C G∗S} ∩Ap ∩Bp

)
≤ Lpp−(|I0|ϑ+[(

√
ω(D,F ;Ω)r−√q)+]2).

(5.73)
By the choice of q and direct calculations,

|I0|ϑ+ [(
√
ω(D,F ; Ω)r −√q)+]2 ≥ ρ(D,F ; Ω) ≥ ρ∗j , (5.74)

where ρ(D,F ; Ω) and ρ∗j are as in and (1.23) and (1.21). Combining (5.73)-(5.74) gives
(5.67). �
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5.7 Proof of Lemma 2.3

In the screening stage, suppose we pick the threshold t(D̂, F̂ ) = 2q log(p) in a way such
that there is a constant q0(ϑ, r) > 0 such that

q = q(D̂, F̂ ) ≥ q0(ϑ, r, κ) > 0,

Recall that G∗ denotes the GOSD. Let U∗p be the set of retained indices. Viewing it as a
subgraph of G∗, U∗p decomposes into many components

U∗p = I(1) ∪ I(2) . . . ∪ I(N).

Recall that Ỹ = X ′Y . The following lemma is proved below.

Lemma 5.1 There is a constant c1 = c1(ϑ, r, κ, γ,A) > 0 such that with probability at least
1− o(1/p), for any component I0 C U∗p , ‖Ỹ I0‖2 ≥ 2c1|I0| log(p).

The remaining part of the proof is similar to that of [25, Lemma 2.3] so we omit it. We
note that however Lemma 5.1 is new and needs a much harder proof. �

5.7.1 Proof of Lemma 5.1

First, we need some notations. Let I0 be a component of U∗p , and let I(i)
0 , 1 ≤ i ≤ N0,

be all connected subgraphs with size ≤ m, listed lexicographically, where N0 is an integer

that may depend on (X,Y ). For each 1 ≤ i ≤ N0, let I(i)
0 = D̂(i) ∪ F̂ (i) be the exactly

the same partition when we screen I(i)
0 in the m-stage χ2-screening of the GS-step. In out

list, we only keep I(i)
0 such that D̂(i) ∩ I0 6= ∅. Since I0 is a component of U∗p and I(i)

0 is
a connected subgraph, it follows from the way that the χ2-screening is designed and the
definition of D̂(i) that

I(i)
0 ⊂ I0, and D̂(i) = I(i)

0 \ (∪i−1
j=1I

(j)
0 ), 1 ≤ i ≤ N0. (5.75)

and
I0 = D̂(1) ∪ D̂(2) . . . ∪ D̂(N0) is a partition, (5.76)

where F̂ (1) is empty.

Now, for each 1 ≤ i ≤ N0, recall that as long as GI
(i)
0 ,I(i)0 is non-singular, the χ2-test

score in Graphlet Screening is T (Y, D̂(i), F̂ (i)) = T (Y, D̂(i), F̂ (i); I(i)
0 , X, p, n):

T (Y, D̂(i), F̂ (i)) = (Ỹ I
(i)
0 )′(GI

(i)
0 ,I(i)0 )−1Ỹ I

(i)
0 − (Ỹ F̂ (i)

)′(GF̂
(i),F̂ (i)

)−1Ỹ F̂ (i)
.

By basic algebra and direct calculations, it can be verified that

T (Y, D̂(i), F̂ (i)) = ‖Wi‖2,

where Wi = W (Ỹ , D̂(i), F̂ (i); I(i)
0 , X, p, n) is defined as Wi = V

−1/2
i yi, and for short,

Vi = GD̂
(i),D̂(i)−GD̂(i),F̂ (i)

(GF̂
(i),F̂ (i)

)−1GF̂
(i),D̂(i)

, yi = Ỹ D̂(i)−GD̂(i),F̂ (i)
(GF̂

(i),F̂ (i)
)−1Ỹ F̂ (i)

.

At the same time, for a constant δ > 0 to be determined, define Ω̃ by

Ω̃(i, j) = G(i, j) · 1{|G(i, j)| ≥ δ}.
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The definition of Ω̃ is the same as that of Ω∗, except for that the threshold δ would be
selected differently. We introduce a counterpart of Wi which we call W ∗i ,

W ∗i = V
−1/2
i y∗i . (5.77)

where
y∗i = Ỹ D̂(i) − Ω̃D̂(i),F̂ (i)

(Ω̃F̂ (i),F̂ (i)
)−1Ỹ F̂ (i)

.

Let W ∗ = ((W ∗1 )′, (W ∗2 )′, . . . , (W ∗N0
)′)′, and define |I0|× |I0| matrices H1 and H2 as follows:

H1 is a diagonal block-wise matrix where the i-th block is V
−1/2
i , and H2 = H̃I0,I02 , where

H̃2 is a p× p matrix such that for every component I0 of U∗p , and D̂(i) and F̂ (i) defined on
each component,

H̃D̂(i),F̂ (i)

2 = −(Ω̃)D̂
(i),F̂ (i)

[(Ω̃)F̂
(i),F̂ (i)

]−1, H̃D̂(i),D̂(i)

2 = I|D̂(i)|,

and that the coordinates of H̃2 are zero elsewhere. Here Ik stands for k×k identity matrix.
From the definitions, it is seen that

W ∗ = H1H2Ỹ
I0 . (5.78)

Compared to Wi, W
∗
i is relatively easier to study, for it induces column-sparsity of H2.

In fact, using [25, Lemma 2.2, 3.1], there is an event Ap that depends on (X,β) such that
P (Acp) ≤ o(1/p2) and that over the event, for all subset B with size ≤ m,

‖GB,B − ΩB,B‖∞ ≤ Lpp−κ/2. (5.79)

The following lemma is proved below.

Lemma 5.2 Fix δ > 0. Over the event Ap, there is a constant C > 0 such that each row
and column of H̃2 has no more than C nonzero coordinates.

We are now ready to show Lemma 5.1. To begin with, note that since we accept D̂(i)

when we graphlet-screen I(i)
0 ,

‖Wi‖2 ≥ 2q0|D̂(i)| log(p). (5.80)

At the same time, by basic algebra, ‖Wi −W ∗i ‖ ≤ ‖V
−1/2
i ‖‖yi − y∗i ‖, and

‖yi − y∗i ‖ ≤ ‖GD̂
(i),F̂ (i)

(GF̂
(i),F̂ (i)

)−1 − (Ω̃)D̂
(i),F̂ (i)

((Ω̃)F̂
(i),F̂ (i)

)−1‖∞ · ‖Ỹ F̂ (i)‖.

First, since λ∗m ≥ C, it is seen that over the event Ap, ‖V −1/2
i ‖ ≤ C. Second, by similar

reasons, it is not hard to see that except for probability o(p−2), ‖GD̂(i),F̂ (i)
(GF̂

(i),F̂ (i)
)−1 −

(Ω̃)D̂
(i),F̂ (i)

((Ω̃)F̂
(i),F̂ (i)

)−1‖∞ ≤ Cδ1−γ , and ‖Ỹ F̂ (i)‖ ≤ C
√

log(p) ≤ Cτp. Combining these
gives

‖Wi −W ∗i ‖ ≤ Cδ1−γτp, (5.81)

Inserting this to (5.80), if we choose δ to be a sufficiently small constant,

‖W ∗i ‖2 ≥
1

2
‖Wi‖2 ≥ q0|D̂(i)| log(p).

At the same time, by definitions, it follows from ‖V −1/2
i ‖ ≤ C that ‖H1‖ ≤ C. Also,

since over the event Ap, each coordinate of H2 is bounded from above by a constant in
magnitude, it follows from Lemma 5.2 that ‖H2‖ ≤ C. Combining this with (5.76)-(5.78),
it follows from basic algebra that except for probability o(p−2),

q0|I0| log(p) ≤ ‖W ∗‖2 ≤ ‖H1H2Ỹ
I0‖2 ≤ C‖Ỹ I0‖2,

and the claim follows. �
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5.7.2 Proof of Lemma 5.2

By definitions, it is equivalent to show that over the event Ap, each row and column of H̃2

has finite nonzero coordinates. It is seen that each row of H̃2 has ≤ m nonzeros, so all we
need to show that each column of H̃2 has finite nonzeros.

Towards this end, we introduce a new graph G̃ = (V,E), where V = {1, 2, . . . , p} and
nodes i and j are connected if and only if |Ω̃(i, j)| 6= 0. This definition is the same as
GOSD, except that Ω∗ is substituted by Ω̃. It is seen that over the event Ap, for any
Ω ∈ M∗p(γ, c0, g, A), G̃ is K-sparse with K ≤ Cδ−1/γ . The key for the proof is to show

that for any k 6= ` such that H̃2(k, `) 6= 0, there is a path with length ≤ (m− 1) in G̃ that
connects k and `.

To see the point, we note that when H̃2(k, `) 6= 0, there must be an i such that k ∈ D̂(i)

and ` ∈ F̂ (i). We claim that there is a path in I(i)
0 (which is regarded as a subgraph of G̃)

that connects k and `. In fact, if k and ` are not connected in I(i)
0 , we can partition I(i)

0

into two separate sets of nodes such that one contains k and the other contains `, and two

sets are disconnected. In effect, both the matrix Ω̃D̂(i),D̂(i)
and Ω̃D̂(i),F̂ (i)

can be visualized
as two by two blockwise matrix, with off-diagonal blocks being 0. As a result, it is seen that
H̃2(k, `) = 0. This contradiction shows that whenever H̃2(k, `) 6= 0, k and ` are connected

by a path in I(i)
0 . Since |I(i)

0 | ≤ m, there is a path ≤ m − 1 in G̃ that connects k and `
where k 6= `.

Finally, since G̃ is K-sparse with K = Cδ−1/γ , for any fixed `, there are at most finite
k connecting to ` by a path with length ≤ (m− 1). The claim follows. �

5.8 Proof of Theorem 1.4

Since σ is known, for simplicity, we assume σ = 1. First, consider (1.33). By Theorem 1.2
and (1.23), ρgs = min{(D,F ):D∩F=∅,D 6=∅,D∪F⊂{1,2}} ρ(D,F ; Ω), where we have used that G is
a diagonal block-wise matrix, each block is the same 2× 2 matrix. To calculate ρ(D,F ; Ω),
we consider three cases (a) (|D|, |F |) = (2, 0), (b) (|D|, |F |) = (1, 0), (c) (|D|, |F |) = (1, 1).
By definitions and direct calculations, it is seen that ρ(D,F ; Ω) = ϑ + [(1 − |h0|)r]/2 in
case (a), ρ(D,F ; Ω) = (ϑ + r)2/(4r) in case (b), and ρ(D,F ; Ω) = 2ϑ + [(

√
(1− h2

0)r −
ϑ/
√

(1− h2
0)r)+]2/4 in case (c). Combining these gives the claim.

Next, consider (1.34). Similarly, by the block-wise structure of G, we can restrict our
attention to the first two coordinates of β, and apply the subset selection to the size 2
subproblem where the Gram matrix is the 2× 2 matrix with 1 on the diagonals and h0 on
the off-diagonals. Fix q > 0, and let the tuning parameter λss =

√
2qss log(p). Define

f (1)
ss (q) = flasso,1(q) = ϑ+ [(

√
r −√q)+]2, f (2)

ss (q) = 2ϑ+ [(
√
r(1− h2

0)−√q)+]2,

and
f (3)
ss (q) = 2ϑ+ 2[(

√
r(1− |h0|)−

√
q)+]2,

where x+ = max{x, 0}. The following lemma is proved below, where the key is to use [25,
Lemma 4.3].

Lemma 5.3 Fix q > 0, and apply the subset selection to the aforementioned size 2 subprob-
lem with λss =

√
2q log(p). As p → ∞, the worst-case Hamming error rate is Lpp

−fss(q),

where fss(q) = fss(q, ϑ, r, h0) = min
{
ϑ+ (1− |h0|)r/2, q, f (1)

ss (q), f
(2)
ss (q), f

(3)
ss (q)

}
.

38



By direct calculations, ρss(ϑ, r, h0) = max{q>0} fss(ϑ, r, h0) and the claim follows.
Last, consider (1.35). The proof is very similar to that of the subset selection, except

for that we need to use [25, Lemma 4.1], instead of [25, Lemma 4.3]. For this reason, we
omit the proof. �

5.8.1 Proof of Lemma 5.3

By the symmetry in (1.30)-(1.31) when G is given by (1.32), we only need to consider that
case where h0 ∈ [0, 1) and β1 ≥ 0. Introduce events, A0 = {β1 = β2 = 0}, A1 = {β1 ≥
τp, β2 = 0}, A21 = {β1 ≥ τp, β2 ≥ τp},A22 = {β1 ≥ τp, β2 ≤ −τp}, B0 = {β̂1 = β̂2 = 0},
B1 = {β̂1 > 0, β̂2 = 0}, B21 = {β̂1 > 0, β̂2 > 0} and B22 = {β̂1 > 0, β̂2 < 0}. It is seen that
the Hamming error

= Lp(I + II + III), (5.82)

where I = P (A0 ∩Bc
0), II = P (A1 ∩Bc

1) and III = P (A21 ∩Bc
21) + P (A22 ∩Bc

22).
Let H be the 2× 2 matrix with ones on the diagonals and h0 on the off-diagonals, α =

(β1, β2)′, and w = (Ỹ1, Ỹ2), where we recall Ỹ = X ′Y . It is seen that w ∼ N(Hα,H). Write
for short λ =

√
2q log(p). Define regions on the plane of (Ỹ1, Ỹ2), D0 = {max(|Ỹ1|, |Ỹ2|) >

λ or Ỹ 2
1 + Ỹ 2

2 − 2h0Ỹ1Ỹ2 > 2λ2(1 − h2
0)}, D1 = {|Ỹ1| < λ , Ỹ1 < Ỹ2 or |Ỹ2 − h0Ỹ1| >

λ
√

1− h2
0}, D21 = {Ỹ2 − h0Ỹ1 < λ

√
1− h2

0 or Ỹ1 − h0Ỹ2 < λ
√

1− h2
0} and D22 = {Ỹ2 −

h0Ỹ1 > −λ
√

1− h2
0 or Ỹ1−h0Ỹ2 > λ

√
1− h2

0 or Ỹ
2

1 + Ỹ 2
2 − 2h0Ỹ1Ỹ2 < 2λ2(1−h2

0)}. Using
[25, Lemma 4.3], we have Bc

0 = {(Ỹ1, Ỹ2)′ ∈ D0}, Bc
1 = {(Ỹ1, Ỹ2)′ ∈ D1}, Bc

21) = {(Ỹ1, Ỹ2)′ ∈
D21}, and Bc

22 = {(Ỹ1, Ỹ2)′ ∈ D22}. By direct calculation and Mills’ ratio, it follows that
for all µ ∈ Θp(τp),

I = Lp · (P (N(0, 1) > λ) + P (χ2
2 > 2λ2)) = Lp · p−q, (5.83)

II ≤ Lp · P (N((τp, h0τp)
′, H) ∈ D1) = Lp · p−ϑ−min[(

√
r−√q)2,(1−h0)r/2,q], (5.84)

and when β1 = τp and β2 = 0, the equality holds in (5.84). At the same time, note
that over the event A21, the worst case scenario, is where β1 = β2 = τp. In such a case,
(Ỹ1, Ỹ2)′ ∼ N(((1 + h0)τp, (1 + h0)τp)

′, H). Combining this with Mills’ ratio, it follows that
for all µ ∈ Θp(τp),

P (A21 ∩Bc
21) = P ((Ỹ1, Ỹ2)′ ∈ D21) ≤ Lp · p−2ϑ−(

√
r(1−h20)−√q)2+ , (5.85)

and the equality holds when β1 = β2 = τp. Similarly, note that over the event A22, in
the worst case scenario, β1 = −β2 = τp. In such a case, (Ỹ1, Ỹ2)′ ∼ N(((1 − h0)τp,−(1 −
h0)τp)

′, H). Combining this with Mills’ ratio, it follows that for all µ ∈ Θp(τp),

P (A22 ∩Bc
22) = P ((Ỹ1, Ỹ2)′ ∈ D22) ≤ Lp · p−2ϑ−min([(

√
r(1−h20)−√q)+]2,2{[

√
r(1−h0)−√q]+}2),

(5.86)
and the equality holds when β1 = −β2 = τp. Inserting (5.83)-(5.86) into (5.82) gives the
claim. �
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