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Abstract

Association between disease and genetic polymorphisms often contributes critical informa-

tion in our search for the genetic components of common diseases. Devlin and Roeder (1999)

introduced genomic control, a statistical method that overcomes a drawback to the use of

population-based samples for tests of association, namely spurious associations induced by

population structure. In essence, genomic control (GC) uses markers throughout the genome

to adjust for any in
ation in test statistics due to substructure. To date genomic control

(GC) has been developed for binary traits and bi- or multiallelic markers. Tests of association

using GC have been limited to single genes. In this report, we generalize GC to quantita-

tive traits (QT) and multilocus models. Using statistical analysis and simulations, we show

that GC controls spurious associations in reasonable settings of population substructure for

QT models, including gene-gene interaction. Through simulations we explore GC power for

both random and selected samples, assuming the QT locus tested is causal and its speci�c

heritability is 2.5 - 5%. We �nd that GC, combined with either random or selected samples,

has good power in this setting, and that more complex models induce smaller GC corrections.

The latter suggests greater power can be achieved by specifying more complex genetic models,

but this observation only follows when such models are largely correct and speci�ed a priori.

Key Words: Genomic Control, population structure, polymorphisms, complex disease, overdis-

persion
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Introduction

Quantitative traits can be a direct expression of human disease, such as extreme blood pressure

and obesity, an indirect expression, such as the degree of obsessionality for certain psychiatric

disorders, or even a latent measure of disease liability. Therefore locating the polymorphisms

a�ecting quantitative traits is a major goal of genetic epidemiology (Risch 2000; Blangero

et al. 2001). Finding these polymorphisms has proven challenging, however, because the

diseases and the quantitative traits (QT) underlying them generally have a complex genetic

and environmental basis (Risch 2000). This complexity dampens the power of any linkage

analysis. Magnifying the challenge, the polymorphisms themselves can have only a subtle

impact on the QT.

One approach that could increase power is to assess candidate QT loci (QTL) for associ-

ation using population-based samples and regression methods. For example, for a candidate

Single Nucleotide Polymorphism (SNP), the measured value of the quantitative trait Y can

be regressed on the count of a speci�c allele and a test performed to determine if �̂, the least

squares estimate of association between the phenotype and the allele count, di�ers signi�cantly

from zero. By using population-based samples, however, a signi�cant association between dis-

ease and SNP alleles could arise from three di�erent sources: by chance; by tight linkage to

a causal polymorphism; or, spuriously, by the impact of population structure. The latter is

counter to family-based studies, which are robust to the impact of population substructure

(Allison 1997; Rabinowitz 1997; Zhu and Elston 2001).

With respect to confounding generated by population substructure, two factors perturb

the distribution of �̂ from that expected in the typical regression setting: (i) the phenotypes of

samples drawn from the same subpopulation are positively correlated, increasing the variance

of �̂ over that expected under the independence model and leading to an over-dispersed

test statistic; and (ii) the E[�̂] is not zero, even under the null hypothesis of no linkage.

Regarding (ii), the statistic may be biased in either direction, depending upon the nature of

the population substructure. Although the bias can be sizable for rare Mendelian disorders,

it is typically dominated by over-dispersion for complex disorders (Devlin et al., 2001a).

Concerns about confounding due to population substructure have increased the popularity

of family-based studies at the expense of population-based studies. Yet family-based methods

are not without their own drawbacks. Recruiting family members can be diÆcult, and thus

the sample sizes for family-based studies tend to be relatively small. The connection between
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diminished sample size and statistical power is obvious. Moreover, in some settings, family-

based designs are less powerful than population-based methods (Risch and Teng 1998; Bacanu

et al. 2000) even for the same number of individuals sampled.

Recently, Devlin and Roeder (1999) put forth an alternative approach that utilizes population-

based samples, but protects against confounding. We call it genomic control (GC) because GC

uses genotypes obtained from across the genome to control for violations from independence

present in the sample [Devlin and Roeder 1999; Bacanu et al., 2000; Devlin et al. 2001a].

\Null" loci, de�ned as loci unlikely to have a functional e�ect on the trait under investigation,

are used to estimate the impact of the confounding observed in population-based samples.

Provided the same individuals are genotyped at all the loci, this approach corrects for con-

founding due to population strati�cation even for the \convenience samples" often encountered

in clinical trials and epidemiological samples.

Here we evaluate GC to test for association between QT and genetic markers in several

settings: tests of association with a single SNP; a more general model with two SNP and

interaction; for omnibus F-tests; and, �nally, for selection of individuals based on their QT

values. For power analysis, we assume the SNP under study has a direct impact on the QT.

Quantitative Traits Model and GC

For association studies, confounding occurs when individuals are drawn from a substructured

population (sensu Wright 1951). Due to the substructure, the multilocus genotype proba-

bilities for unlinked loci are not equal to a product of the allele probabilities. Population

substructure creates correlation among alleles sampled from the same subpopulation, which

is measured by Fst (Wright 1969).

Consider a biallelic locus with alleles labeled 0 and 1 with the probability of a 1 equal

to pk = 1 � qk. For alleles (W1;W2) drawn from the same subpopulation, the proportion of

genotypes (1,1), (1,0) and (0,0) are Fstpk + (1� Fst)p
2
k, 2(1� Fst)pkqk and Fstqk + (1� Fst)q

2
k

respectively (Wright 1951). As a consequence Cov(W1;W2) = Fstpk(1� pk) if the two alleles

are sampled from the same subpopulation, and 0 otherwise; likewise Var(W1 +W2) = 2(1 +

Fst)pk(1� pk).

In terms of experimental design, we draw a population-based sample of N individuals,

each measured for a QT Y . Assume Y could be in
uenced by the genotypes at c unlinked,

biallelic loci of interest and nh other hidden biallelic loci, which are not under investigation.
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De�ne Xk, k = 1; : : : ; c + nh, to be the individual's centered genotype at locus k, given by

the number of 1 alleles minus two times the proportion of 1 alleles in the sample. A working

model for Y is an additive linear model with interactions between loci:

Yi = �0 +
c+nhX
k=1

�kXik +
X

1�k<l�c+nh

�klXikXil + �i: (1)

We assume Var(�i) is a constant, Cov(�i; �j) = 0, and only require the working model to

approximately hold for the terms indexed by k = 1; : : : ; c. These targeted loci can be tested

for association with the phenotype by �tting the model,

E[YijX1; : : : ; Xc] = �0 +
cX

k=1

�kXik +
X

1�k<l�c

�klXikXil; (2)

To test the e�ect of locus k, we assume under the null hypothesis that any � with a subscript

involving k � c is zero.

Given model (2), we investigate the variance, de�ned to be Var[Yi] = �2, and the covari-

ance, de�ned to be Cov[Yi; Yj] = �, when i and j are drawn from the same subpopulation.

An assumption of the GC approach is that neither �2 nor � depend strongly upon the allele

frequencies for any loci indexed by k � c (see Devlin et al. 2001a for discussion and analysis).

By de�nition

�2 = Var

2
4 c+nhX
k=c+1

�kXik +
X

c+1�k<l�c+nh

�klXikXil + �i

3
5 ;

in which there are no restrictions on the �k's. Because Var[Xik] = 2(1 + Fst)pk(1 � pk), it

follows that �2 is a function of fpk; k = c + 1; : : : ; nh + cg. If (i; j) are not in the same

subpopulation, Cov[Yi; Yj] = 0; this quantity is de�ned to be � otherwise. Clearly � is also a

function of fpk; k = c + 1; : : : ; nh + cg because Cov[Xik; Xjk] = 4Fstpk(1 � pk) if (i; j) are in

the same subpopulation. However, neither �2 nor � depend upon the allele frequencies of the

loci under investigation because we condition upon fX1; : : : ; Xcg.

Let �̂ be the least squares estimate of � = (�0; �1; : : : ; �c�1;c) obtained from model (2), ig-

noring the e�ects of population substructure. Bias and over-dispersion perturb the distribution

of �̂ from that expected in the typical regression setting. To construct a valid test for associ-

ation between Y and a SNP genotype, beyond that expected due to population substructure,

we extend GC to the quantitative traits setting by estimating and controlling for any in
ation

in the variance over that expected for independent data. We focus on over-dispersion. When

bias is also present, it results in additional over-dispersion, which is automatically corrected

for by GC (Devlin et al. 2001a).
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Here we outline how the GC approach works, assuming c = 1. In the remainder of the

report, we generalize the model and develop these ideas further. Estimate �̂1 atM loci. Ideally

a subset of loci can be designated as null loci, but any set of loci for which the majority are not

associated with the QT will suÆce. Compute Tk = �̂1=SEind[�̂1], in which the denominator

is the standard error of the numerator, ignoring population substructure. Under the null

hypothesis, and for large sample sizes, Tk is approximately distributed N(0; �), � = �2 + � 2,

in which �2 is proportional to the square of the expected bias of the test statistic and � 2

is the increase in the variance due to correlation among subjects. Consequently, T 2
k =� is

distributed as �21 (Devlin et al. 2001a). The in
ation factor � can be robustly estimated

using �̂ = fmedian(T 2
1 ; T

2
2 ; : : : ; T

2
M)=:456g or any other of the robust methods described in

Devlin et al. [2001b]. Then compare T 2
k =�̂ with �21(1) to determine whether the locus is

signi�cantly associated with the QT. To test L candidate loci, one at a time, compare T 2
k =�̂

with �21(1� �=L) to determine which are signi�cantly associated with the QT.

Inferences for quantitative traits using GC

Testing for a single locus e�ect

To test if a single locus, say k = 1, is associated with the phenotype we work with the model

E[Y jXi1] = �0 + �1Xi1; (3)

and test whether the slope is di�erent from zero. To simplify exposition, we drop the subscript

k. The usual estimator of the parameter of interest is �̂1 =
P

iXi1Yi=
P

iX
2
i1 =

P
i biYi.

We need to compute Var[�̂1] =
P

i b
2
iVar[Yi] + 2

P
i<j bibjCov[Yi; Yj]. Note that 1

N

P
iX

2
i �

Var(Xi) = 2(1 + Fst)p(1 � p). Consequently
P

i b
2
i � 1=f2N(1 + Fst)p(1 � p)g. Recall that

E[XiXj] = 4Fstp(1� p) if i and j are drawn from the same subpopulation, and 0 otherwise.

It follows that for the Na pairs of observations from subpopulation Sa,

1

Na

X
i<j2Sa

bibj � Cov[bi; bj] = Fst=fN
2[2(1 + Fst)

2p(1� p)]g:

Let R be a count of the number of covariance terms not equal to zero, which is the sum of

Nj(Nj � 1)=2 over each of the j subpopulations. De�ne SEind[�̂1] as the usual standard error

term when the Yi's are independent. SEind[�̂1] is approximately equal to f�2=2N(1 + Fst)p(1� p)g1=2,

the same term obtained from any statistical regression package. It is not assumed here that

the pair of alleles within an individual, W1i and W2i, are independent.
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Putting all the pieces together we �nd that

Var[�̂1] �
�2

2N(1 + Fst)p1(1� p1)

"
1 +

4RFst�

N(1 + Fst)�2

#

� SE2

ind[�̂1]� � 2:

The adjustment to the usual variance term, � 2, is the in
ation factor due to correlation among

the subjects in the study. If Fst = 0, � 2 = 1 and the variance reduces to �2=f2Np(1� p)g. In

general, we anticipate � 2 > 1. If R and Fst are large, then the second term in � 2 can be large.

Alternatively, if there are many small subpopulations, then R will be small and the impact of

population substructure on the variance will be small.

Throughout this derivation we assume a constant correlation structure within the sample

de�ned by Fst; however, the GC principle applies even when the correlation between sampled

individuals is not constant across pairs of individuals within a subpopulation. It suÆces that

the correlation between individuals is approximately constant across the genome. For instance,

the method is still valid if some subpopulations are more di�erentiated than others, or the

sample includes some pairs of individuals who are close relatives. Furthermore, in practice,

even if the fundamental assumption of constant correlation between individuals across the

genome is violated in a minor way the test tends to be conservative.

Confounding due to population substructure also introduces a bias into the problem. In

expectation the bias squared is also proportional to the standard error: bias2 = �2 SE2
ind[�̂1]

(Devlin et al., 2001a). For any single locus, neither �2 nor � 2 can be directly estimated

because they depend upon unknown quantities, namely the allele frequencies and the allelic

e�ects at QT loci that determine the heritability of the trait. However, both �2 and � 2 are

approximately constant regardless of which loci we are studying, assuming the null hypothesis

holds (Roeder and Devlin 1999; Bacanu et al. 2000). Consequently � = �2 + � 2 can be

estimated from the null loci as described previously.

Testing for e�ects at two loci

Consider �tting two more complex models

E[Y jX1; X2] = �0 + �1X1 + �2X2; (4)

E[Y jX1; X2] = �0 + �1X1 + �2X2 + �12X1X2: (5)
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For reference we label the models in (3), (4), and (5) as models I, II and III, respectively.

Applying the same type of argument as used for the single locus test to model II, our

analysis (Appendix), shows Var[�̂1] = SE2
ind[�̂1][�

2 � H], in which SEind[�̂1] is the standard

error of �̂1 computed when �tting model II and assuming independent observations, � 2 is

the in
ation factor obtained previously when �tting model I, and H is a small positive term

that accounts for a slight decrease in the in
ation term obtained when �tting model II rather

than model I. In principle H can depend upon pA and pB; in practice we found � 2 � H to

be approximately constant across the genome in our simulations. Based on these results it

follows that GC applies when �tting model II, but the in
ation factor is now � 2 �H, which

we estimate as described previously.

Incorporating the interaction term as in model III greatly increases the complexity of the

problem, making it diÆcult to obtain a transparent analytical picture. The additional com-

plexity occurs because the level of correlation between alleles at di�erent loci in substructured

populations is not determined by Fst; in fact, there is no simple analytical representation of

these correlations. Because analytical representations of the variance are not available for the

main e�ects or the interaction e�ect, we primarily pursue this model further with simulations.

Nevertheless we determine some properties of GC under model III in the Appendix.

To test for multiple e�ects simultaneously, a common approach involves an F-test based

upon the extra sums of squares:

F =
SSE(reduced)� SSE(full)

df �MSE(full)
; (6)

where df is the di�erence in degrees of freedom between the full and reduced models. For

large N , MSE(full) � �2. Consequently, for an independent identically distributed sample,

df � F is approximately distributed as a �2df . In the numerator of the omnibus test (6), the

extra sums of squares attributable to two main e�ects and an interaction can be partitioned

as SSR(X1) + SSR(X2jX1) + SSR(X12jX1; X2). If a single main e�ect is �t

SSR(X1)

��MSE
=

�̂21
�SE2

ind(�̂1)
;

where � denotes the single main e�ect in
ation factor. If a second main e�ect is included

SSR(X2jX1)

��MSE
=

�̂22
�SE2

ind(�̂2)
;

where � now denotes the main e�ect in
ation factor, given that one main e�ect is already in
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the model. Finally, if the interaction term is included along with two main e�ects

SSR(X12jX1; X2)

�int �MSE
=

�̂212
�int SE2

ind(�̂12)
;

where �int denotes the interaction e�ect in
ation factor. In the previous section we showed

that, for a substructured population, each of the three quantities above is approximately

distributed as a �21. Consequently, the GC omnibus test can be obtained by sequentially

computing these three terms and then summing them to obtain a �2 test with three degrees

of freedom. In the upcoming simulation we show that a test with proper Type I error rate

and excellent power is obtained by simply computing the F-test indicated in (6) for the loci

under investigation, as well as a set of null loci; estimating �tot based upon the median of the

tests obtained from the null loci; and then adjusting the F-test for the e�ect of population

substructure by dividing by �̂tot. For df = d, �̂tot = fmedian(F1; : : : ; FM)=vdg in which

v2 = 0:70 and v3 = 0:79.

Simulations

Simulation algorithm

We generate data using our working model (1) with Var(�i) = 1 and �kl = 0 for fc < k < lg.

To compute heritability in our simulation, Xi is assumed to be independent of Xj (unlinked

loci) but not independent of XiXj for i 6= j. Without population substructure, the heritability

due to the c loci of interest is:

cX
i=1

�2iVar(Xi) +
X

1�i<j�c

�2ijVar(XiXj)

+ 2
X

1�i<j�c

[�i�ijCov(Xi; XiXj) + �j�ijCov(Xj; XiXj)]

=
cX

i=1

�2i 2piqi +
X

1�i;j�c

�2ij4pipj(pi + pj + 1� 3pipj)

+ 2
X

1�i<j�c

(�i�ij4pipjqi + �j�ij4pipjqj)

= 2
cX

i=1

�2i piqi + 4
X

1�i;j�c

�2ijpipj(pi + pj + 1� 3pipj)

+ 8
X

1�i<j�c

pipj�ij(�iqi + �jqj);

in this calculation the Xi's are not centered. The heritability of all the c+ nh loci is similar.
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To achieve a �xed level of heritability attributable to a set of loci, either the parameters

for the slopes of the main e�ects and interactions can be held constant and solve for allele

frequencies that satisfy the constraints, or vice versa. For all of our simulations the total

heritability is set at 50%.

Using the algorithm described in Bacanu et al. (2000) with some small changes to incor-

porate quantitative traits, a sample of size N can be generated from a collection of nstrata

subpopulations characterized by allelic correlation within a subpopulation equal to Fst. Each

sample contains a phenotype and genotypes at n loci consisting of c candidate loci, nh hidden

loci and n � c � nh null loci. For simulations under the null hypothesis only hidden loci

k = 1; : : : ; 50 are generated; each locus contributes 1% to achieve a total heritability of 50%.

Under the alternative hypothesis, h2 denotes the heritability attributable to each locus under

study or their interaction; in addition hidden loci are generated to achieve a total heritability

of 50%.

Simulation Results

In our simulations we investigate the conjecture made previously that the over-dispersion

parameter is approximately constant as a function of the allele frequencies of the loci being

tested. Null loci are sampled from a strati�ed population with nstrata = 2, Fst = 0:03, and

allele frequencies p ranging between 0.08 and 0.92. Then model III is �t to these data. The

mean of �2 tests, pooled over common levels of p, are plotted as a function of p in Figure

1. For both main and interaction e�ects, the test statistic clearly does not depend upon

p. Consequently the GC approach is valid for model III even under an extreme case of

population strati�cation. The only pattern apparent in these results is that the test statistic

for the interaction has greater variability when both alleles are relatively uncommon. This is

not surprising because, under these conditions, sample sizes may not be suÆcient for �̂12 to

achieve normality.

Data are simulated under the null hypothesis with c = 2 to investigate the Type I error

rate of the test and other features of the GC procedure using the following conditions for the

candidate loci in each of 4000 populations: p1 = p2 = 0:2; nh = 50; and N = 2000. Two levels

of strati�cation (low and high) are evaluated, Fst = 0:003 and Fst = 0:03, with nstrata = 6.

For each sample, models I, II and III are �t to the full data (N = 2000: unselected) and a

selected fraction of the sample (selected). Our selection strategy took individuals if their QT

value fell in the lower or upper quartile.

10



From the simulations using either unselected or selected samples, the following results

(Table I) obtain: (i) the test achieves the appropriate (or conservative) Type I error rate; (ii)

the parameter estimates for � are unbiased on average; (iii) for Fst = 0:03, � is slightly smaller

if model II is �t instead of I, consistent with our algebraic calculations; (iv) if model III is �t

� is reduced even further; and (v) �int is smaller than �. Result (iv) follows because �tting

model III is roughly equivalent to conditioning on some of the confounding. Thus, �tting the

interaction removes some of the variability in the main e�ect estimates, which was induced

by substructure. Result (v) obtains because it is diÆcult to have the right con�guration of

subpopulations to create a strong interaction e�ect due to confounding alone. More so than

in main e�ects models, there is a natural averaging e�ect across subpopulations. Hence there

simply is less confounding to remove from the calculations. These trends are less apparent

when Fst = 0:003 presumably because this is a low level of strati�cation and the e�ects of

confounding are modest. Finally, note that �tot is generally a compromise between � and �int.

To investigate the power of the test for one and two trait loci (c = 1 and 2), we simulate

200 populations, and set other parameters as de�ned previously. In Tables II and III the data

were generated with model I, while in Tables III and IV the data were generated with model

III. When a locus accounts for 2.5% (5%) of the heritability variation, then the coeÆcient

equals 0:280 (0:395). For model III �12 = 0:349 or �12 = 0:494 respectively. Models I, II

and III are �t to the simulated data regardless of whether only one locus accounts for the

heritability or both loci and their interaction account for the heritability.

From these simulations and unselected samples the following results obtain: (i) if the true

model is �tted, the estimated parameters are unbiased on average (Tables II and IV); (ii) if

the true model has two main e�ects and an interaction, then �tting a single one of the two

main e�ects will yield an upwardly biased estimate of this main e�ect (Table IV); (iii) the

power decreases as Fst increases, but not dramatically (Tables III and V); (iv) if the true

model has one main e�ect and no interaction, then �tting the appropriate main e�ect using

model I leads to an increase in power compared to �tting model II or III (Table III); (v) if

the true model has two main e�ects and an interaction, then �tting a single one of the two

main e�ects using model I will substantially decrease the power to detect the e�ect relative

to �tting model II or III (Table V), using the omnibus test.

In general, � is smaller when a more complex model is �tted and hence it is not surprising

that the power is often greater when model III is �tted rather than model I; however, there

is a tradeo�. When exploring L candidate loci there are L(L � 1)=2 pairwise interaction
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models to test and hence a substantial Bonferroni correction is required. For models such as

the ones simulated here, our simulations suggest that it is better to explore one-factor main

e�ects sequentially unless targeted comparisons are of interest. Of course these results do

not necessarily extend to other interaction models. When the interaction dominates the main

e�ects, then the tradeo� is likely to favor �tting interaction models. Clearly, in the extreme

case where there is a gene-gene interaction with no main e�ects the optimal form of analysis

involves �tting the model E[Y ] = �0 + �12X1X2. The inferences will be much more powerful

with this approach than would be obtained �tting model I.

For the selected samples, parameter estimates are biased, increasing to almost twofold

their true value even when the true model is �t to the data (Tables II and IV); yet the test

achieves the targeted Type I error rate (Table I). Moreover, by sampling from the upper and

lower quartiles of the trait distribution, one achieves equivalent power genotyping 50 to 60%

of the N required for random sampling (data not shown), regardless of the model.

Discussion

Genomic Control (GC) is a new approach to analysis of population-based samples to �nd

associations between disease and marker alleles (Devlin and Roeder 1999; Devlin et al. 2001a).

GC permits valid inference from population-based samples drawn from substructured and

therefore heterogeneous human populations. By assessing multiple loci across the genome,

only a subset of which could have a meaningful impact on the trait of interest, GC eliminates

the confounding e�ects of population substructure.

In their original article, Devlin and Roeder (1999) outline methods for discrete outcomes,

principally through a case-control design. We extend GC to the search for quantitative trait

loci (QTL). As predicted by Bacanu et al. (2000), we �nd that GC extends naturally to the

analysis of quantitative traits (GC-QT). Our results go further than a simple extension by

exploring GC-QT for models with multiple QTL. We �nd that the principles of GC extend

to this more complicated setting also. In fact, while the results are not shown here, we have

also explored log-linear models for discrete (case-control) outcomes. We �nd that the results

shown for GC-QT and the results for log-linear models are very similar. Thus it appears a

whole class of multilocus models are amenable to GC analysis.

Various quantitative traits and samples could be the target of GC-QT analyses. One source

of attractive samples would be those drawn for clinical trials. Such studies usually produce a
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quantitative outcome of drug eÆcacy, either for ameliorating disease symptoms or the disease

itself, based on a large, population-based sample. Often the drug response is heterogeneous

within the sample, presumably due to the impact of genetic variability. It is of considerable

interest, therefore, to understand the heterogeneous response based upon the pharmacological

properties of the drug and its targets within the body. As noted in Devlin and Roeder (1999)

and elsewhere (Bacanu et al. 2000; Devlin et al. 2001a), the most powerful implementation

of GC in this setting is to account for any obvious sources of population substructure in the

statistical model a priori.

An interesting issue for GC is the need for \null" loci. Throughout this article, we allude to

the use of such loci to develop the GC-QT correction. When many candidate genes are evalu-

ated, such as in a search for liability loci, null loci are extraneous { assuming, reasonably, that

most candidate genes will not have important e�ects on disease outcome. Instead, researchers

can apply the Bayesian outlier model developed by Devlin and Roeder (1999). In essence, this

mixture model looks for genes that have unusually large associations relative to the bulk of

the genes evaluated. Simple frequentist methods for estimating � from a candidate gene study

are also available (Devlin et al. 2001b; Tzeng et al. 2001). With the recent determination of

human DNA sequence and the development of large SNP databases, we anticipate analyses

with this structure will become commonplace.

Our power analyses for GC-QT explored the use of one and two-locus models, two-locus

models with interactions, and omnibus F-tests for various true models. These simulations

assume 50% heritability for the trait, but modest heritability for any particular locus. Pop-

ulation heterogeneities are taken to be similar to that for samples of Caucasian or African

Americans and mixtures of the two ethnic groups. For all of our reported parameter values

and even for selected sampling, we �nd the Type I error rate of GC-QT test to be less than

or equal to its nominal value (Table I); even for extreme substructure, near nominal values

are obtained (unpublished data). Furthermore, we �nd excellent power for reasonable sample

sizes (Tables III and V).

Power, of course, depends on the congruence between the true model generating the data

and the model �t to the data (Tables III and V). If our earlier conjecture is true { that studies

will soon be assessing a large number of genes simultaneously in their search for liability genes

{ then our results are particularly interesting. When multiple genes are tested, there will be

great temptation to test for gene-gene interaction. Including interactions in the model can

lead to more powerful inference, but only when the interaction is large relative to the main

13



e�ects; otherwise substantial power is lost. Thus, tests for interaction must be used sparingly.

These results are reminiscent of the results of Dupuis et al. (1995), who show that whole-

genome two-liability-locus linkage is only powerful when the gene-gene interactions are large.

In the future, what will be required are models that incorporate prior biological information

and thereby delineate appropriate interactions a priori.

In our simulation study the e�ect of population strati�cation appears to be quite small

for low levels of strati�cation, as evidenced by the magnitude of � when Fst = 0:003 (Table

I). This simulation was designed to mimic a sample drawn from a fairly homogeneous ethnic

group such as a population of European decent. However, these results should not be taken to

indicate that population strati�cation can always be safely ignored when the sample is drawn

from a fairly homogeneous sample because the e�ect of confounding grows as the sample size

increases.

The GC approach has now been extended to a number of data structures obtained from

population-based samples, and it seems likely that this general idea can be applied even more

broadly. For instance, two methods designed for the analysis of population-based samples

recently appeared which may be amenable to correction using a GC approach: threshold-

de�ned case control analysis for QT [Schork et al. 2000] and case-control studies including

relatives [Slager and Schaid 2001].
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Appendix

For model II, we wish to �nd the approximate distribution of the estimates of �1 and �2.

For notational convenience let A = X1 and B = X2. To facilitate algebraic manipulations,

rede�ne the quantitative trait as the centered analog, Yi = Yi � �Y , and set �0 = 0. From the

least squares calculations it follows that

�̂1 =

"X
i

A2

i

X
i

B2

i � (
X
i

AiBi)
2

#�1 "X
i
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#
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N
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iAiBi = �AB. Let Iij = 1 if i and j are in the

same subpopulation and zero otherwise. Re-express (7) as

h
�2A�

2

B � �2AB
i�1 "

�2B
1

N

X
i

AiYi � �AB
1

N

X
i

BiYi

#
:

It follows that
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Claim

X
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IijAiAj =
2RF�2A
1 + F

X
i<j

IijBiBj =
2RF�2B
1 + FX

i6=j

IijAiBj = 2R�AB:

Plugging these quantities into (8), and after some algebra, we obtain

Var(�̂1) =
�2�2A

N(�2A�
2
B � �2AB)

"
1 +

4R�F

N(1 + F )�2
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in which
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2
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�
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2F

1 + F

�
:

But this is SE2
ind[�̂1][�

2 �H].
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Incorporating the interaction term as in model III greatly increases the complexity of

the problem, making it diÆcult to obtain a transparent analytical picture. The additional

complexity occurs because the level of correlation among alleles across loci in substructured

populations is not determined by Fst; in fact, there is no simple analytical representation of

these correlations. Nevertheless we can determine some properties of GC under model III.

For model III de�ne

c =
X
i

A2

iB
2

i �
X
i

B2
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AiB
2
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2
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In terms of these quantities

�̂1 =

"
c
X
i
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X
i

AiBi + e
X
i

A2

iDi

#�1 "
c
X
i

AiYi + d
X
i

BiYi + e
X
i

AiBiYi

#
:

By the Cauchy-Schwarz inequality c > 0 and, from simulations, we �nd that, in expectation

d and e are near zero. Consequently, asymptotically �̂1 behaves as when we �t model I,

E[�̂1] �
P

iAiYi=
P

iA
2
i .

The variance of �̂1 is determined by the variances and covariances of the terms in the

second set of square brackets. For any particular dataset d and e deviate from zero and

hence Var[�̂1] clearly di�ers when we �t model III rather than model I. Because analytical

representations of the variance are not available for the main e�ects or the interaction e�ect,

we pursue this model further with simulations.
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Table I. Performance of GC under the null model. For each of 6000 repetitions,

p1 = p2 = 0:2, nh = 50, N = 2000, nstrata = 6 for Fst = 0:003 and 2 for

Fst = 0:03, and each hidden locus contributes 1% to the total heritability of 50%.

Three models were �t, a single main e�ect (k = 1) (I), two main e�ects (II) and

two main e�ects with an interaction (III).

unselected coefs multiplier level (� = 0:05)

Fst model �̂k �̂12 � �int �tot main interaction omnibus
I -0.0006 - 1.09 - - 0.033 - -

0.003 II -0.0006 - 1.09 - 1.03 0.033 - 0.033
III -0.0009 0.007 1.05 1.00 1.02 0.037 0.038 0.034
I 0.0006 - 1.84 - - 0.047 - -

0.03 II 0.0005 - 1.81 - 1.70 0.047 - 0.052
III 0.0017 0.009 1.30 1.10 1.50 0.050 0.037 0.049

selected
I -0.0010 - 1.03 - - 0.041 - -

0.003 II -0.0009 - 1.03 - 1.01 0.041 - 0.043
III 0.0017 -0.0035 1.00 1.03 1.04 0.040 0.038 0.38
I 0.0007 - 1.71 - - 0.050 - -

0.03 II 0.0007 - 1.69 - 1.61 0.050 - 0.047
III 0.0010 -0.0013 1.44 1.12 1.43 0.046 0.038 0.048
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Table II. Performance of GC under the alternative model. For each of 200

repetitions, p1 = p2 = 0:2, N = 2000, and nstrata = 6. When h2 = 2:5% �1 = 0:280;

when h2 = 5% �1 = 0:395; and for all conditions �2 = �12 = 0. Each hidden

locus k, k = 3; : : : ; nh + 2, contributes 1% to achieve a total heritability of 50%.

Three models were �t, a single main e�ect (k = 1) (I), two main e�ects (II) and

two main e�ects with an interaction (III).

unselected selected

h2 Fst model �̂1 �̂2 �̂12 �̂1 �̂2 �̂12
I 0.285 - - 0.517 - -

2.5 0.003 II 0.285 0.005 - 0.516 0.004 -
III 0.289 0.007 -0.005 0.511 0.001 0.007
I 0.283 - - 0.511 - -

2.5 0.03 II 0.283 0.002 - 0.511 -0.005 -
III 0.282 0.004 -0.005 0.528 0.000 -0.012
I 0.399 - - 0.714 - -

5 0.003 II 0.399 -0.004 - 0.714 -0.008 -
III 0.398 -0.006 0.005 0.698 -0.019 0.027
I 0.402 - - 0.729 - -

5 0.03 II 0.402 0.014 - 0.730 -0.010 -
III 0.414 0.018 -0.012 0.748 -0.007 -0.009
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Table III. Estimated sample size required to attain 80% power for the model

described in Table II and � = 0:001. Estimates were obtained using exemplary

data methods (Longmate 2001). Entries for the main e�ect refer to the sample

size required for the marginal one degree of freedom test for a main e�ect at locus

1, after accounting for other terms already in the model.

unselected
h2 Fst model main omnibus

I 569 -
2.5 0.003 II 1371 1590

III 3213 1615
I 869 -

2.5 0.03 II 2228 2604
III 3554 2494
I 427 -

5 0.003 II 1123 1249
III 2951 1376
I 553 -

5 0.03 II 1742 2178
III 3092 2050
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Table IV. Performance of GC under the alternative model. For each of 200

repetitions, p1 = p2 = 0:2, N = 2000, and nstrata = 6. When h2 = 2:5%, �1 =

�2 = 0:280, �12 = 0:349, and when h2 = 5% �1 = �2 = 0:395, �12 = 0:494. Each

hidden locus k, k = 3; : : : ; nh + 2, contributes 1% to achieve a total heritability

of 50%. Three models were �t, a single main e�ect (k = 1) (I), two main e�ects

(II) and two main e�ects with an interaction (III).

unselected selected

h2 Fst model �̂k �̂12 �̂k �̂12
I 0.419 - 0.762 -

2.5 0.003 II 0.413 - 0.714 -
III 0.270 0.367 0.545 0.382
I 0.413 - 0.745 -

2.5 0.03 II 0.413 - 0.709 -
III 0.275 0.350 0.537 0.392
I 0.593 - 1.048 -

5 0.003 II 0.565 - 0.990 -
III 0.401 0.490 0.765 0.494
I 0.585 - 1.056 -

5 0.03 II 0.596 - 0.983 -
III 0.400 0.500 0.760 0.484

22



Table V. Estimated sample size required to attain 80% power for the model

described in Table IV and � = 0:001. Entries for the main e�ect refer to the

sample size required for the marginal one degree of freedom test for a main e�ect

at either locus 1 or 2, after accounting for other terms already in the model.

Likewise, entries for the interaction refer to the marginal one degree of freedom

test for an interaction.

unselected
h2 Fst model main interaction omnibus

I 569 - -
2.5 0.003 II 542 - 313

III 1795 2093 306
I 869 - -

2.5 0.03 II 810 - 345
III 2043 2246 328
I 427 - -

5 0.003 II 398 - 198
III 1344 1669 144
I 553 - -

5 0.03 II 483 - 230
III 1557 1718 230
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Figure Caption

Figure 1. Average test statistic plotted as a function of the allele frequencies of the markers.

(a)
h
�̂12=SEind(�̂12)

i2
vs. ln(p1 � p2); and (b)

h
�̂=SEind(�̂)

i2
vs. ln(p).
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