Methods and Criteriafor Model Selection

Summary

Model selection is an important part of any statistical analysis, and indeed is cen-
tral to the pursuit of science in general. Many authors have examined this question,
from both frequentist and Bayesian perspectives, and many tools for selecting the
“best model” have been suggested in the literature. This paper considers the vari-

ous proposals from a Bayesian decision—theoretic perspective.
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1 Introduction

Much of modern scientific enterprise is concerned with the question of model choice. An
experimenter or researcher collects data, often in the form of measurements on many different
aspects of the observed units, and wants to study how these variables affect some outcome of
interest. Which measures are important to the outcome? Which aren’t? Are there interactions
between the variables that need to be taken into account?

Statisticians are also naturally involved in the question of model selection, and so it is
should come as no surprise that many approaches have been proposed over the years for dealing
with this key issue. Both frequentist and Bayesian schools have weighed in on the matter, with
methods such as F' tests for nested models, AIC, Mallows C),, exhaustive search, stepwise,
backward and forward selection procedures, cross—validation, Bayes Factors of various flavors
(partial, intrinsic, pseudo, fractional, posterior), BIC, Bayesian model averaging, to name some
of the more popular and well-known methods. Some of these, such as stepwise selection, are
algorithms for picking a “good” (or maybe useful) model; others, for example AIC, are criteria
for judging the quality of a model.

Given this wealth of choices, how is a statistician to decide what to do? An approach that
cannot be implemented or understood by the scientific community will not gain acceptance.
This implies that at the very least we need a method that can be carried out easily and yields
results that can be interpreted by scientifically and numerically literate end—users. From a
statistical point of view, we want a method that is coherent and general enough to handle a

wide variety of problems. Among the demands we could make on our method would be that it



obeys the likelihood principle, that it has some frequentist (asymptotic) justification, and that
it corresponds to a Bayesian decision problem. Naturally, not all of these desiderata can be
met at once, and this paper will do little to influence the ongoing discussion of their relative
importance. An attempt to bring coherence to the field from a Bayesian decision—theoretic
perspective was given by Key, Pericchi and Smith (1999). For an entertaining and readable
look at the subject of Bayesian model selection from the scientist’s perspective, we recommend
the article by MacKay (1992). We aim to give a more general overview (see also Miller, 2002,

for a thorough discussion of variable selection in regression).

2 Why Choose a Model?

Suppose there are K models, indexed by k. Model k£ has parameters 6, € €2;. Then the whole
parameter space is (M, 60y, 6,, . .., 0k ), where M denotes the model. In every statistical model,
estimation may be thought of as the choice of a single value of the parameter chosen (accord-
ing to some criterion) to represent the distribution. Estimation has been sharply criticized,
especially by Box and Tiao (1992), because the choice of a single value may be misleading if
there are several competing parameter values, distant according to some relevant metric, that
are supported in some sense by the data.

Model selection can be thought of in this framework as estimation applied to the parameter
M. As such, it is subject to the general criticisms of Box and Tiao. There may be occasions,
just as with estimation in general, in which one model so clearly dominates the others that the

choice is unobjectionable, and others in which the choice is misleading. Viewed in this light,



the only special issue that comes up in model choice is that generally M is discrete, and usually
has finite range.

Before getting into a review of methods of how to choose a model, it is therefore important
to address the question of “why?” At heart we think that the reasons are pragmatic, having
to do with saving computer time and analyst attention. Viewed this way, however, there is no
particular reason to choose a single best model according to some criterion. Rather it makes
more sense to “deselect” models that are obviously poor, maintaining a subset for further con-
sideration. Sometimes this subset might consist of a single model, but sometimes perhaps not.
Furthermore, if it is indeed the case that model choice is driven by consideration of costs,
perhaps these can be included explicitly into the process via utility functions, as suggested by
Winkler (1999). Hence we think there are good reasons to challenge the traditional formula-

tions of this problem.

3 A Conceptual Framework

Consider the following general setting. Suppose that on the parameter space (M, 0+, 6s, . .., 0x)
there is a prior 7, on the k£ model, and priors g,(6;) for &k = 1,..., K. With the as-
sumption that, given M, the priors on #,,...,0 are independent, this implies a prior on
(M,0,,0,,...,0k). The likelihood under model & is fx(z|0). These assumptions determine
the joint distribution of (X, M, 61,0, . .., 0x). We are in the M—closed framework of Bernardo
and Smith (1994), that is, we assume that one of the K models is the “truth” (or, at least, a rea-

sonable enough approximation thereof that we would be willing to use it in practice). This in



itself is a somewhat controversial outlook, since it posits not only that a true model exists, but
that the true model is one of those under consideration. However, it is a helpful stance for at
least thinking through the ramifications of a Bayesian model selection procedure and the qual-
ities we would wish to demand of it (see also Petrone, 1997; Piccinato, 1997). The posterior
on the model M = k and 6, is proportional to fy(z|6x)gx(0x)7x, and the posterior probability

of M =kis
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In a full Bayesian analysis, the priors 7 on each model and g, (6y) on the parameters of
model k are proper and subjective. Another important element of the full Bayesian paradigm is
the utility, or loss, function. The first question to ask is what the contemplated decision space
is, that is, among what set of decisions is the choice to be made? As discussed in Section 2, the
traditional decision space for model choice is to choose one of the K models, but we suggest
there that it might be more faithful to most applied problems to consider choosing a subset of
{1,..., K} instead.

In addition to the space of decisions, utility functions also depend, in general, on the pa-
rameter space, which here consists in full generality of an indicator of a model, and all the
fs. Many of the methods to be considered have utilities that depend only on @, if model & is
under consideration; some do not depend on # at all. Finally, a full specification includes the
functional form of the utility function. For a method to be useful, that utility function should
represent how a statistician thinks about the model choice she confronts. This idea is devel-
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oped to some extent by Key, Pericchi and Smith (1999), for the so—called M—open perspective,
in which it is desired to evaluate a set of models, none of which is believed to be true. Their
approach, as mentioned previously, is decision—theoretic, taking explicit account of the utilities
involved. On the other hand, they use only improper, “objective” priors, in their analyses and
as such deviate from a purely Bayesian procedure (as pointed out by Bayarri, 1999). Even this,
though, is a step forward, since most model selection techniques and criteria do not include
utility considerations at all, and, when they do, it is usually (although not always) on the basis
of a loss that most practitioners would not believe in, namely, zero—one loss.

The Bayesian proposal is then to make the decision that maximizes expected utility, where
the expectation is taken with respect to the posterior distribution of M and 6. It is from this
perspective that we wish to examine the various schemes and criteria for model selection. In
particular, one question of interest is how close do the different methods come to this frame-
work. Where possible, we connect techniques back to the general framework. However, not all
methods fit easily, or at all — frequentist approaches, for example, typically cannot be evaluated
from this point of view, since they lack any formulation of priors or utilities. However, as we
point out in later sections, bridges between frequentist and Bayesian procedures do exist, es-
pecially in the more recent literature, and in this case it may be possible to evaluate frequentist
methods from a Bayesian point of view. In a similar vein, insofar as some of the techniques are
approximations, how close are these approximations to a coherent Bayesian model selection?

Variations on this perspective are possible, even from the Bayesian point of view. While

some practitioners, such as Raftery, Madigan and Hoeting (1997) emphasize posterior distri-



butions, others, such as Box, 1980; Gelfand and Dey, 1994; Laud and Ibrahim, 1995, focus
instead on predictive distributions. Finally, Bernardo and Rueda (2002) explore model choice

as a problem in “Bayesian hypothesis testing.”

4 Bayesian Model Selection

4.1 Bayes Factors — Variations on a Theme

Returning to the conceptual framework from Section 3, recall equation (1) for the posterior

probability of model My; the posterior odds for model A, is therefore

Odds(My)|z) = [lz]

1-P(M|z)
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In particular, when K = 2,
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The first factor is the prior odds for model 1; the second is called the Bayes Factor, written
By ,. The Bayes Factor has been the subject of much discussion in the literature in recent
years; see the review by Kass and Raftery (1995) and the references therein, for a summary of
the issues, although it should be noted that even within the last five years, there have been new
developments in the area.

Despite its popularity, the Bayes Factor is relevant only in limited circumstances. Namely,
the statistician (or scientist) is required to choose one particular model out of the two available
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and there must be a zero—one loss on that decision. The meaning of the second requirement is
that if the statistician makes the wrong decision, it doesn’t matter how far off the choice is; this
is contrary to the way that statisticians think about most problems. Kadane and Dickey (1980)
show that Bayes Factors are sufficient if and only if a zero—one loss obtains. Other losses
are available and using them does not have to complicate Bayesian model selection — Lindley
(1976) for example proposes conjugate utilities for exponential families, which work in much
the same way as conjugate priors. Bernardo and Rueda (2002) consider certain continuous loss
functions, which have the advantage of being more natural than step function losses. Clearly,
using any such alternative loss or utility leads to criteria for model selection other than the usual
Bayes factor. However, Bernardo and Rueda (2002) aim to achieve an “objective” analysis, and
hence, deviate from the standard set down in Section 3.
Formula (2) simplifies to

Tk

M) = ey
J J=R

(4)
this is of course equivalent to (3) when K = 2. When K > 2, the odds for the k% model is
a function of the Bayes factor of that model with every other model. The prior probabilities
1, o, ..., Tx 0N the models do not come out of the sum. As contrasted with the case of
inference, where often in practice the choice of prior is not crucial, for model selection, the
prior continues to play a role, even asymptotically.

A similar phenomenon arises also within each model. Take the simple case where K = 2,
working with a zero—one loss, and assume that model 1 has no parameters at all. Then

_ fi(z)
Brz = J fa(x|02) g2(62)dB’
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which depends importantly on the prior over the alternative space, g2(6:). An example is
instructive. Consider the simple case where the first model for the data is normal, with mean 0O
and variance 1, and the second model is normal, with mean 6 and variance 1. Suppose that the
mean of the data is 0.3. Priors on @ are proper and normal. Depending on where the prior for
6 is centered, the Bayes factor might lead us to change our opinion about which model should
be favored. In other words, the decision we make will be heavily influenced by the prior, even
for a large sample. The Bayes factor is not robust to the specification of prior, even when the
prior is proper. If the prior go(6-) is allowed to be improper, it can be made to fit the data
arbitrarily poorly, making model 2 unlikely no matter what the data turn out to be. This is the
Jeffreys—Lindley paradox (Jeffreys, 1961; Good, 1950; Lindley, 1957; Shafer, 1982, among
others). As a response to this paradox, Jeffreys proposed a Cauchy form for g»(6,), with equal
prior probability on both models, and a normal likelihood.

Phenomena such as the Jeffreys—Lindley paradox, the dependence of the Bayes factor on
the specified priors and the difficulties of calculating and interpreting the Bayes factor at all
when improper priors are put on the parameters of the models, have led some authors to seek
automatic Bayesian methods for model selection. According to Berger and Pericchi (1996),
who advocate this position, automatic methods are essential because the statistician will often,
at least initially, consider a wide range of models, for which it won’t usually be feasible to spec-
ify all priors subjectively (on this point, see also Laud and Ibrahim, 1995). On the other hand,
as Lindley (1997) argues, impropriety (and “objective” priors, such as so—called “reference”

and “noninformative” priors are often improper) rarely occurs in practice. In this perspective,



with which we agree, a parameter is more than just an abstract mathematical construct; in-
stead, it corresponds (at least we hope it does!) to something real, and, if the statistician were
to think about the reality underlying the parameter, she should always be able to describe it
reasonably well using a proper distribution. As Lindley (1997) phrases it, “It is unfortunately
all too easy to slap on an improper prior and avoid having to think about drugs or yields.... the
problem [with improprieties] is not mathematical at all. It lies in the reality that is conveniently
forgotten. Improper distributions in model choice have no sensible interpretation.” (p. 187).
No doubt the controversy will continue. Both the objective and the subjective schools of
prior specification are a part of the statistical landscape and their proponents will continue to
develop methodologies for the critical activity of model selection. Many proposals have been
made from the advocates of objective or noninformative priors, as a way of avoiding the dif-
ficulties associated with the dependence of Bayes factors on the priors in general, and with
vague priors in particular. These proposals seem to us to be, for the most part, ad hoc, in that
they are designed to solve particular problems with the ordinary Bayes factor, as opposed to
arising from the coherency of the Bayesian approach. Berger and Pericchi (1996), for example,
define the intrinsic Bayes factor. Divide the data into two parts, a training sample and a test-
ing sample. On the training set, convert the (improper) prior distributions to proper posterior
distributions. Compute the Bayes factor using the testing data, and the posterior distributions
from the training set as the new priors. Letting x(/) denote a minimal training set, and z(—1)

the rest of the sample, a Bayes factor can be defined as

By(l) = mi’(ﬂ«“(—l)\fv(l)) (6)




where my(z(—1)|z(l)) is the marginal density of the remainder of the sample, using the prior
calculated from the training set. An important point is that the training set cannot increase
with the sample size; rather, a minimal training sample needs to be found. For a given data
set, there will be many minimal training samples (made up of different combinations of the
data points); the intrinsic Bayes factor can be calculated for each one, and then an average of
these, either arithmetic or geometric, is taken, yielding the arithmetic intrinsic and geometric
intrinsic Bayes factor, respectively. Further modifications of these Bayes factors, such as the
trimmed and median variants, are possible; see Berger and Pericchi (1996). A version of
the geometric intrinsic Bayes factor is an approximate Bayesian solution to the well-posed
decision problem, from within the M—open perspective, of selecting a model, on the basis of
which a terminal action will be taken (predicting a single future observation), with a particular
utility attached (Key, Pericchi and Smith, 1999).

What is intrinsic about the intrinsic Bayes factor? Berger and Pericchi (1996) give the
following motivation. Suppose we have data X; which are iid N (u, 0?) under the model M,
whereas under M, they are N(0,0?). Possible noninformative priors for the two models are
1/c? for M, (the Jeffreys prior) and 1/o for M, (this is the standard noninformative prior for
the normal problem). Minimal training sets are any two distinct observations. Jeffreys (1961)
proposed using the standard noninformative prior for the variance, but argued for the use of
a Cauchy (0, o) conditional prior for x given o2 for M,. The intrinsic Bayes factor analysis
gives results that are very similar to those obtained using the Cauchy prior in M. In general,

the argument is that intrinsic Bayes factors reproduce Bayes factors based on “sensible” non-
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informative priors. However, since we question whether noninformative priors can ever really
be sensible, we are still left with the question “What is intrinsic about intrinsic Bayes factors?”
If the data set is large, there will be many minimal training sets over which to average,
making the Berger and Pericchi approach rather cumbersome. An alternative is suggested by
O’Hagan (1995) in the form of the fractional Bayes factor. Let m denote the size of the training
sample, n the size of the entire data set, and b = m/n. For large m and n, the likelihood based
on the training set only will approximate the likelihood based on all of the data, raised to the

b*" power. Define
By(z) = mq(b, z)/ma(b, x), ()

where

[ 9i(03) fi(x]0;)d0;
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By(z) is the fractional Bayes factor. Note that the motivation for the fractional Bayes factor is

asymptotic (in m and n), although O’Hagan proposes it more generally for all sizes of data set.

Fractional Bayes factors have several desirable properties in common with ordinary Bayes
factors, that are not, however, shared by intrinsic Bayes factors (O’Hagan, 1997). The frac-
tional Bayes factor satisfies the likelihood principle, whereas intrinsic Bayes factors don’t.
Invariance to transformations of the data is another property of fractional Bayes factors which
is not always enjoyed by the intrinsic version. When the two models being compared aren’t
nested, the arithmetic intrinsic Bayes factor is not well-defined, because the researcher needs
to determine which model is more complex. Using an encompassing model, in which both

candidates are nested, doesn’t always solve the problem. O’Hagan further shows that there can
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be difficulties with the minimal training sample — for some problems the minimal training sam-
ple requires the use of all or most of the data, in which case the intrinsic Bayes factor cannot
discriminate between models.

In response to the critique by O’Hagan (1997) and another, along similar lines, by Bertolino
and Racugno (1997), Berger and Pericchi (1998) advocate the use of the median intrinsic Bayes
factor, which, they claim, may not be optimal for all situations, but is “a good IBF in virtually
any situation, ...” (Berger and Pericchi, 1998, p. 2). There are two versions of the median
intrinsic Bayes factor. The first is the median over training samples (instead of an arithmetic or

geometric mean, take a median), that is
Bj = med(By;(1)), (9)

with B;; (1) defined as above. The second is a ratio of medians,

med[m; (z(=1)|z(1))]
med[m;(z(=1)|z(1))]

RM __

(10)

Note that B{}-M doesn’t have to correspond to a Bayes factor arising from one of the training
samples (the sample which gives the median value in the numerator might not be the same as
the sample which yields the median value in the denominator). Berger and Pericchi argue that
B} and BJ¥™ satisfy many of the desiderata outlined by O’Hagan (1997) and, in addition, are
stable in a variety of situations where the arithmetic intrinsic Bayes factor fails.

Taking the general idea of splitting the data into a training set and a testing set to an extreme,
Aitkin (1991) defines the posterior Bayes factor, by replacing the prior distribution g;(6;) with

the posterior distribution ¢;(6;|z) in the definition of the Bayes factor. In effect, this compares
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the posterior means under the two models and uses the entire data set as the training sample.
This method is open to a number of criticisms, not the least of which is using the data twice,
once to compute the posterior (to be used as a prior) and once to calculate the Bayes factor.
Furthermore, as pointed out by Lindley (1991) in his discussion, use of the posterior Bayes
Factor can lead to paradoxes in inference. The method does not correspond to any sensible
prior, nor is it a coherent Bayesian procedure (Goldstein, 1991; O’Hagan, 1991).
Consideration of Bayes Factors also leads to two of the more common criteria used for
model selection — the Bayes Information Criterion (or BIC) and the Akaike Information Crite-

rion (or AIC). The Schwarz criterion is defined as

5 =log fi(alf1) ~log fo(elf) — 5 (dh — o) log(n). (11)

where 8, is the maximum likelihood estimator under model &, d,, is the dimension of 6, and n
is the sample size (Schwarz, 1978). Minus two times this quantity is the BIC. Asymptotically,

as the sample size increases,

S — log B12

—0
log B12 ’

thus the Schwarz criterion gives a rough approximation to the logarithm of the Bayes factor,
without having to specify the priors g, (6;) (Kass and Raftery, 1995). However, even for very
large samples exp(.S) is not equal to Bi,, as the relative error tends to be of order O(1). That
is, the approximation does not achieve the correct value of the Bayes factor. Kass and Raftery
(1995) note, though, that the Schwarz criterion should, for large samples, give an indication of
the evidence for or against a model.

The AIC is given by AIC=-2(log maximized likelihood)+2(number of parameters); as a
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model selection criterion, the researcher should choose the model that minimizes AIC (Akaike,
1973). One justification for the AIC is Bayesian (Akaike, 1983), namely, that asymptotically,
comparisons based on Bayes Factors and on AIC are equivalent, if the precision of the prior is
comparable to the precision of the likelihood. This requirement that the prior change with the
sample size is unusual asymptotics, and furthermore is usually not the case. Rather, the data
tend to provide more information than the prior. In this situation, the model which minimizes
BIC=-2(log maximized likelihood)-+(log n)(number of parameters) has the highest posterior
probability. As can be seen by comparing the expressions for AIC and BIC, these two criteria
differ only by the coefficient multiplying the number of parameters, in other words, by how
strongly they penalize large models. In general, models chosen by BIC will be more parsi-
monious than those chosen by AIC. The latter has been shown to overestimate the number of
parameters in a model (see, for example, Geweke and Meese, 1981; Katz, 1981; Koehler and
Murphree, 1988). It’s also worth pointing out that, even though AIC has a Bayesian justifica-
tion, nowhere does a prior appear in the expression for the criterion itself.

Smith and Spiegelhalter (1980) study the relation between the ordinary Bayes factor and
selection criteria such as AIC and BIC in the setting of nested regression models. Denote by 53
the vector of regression coefficients unique to the encompassing model, that is, the parameters
which are in the larger model, but not in the smaller model. The choice of prior on 3, is crucial
in the form of the Bayes factor. Letting the matrix of additional (assumed orthogonal) columns
in the encompassing model be X5, Smith and Spiegelhalter consider priors on 35, given the

error variance o2, that have covariance matrix of the form o2 p(n)(X%X5)~!. Minus twice the
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logarithm of the approximate Bayes factor obtained from priors of this sort is of the type

where m = % + logp(n), A is the likelihood ratio test statistic and d, — d; is the dimension
of 3,. Taking p(n) to be e'/? leads to AIC, and other values could just as easily be chosen.
As p(n) increases, support for the simpler model also rises. When the elements of X}X, are
of order n for large n, the choice p(n) = n corresponds to taking a fixed prior, with variance
that does not shrink with ». Under this setting, we get BIC, since m ~ log(n). AIC and BIC
represent the extremes of taking p(n) to be constant (in n) and taking p(n) = n. Looking at
the criteria in this way, it is obvious that other choices for p(n), which would impose different
penalties on the larger model, are possible and perhaps desirable.

The choice of p(n) is not a technical matter within this theory, but rather a fundamental
issue of the values the statistician/scientist brings to the problem. There is a trade—off between
parsimony and accuracy (in a specific sense), in which large values of p(n) favor parsimony.
Hence attempts to decree an objective, reference, or otherwise arbitrary value for p(n) are

likely to be unpersuasive, as they are for prior distributions.

4.2 Bayesian Model Averaging

When working with Bayes factors, the decision space involves the choice of a model, or possi-
bly several models, which are then used for inference or prediction. If the chosen model is only
one of many possibilities, the statistician runs the risk that model uncertainty will be ignored
(Draper, 1995). In this light, it makes sense to look at the panoply of models and the inferences

16



or predictions they would give. A formal Bayesian solution to this problem, as outlined in the
conceptual framework posed in the opening sections, was proposed by Leamer (1978). Sup-
pose there is a quantity of interest, denoted A; the posterior distribution of this quantity, given
the data is

K
P(Alz) :Z (A| My, z) P(Mj|z). (13)

This is a weighted average of the posterior probabilities of A under each model, where the
weights are given by the posterior probabilities of the models in question. Raftery, Madigan and
Hoeting (1997) call this approach Bayesian model averaging (Draper, 1995, does not use this
specific terminology, but advocates the same idea). As pointed out by those authors, averaging
over all models increases predictive ability, compared to basing conclusions about A on any of
the single models under consideration; however, the process itself can be very difficult, since it
often involves integrals that are hard to evaluate, and the number of terms in the sum (that is,
the number of models, K') may be too large to be easily handled.

The latter problem can be tackled by using the Occam’s window algorithm for Bayesian
model averaging (Madigan and Raftery, 1994). Based on two common-sense principles of
model selection, namely (1) that if a model predicts the data much worse than the best model,
it should be dropped from further consideration and (2) that models that predict the data less
well than their nested submodels should be discarded, this algorithm often drastically reduces
the number of models that need to be considered in the average. Now, the problem is one of
finding the class of models to be included in the average. Occam’s window compares at each

step two models, where one model, call it M,, is a submodel of the other, M;. Look at the
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logarithm of the posterior odds for M; if this is positive (or, in general, greater than some
set constant), that is, the data give evidence in favor of the smaller model, reject M;; if it is
negative but small, consider both models, since there isn’t enough evidence one way or another;
if it is negative and large, then reject M, from further consideration. If M, is rejected, so are
all of its submodels. Using either an “up” or a “down” procedure to move around the space of
all possible models, models are eliminated, until the set of potentially acceptable models to go
into the averaging is found.

MCMC model composition (Madigan and York, 1995) is another approach for evaluating
P(Alz). A Markov chain is built on the model space, with stationary distribution P(M;|x),
and steps through it are taken by moving in a small neighborhood of the current model. More
specifically, the neighborhood of a model consists of all those models with one variable more
or one variable less than the one under consideration at a given stage of the chain. Transition
probabilities are defined such that the probability of moving to a model outside of the neigh-
borhood is zero, and the probability of moving to a model within the neighborhood is the same
for all models in the neighborhood. If the chain is currently at state M, then we need to draw
a model M, from the neighborhood.

The model averaging method described by Raftery, Madigan and Hoeting (1997) uses flat
priors over the range of “plausible” values of the parameters. Further, for some of the parame-
ters the priors are data dependent, involving both the dependent and the independent variables
from a linear regression model. In that sense, their approach is only an approximation to the

fully Bayesian analysis that would be achieved by the use of subjective priors. As shown by
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Key, Pericchi and Smith (1999), model averaging is also a solution to a well-posed Bayesian
decision problem from the M—closed perspective, specifically, that in which a terminal deci-
sion is made directly (for instance, predicting a new observation). Because Bayesian model
averaging produces a posterior in the full parameter space (M, 6, ..., 0x), it can be used in

conjunction with any utility function reflecting the decision—-maker’s values.

4.3 Bayesian Linear Models

Another direction of research tackles the standard variable selection problem from a Bayesian
perspective. These methods, like the frequentist ones we will discuss below, aim to find one, or
a few, “best” models. They differ from the frequentist techniques in that they incorporate prior
information into the analysis, and only approximate the fully Bayesian solution described in our
general conceptual framework. For the regression problem, Mitchell and Beauchamp (1988)
propose placing “spike and slab” priors on each of the coefficients in the regression equation,
I.e. a point mass on 3; = 0 for each j, with the rest of the prior probability spread uniformly
over some defined (and large) range. In a similar vein, George and McCulloch (1993, 1997)
describe a Gibbs sampling technique for “stochastic search variable selection” in regression,
which selects promising subsets of variables. George and McCulloch suggest embedding the
problem in a hierarchical Bayes normal mixture model, with latent variables to identify subsets.
Models with high posterior probabilities are picked out for additional study by the procedure.
The prior on j3; is a two—component normal mixture, with each component centered about zero,

and having different variance. A latent variable determines to which component 3; belongs.
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In contrast to Mitchell and Beauchamp’s prior, no point mass is placed on zero. Denoting the

latent parameter by ~;, the prior is

Bilv; ~ (1 —~)N(0,77) + ;N (0,E77). (14)

LNV

The latent variable is equal to 1 with probability p;. In this formulation, the statistician needs
to devote some thought to the values of 7; and c;. The former should be small, so that if v; = 0,
B, is small and might be closely estimated by zero. On the other hand, c; should be large. Thus
if v; = 1, a non—zero estimate of 3; would lead to including this variable in a model. Under
this interpretation, p; can be thought of as the prior probability that variable j should be in the
model.

Building on the work of George and McCulloch, Kuo and Mallick (1998) also explore the
use of Markov Chain Monte Carlo to identify models with high posterior probability. Where
the former build a hierarchical model, Kuo and Mallick start from a regression equation that
embeds all models within it. Taking v, to be the indicator for the j™ variable being in the

model, the regression for subject ¢ is written as

p
yi = Y BivTij + €. (15)

j=1
When ~; = 1, predictor j is included in the model and when ~; = 0, we omit predictor j.
Standard priors are assumed on the parameters — normal for the vector of coefficients, inverse
gamma for the variance of the errors, and the ~; are independent Bernoullis. Note that in this
formulation, the prior on 3;+; is a mixture — it has a point mass at O with a certain probability,

and the rest of the mass is normally distributed. Instead of a “spike and slab” prior, we have
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a “spike and bell.” Therefore, as in Mitchell and Beauchamp (1988), a privileged position
is given to the particular hypothesis that 5; = 0. The posterior distribution of the vector of
indicators is supported on each of the 27 submodels, and gives a measure of the probability
of each. In this way, it is possible to evaluate the models and consider the ones with highest
posterior probability. The model with the highest posterior probability corresponds to a Bayes
decision rule with zero—one loss (see also discussion of Bayes factors). Calculation of the
posterior distributions is via Gibbs sampling.

Brown, Vannucci and Fearn (1998) extend some of these ideas to multivariate generalized
linear models. Here, the response for an individual is a vector, that is, there is more than
one outcome of interest. Let the number of explanatory variables be p, and the length of the

response vector be ¢g. The model specification is

where 7)(+) is a known, continuous function, ., is a scalar intercept term, and 3, is a vector of
slopes. Interest centers on the unknown parameters, « (a ¢ x 1 vector of intercepts), B (ap X ¢
matrix of slopes) and 3, a matrix of dispersion parameters. The prior on the unknown param-
eters, 7(«, B, ) is taken to be of the form 7(«, B, ¥) = 7(a|X)7(B|X)7(X); in addition, the
authors elaborate 7 (B|X) as w(B, v|X) = n(B|%, v)x (), where  is a latent binary vector of
length p. Roughly speaking, v, = 1 when the covariance of the appropriate row of B is spread
out, and ; = 0 when it is concentrated. Since priors are centered at O in their formulation,
the two possible values of -y; correspond to explanatory variables that should be included in, or
excluded from, the model, respectively. In addition to generalizing the class of problems that
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can be handled by this latent parameter approach, Brown, Vannucci and Fearn (1998) introduce
fast and efficient MCMC algorithms for the case when the number of explanatory variables is
large (for instance, on the order of 100).

Within this same general model specification, Brown, Fearn and Vannucci (1999) describe
a Bayesian decision—theoretic approach to the problem of variable selection. The setting is
the multivariate linear regression, where costs are associated with the inclusion of explanatory
variables. Typically, although not necessarily, the cost increases with the number of variables;
the simplest cost function is additive, with common cost for each explanatory variable, although
other scenarios are possible. This is a generalization of Lindley (1968), who considered the
univariate multiple regression case. The goal is to predict a future response, Y /; the criterion
for judging predictors is quadratic loss, to which the cost function is added. Brown et al. (1999)
point out that when this method omits variables, it is not because the researcher believes that
the coefficients are truly zero, but rather because the omitted variables simply cost too much,

relative to the benefits derived from them in terms of prediction.

4.4 Predictive Methods

The framework proposed in Section 3 looks at the posterior probability assigned to each model.
Alternatively, it should be possible to look at the predictions from the various models. Now
the question of interest shifts slightly, from “Which models best explain the observed data?”
to “Which models give the best predictions of future observations generated from the same

process as the original data?” Ideally, we would like to compare predictions and choose the
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model which gives the best overall predictions of future values. However, we don’t know these
“future values” — if we did, we could just use them directly. Most predictive methods, then,
use some sort of jackknife approach, under the assumption that future observations from the
process that generated the data would be similar to those actually in the sample. That is, the
data are assumed to be exchangeable. This is the idea behind the “quasi—-Bayes” approach
of Geisser and Eddy (1979), a blend of Bayesian and sample—reuse ideas. For each model,
compute the likelihood as the product of “predicting densities”, that is, the density of the j**
observation, calculated on the rest of the data with the j** observation deleted, under a specific
model (this gives a predicted value for observation j based on the rest of the data). The model
for which this likelihood is maximized is chosen as the most suitable of those models being
considered.

San Martini and Spezzaferri (1984) give a different twist on the predictive approach to
model selection, defining their criterion in terms of utility. Here, priors on the models and the
parameters are incorporated. They define an average criterion, which, like those of Akaike and
Schwarz, corrects the likelihood ratio statistic by taking account of the differences in model
dimension. It differs from other similar criteria in that it also accounts for the distance between
two models. Assume that the models under consideration are M, . .., Mg, py IS the probability
that model M is true and p(y) is the predictive density of a future observation y based on
the model M. Now let u(p(x),y) be a utility function for choosing the density p(x) as the
predictive distribution of y (the unknown future observation). The procedure picks the model

whose expected utility is the largest. If there are two models, for example, the first will be
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chosen if

Er[u(pi(%), y) — w(pa(*), y)Ip1 > Eo[u(pa(*),y) — u(p1(*), y)]pe, (17)

expectations F; being taken with respect to the predictive distribution p; ().

In addition, San Martini and Spezzaferri (1984) show that their criterion fits into the frame-
work of Smith and Spiegelhalter (1980), with a penalty term that increases as the distance
between the two models (as measured by the likelihood ratio statistic) increases. Recall from
Section 4.1 that Smith and Spiegelhalter (1980) discussed Bayes factors of the form A(m) =
A — m(dy — dy), equation (12). Taking different utilities leads to different values of m; the
method developed by San Martini and Spezzaferri has m = log(nC?/(42=4)) where C is a
transformation of the likelihood ratio statistic.

A predictive version of a general Bayesian model selection framework is given in Gelfand
and Dey (1994). Observed (independent) data are x1, ..., z,, which under model M, have
likelihood f(x|6x). For simplicity, Gelfand and Dey restrict attention to the case where only
two models are being considered; as they point out, comparisons are generally done pairwise,
so nothing is lost by this. Denote by S,, the index set {1,2,...,n} and let S be a subset of S,.

Define

n

L(0k|zs) = ] f(@il0k)®, (18)
=1
where dy, is the indicator for £ € S. As before, we denote the prior for 6, under model M,

by gx(6x). For prediction purposes, Gelfand and Dey propose consideration of the conditional

density

f($51|$52, Mk) = fL(ek‘xsl)gk(0k|$S2)d0k
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_ [ L(Ok|zs, ) L(Ok|ws,) 9k (O1) dbx
o J L(bk|zs,)gr 0k ) dox (19)

This conditional density is a predictive density; it averages the joint density of z 5, with respect
to the prior g (6y), updated by zs,. Both S; and S, are taken to be subsets of S, and different
choices correspond to predictive techniques in the Bayesian literature. For instance, S; = {r}
and S, = S — {r} gives the Geisser and Eddy (1979) cross—validation density and hence the

pseudo—Bayes factor

n n

H f(.TT‘iE(r), Ml)/ H f(xT‘x('r)a M?)a (20)

r=1 r=1

where zy = {1,%2,...,%r_1,Trq1,...,Tn}. S1 = Sp = S results in Aitkin’s (1991) pos-
terior predictive density and the posterior Bayes factor. When S, is a minimal subset and
S = S — S, we can obtain some of the different versions of the intrinsic Bayes factor.

Gelfand and Ghosh (1998) also adopt a predictive outlook to model selection, building on
the observation by Kadane and Dickey (1980) that Bayes factors correspond to a 0-1 loss.
Other loss functions are possible, and they base their method on the idea of evaluating models
by comparing observed data to predictions. For each model, minimize the expected posterior
loss over all possible predictions of replicates of the data, where the replicates are assumed
to have the same distribution as the observed data; then, choose the model for which this
minimum is minimized. Note that in this framework, as opposed to our general outline of the
model selection process, there is no notion of one of the models being “true”; furthermore,
there are no priors assigned to the models themselves.

The goal of this approach is to obtain good predictions for replicates of the observed data,

but at the same time to be faithful to the observed values. In order to attain this objective, a
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loss of the general form

L(yrepa a; yobs) = L(yrepa CL) + kL(yobsa CL) (21)

for £ > 0 is proposed, where y, are the observed data, y,., are the replicates to be predicted
(assumed to come from the same distribution as the observed data) and « is the “action” or
estimate. The action is a compromise between the observation and the prediction, with the
weight, k£, expressing how important it is to be close to y,, relative to y,.,. Gelfand and
Ghosh show that for a range of models and appropriate choices of the loss L(y, a), the form
above results (asymptotically or approximately) in a goodness of fit term plus a penalty term,
similar to criteria such as AIC and BIC.

Let’s consider a simple example in more detail; this example is given in Gelfand and Ghosh
(1998) and we repeat it here to highlight the essentials of the method, which is somewhat
different in spirit than others we have considered so far. Take

n

Dk (m) = Z Hé}n Eyl,repwobsymL(yl:TGP’ ag; yObs); (22)
=1

m represents the model relative to which calculations are carried out. For the general form of

the loss described above, this becomes

Di(m) =3 min{Ey, .,y L Yirep; a1) + EL(Yr0bs, 1) }- (23)
=1
For a fixed a;, and L(y, a) = (y — a)?, the [** term in this sum is

Jl2 + (a'l - ,U'l)2 + k(al - yl,obs)27 (24)
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where o7 is the variance of y; .., given y.s and m, and g is the expected value of y; ., given
Yobs @Nd m; in both of these we have suppressed the dependence on the model in the notation
for simplicity.

The minimizing a; is (k + 1)~ (1 + kyieps)- I this is inserted back into the expression for

Dy (m), the result is

n

Dy (m Z — Yiobs)” + D0} (25)

l 1 =1

The first summand can be thought of as a goodness—of—fit measure (how close are the predic-
tions to the observed data) and the second is a type of penalty term. If 3, comes from a normal
distribution, the first term is equivalent to the likelihood ratio statistic with g, replacing the
MLE of the mean of y,;,. Extending the example, suppose that 3 comes from a normal linear
model. Put as a prior on the parameters 5 a N (u, ) distribution. If the prior is very imprecise,
that is, ¥ is large, then y,.,|y.ss has an approximate N (X 3, o2[I + X (X" X)~'X™]) distribu-
tion. The two summands in Dy (m) become (again, approximately) (y — X )7 (y — X 3) and
a%(n + p).

As pointed out in Gelfand and Ghosh (1998), this is one example where the calculation of
Dy (m) can be explicitly made. In general, however, a combination of asymptotic expansions

and Monte Carlo simulation for the evaluation of integrals will need to be employed.

4.5 Practical Issues: Elicitation and Computation

While our focus is on methods for model selection and the criteria that relate to them, we would

be remiss if we did not mention the practical problems of elicitation and computation.
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Of the quantities introduced in Section 3, only the data = have a claim of being agreed
to as part of the statement of the problem. Each of the other quantities are “states of mind,
not states of nature” in L.J. Savage’s elegant phrase. In particular, the models included in the
model choice parameter M, the parameter spaces 6y, the likelihoods f (|6 ), the priors 7, and
g (0y) and the losses or utilities, are all matters of opinion on which conscientious statisticians
and users of statistics can legitimately disagree without making a provable or logical error.

Elicitation of expert opinion is a feasible way of obtaining proper, subjective priors to
incorporate into the model averaging procedure (as well as other Bayesian model selection
techniques) and is the subject of a growing literature, much of it in the last ten years or so (see,
for example, Kadane, Dickey, Winkler, Smith and Peters, 1980; Dickey, Dawid and Kadane,
1986; Garthwaite and Dickey, 1992; Kadane and Wolfson, 1998; O’Hagan, 1998; Garthwaite
and Al-Awadhi, 2001). Garthwaite and Al-Awadhi, for example, propose a method for quan-
tifying expert opinion about multivariate normal distributions. The basic idea is to simplify the
elicitation by concentrating on one type of parameter at a time, asking the expert a series of
questions, for example relating to the quantiles of the predictive distributions, as recommended
by Kadane and Wolfson (1998).

A referee raises the question “if one has enough prior information to use a proper informa-
tive prior on each parameter of a particular model, why don’t they have enough information to
know what the underlying model is without resorting to a model selection procedure.” While
it is possible to have a prior that is opinionated with respect to what model obtains (i.e. know

the model which model obtains with certainty regardless of the data), it is also possible to be
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less certain about which model obtains. Both states of belief are consistent with the subjective
Bayesian position taken as the viewpoint of this review.

Regarding computation, it is worth noting that several schemes have been developed for the
calculation of posterior probabilities over model spaces of varying dimension. In particular, the
reversible jump approach (Green, 1995; Richardson and Green, 1997) has been gaining popu-
larity in Bayesian circles in recent years. Chib (1995) proposes an alternative method, which is
based on the computation of marginal likelihoods, and hence allows the computation of Bayes
factors as well. See also Carlin and Chib (1995) and Carlin and Polson (1991). A recent review
(Han and Carlin, 2001) compares reversible jump, marginal likelihood, and other approaches
that use proper priors, in terms of computational ease, need for preprocessing, speed and accu-
racy. According to Han and Carlin (2001), “...all methods ...require significant human and
computer effort, and this suggests that less formal Bayesian model choice methods may offer
a more realistic alternative in many cases.” (pg. 1122) Combining computation and asymp-
totic approximations, as shown by DiCiccio, Kass, Raftery and Wasserman (1997) is also an
effective way of computing Bayes Factors for model comparison. Here, too, it was found that
no one method is optimal in all situations, although a simple bridge sampler (Meng and Wong,
1996; Gelman and Meng, 1998) in conjunction with the Laplace approximation worked well
in most cases. See DiCiccio et al. (1997) for details on the methods and their comparison, on

both simulated and real data sets.
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5 Frequentist Approachesto Model Selection

5.1 Techniques

Classical statistics has also dealt extensively with the problem of model selection. Every in-
troductory book on regression analysis, for example, contains chapters on ways of choosing
among competing models. In contrast to most of the Bayesian methods, classical approaches
generally have had to focus on the comparison of nested models, as non—nested models are
usually difficult to treat. Much of model choice in the classical setting is based on the principle
of extra sums of squares, that is, comparing the residual sums of squares from models with and
without particular sets of variables. Valid comparisons can be made for models that differ in
that, in the smaller model, some of the parameters (coefficients on the variables) in the larger
model are set to zero. In contrast, when using various criteria for model selection (as in the next
section), models can be compared without being nested. For details on many of the methods to
be considered in the rest of this section we refer readers to Miller (2002). Taken as a whole, the
frequentist techniques and criteria do not fit in to the general Bayesian framework described in
Section 3, since they do not specify priors or utilities. Where connections exist we point them
out.

The various stepwise procedures, in which we include also forward selection and backward
elimination, are among the most popular and widespread techniques. They all provide system-
atic ways of searching through models, where at each stage new models are obtained by adding

or deleting one variable from the models at the previous stages. While these techniques orig-
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inated for regression models to aid in the variable selection problem, they can also be applied
in settings that extend the basic linear model, such as generalized linear models (Lawless and
Singhal, 1978; Hastie and Pregibon, 1992), contingency tables (Agresti, 1990) and graphical
models (Whittaker, 1990); for these other types, residual sum of squares would be replaced by
deviance or other relevant measures. We frame our discussion in the regression context, with
the understanding that the search philosophy can be used in other settings as well.

With forward selection, start with the null model and, one at a time, consider variables for
inclusion in the model. At the first step, include the variable that makes the biggest individual
contribution, assuming that the F—test for a model with that variable versus the null model
is greater than a predetermined threshold. At each step the procedure continues in this way,
adding in the variable that has the largest effect given the variables already in the model, if its
F statistic is above the cutoff. When there is no candidate variable that meets the criterion,
the algorithm stops. Another option is to set in advance the size of the largest model to be
considered, and stop the procedure when that point is reached (Draper and Smith, 1981).

Backward elimination is similar, but moves in the opposite direction. That is, starting with
the full model, at each step consider eliminating the variable with the least effect on the model,
given that the other variables are included. Again, a predetermined threshold for dropping
variables from the model decides whether or not the candidate will indeed be taken out. When
no candidates for removal meet the criterion, stop.

In both forward selection and backward elimination, once a variable has been acted upon,

that decision cannot be reversed. Hence, a variable that was eliminated at some point during
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a backward procedure, for example, will never be allowed back in to the model. This lack of
flexibility is remedied in the stepwise approach to variable selection. Here, at each step each
variable is considered for inclusion or elimination. Thus, a variable might be included in an
early stage, but taken out later; or, a variable that was taken out of the model might be allowed
back in.

While these procedures are widely used and readily available in most statistics packages,
they should be used with care. Since none of the stepwise regression methods correspond to a
specific criterion for choosing a model (Weisberg, 1985, p. 211), the selected model need not
be optimal in any other sense than that it is the result of the algorithm applied to the data set.
Indeed, working on the same data set, the forward selection and backward elimination might
not result in the same final model (Graybill, 1976). Due to the way that the algorithms work,
furthermore, not all models will even be looked at. The lack of a clear criterion for model
choice makes it difficult to see how these procedures fit at all into our general Bayesian frame-
work, or, indeed, into a frequentist approach, since they each involve a complex sequential
testing strategy with a dynamically changing null hypothesis.

An alternative to stepwise regression is to do an exhaustive search across all models and
in such a fashion to find subsets of the variables that yield a good model, according to some
criterion (see below for a discussion of possible choices). These are usually used as a starting
point for further study. This approach, even with advances in computing power and memory,
as well as the development of algorithms that allow the user to avoid calculating most of the

models (for instance, Furnival and Wilson, 1974), is feasible mostly when the number of vari-
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ables is moderate. In any case, exhaustive search over all possible models is usually naive —
the statistician or the scientist often has ideas about which candidate models make substantive

Sense.

5.2 Criteria for Subset Selection

As described above, the exhaustive search, or all possible regressions, compares models ac-
cording to a specific criterion. Those models that perform well according to the chosen crite-
rion may be considered for a more in—depth investigation. Over the years, many criteria have
been suggested. Some of them, such as AIC and BIC, have already been discussed. They have
a role in classical model choice no less than in the Bayesian counterpart.

Most of the popular criteria for model selection are readily computed as byproducts of
the ordinary regression calculations, but don’t necessarily have counterparts in other common
model settings; hence this section discusses only the problem of variable selection in regres-
sion. R?, for instance, is defined as the ratio of the sum of squares for regression to the total
sum of squares, > (y; — #)?. The problem with using this measure as a criterion, specifically
for comparing models of different sizes, is that the sum of squares for regression, and hence R?
itself, increases the more variables there are in the model. For this reason, an adjusted version
of R?, which takes into consideration the number of parameters in the model, is usually used

instead. It is defined to be

—~

2 _ n—1)
i ! (n —p)

adj —

(1— R?), (26)

where n is the sample size and p is the number of variables in the model (including the intercept
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term).

A related criterion is the C,, statistic (Mallows, 1973),
C, = RSS,/6% + (2p — n), 27)

with RSS, the residual sum of squares for a model with p terms, and 52 the estimate of the
error variance based on the full model. C, is closely related to Rgdj (Kennard, 1971). A number
of features of this statistic make it useful for model comparison. For a model that fits the data
adequately, E(C,) is approximately p, and therefore C,, itself should be approximately equal to
p for an adequate model (of which there may be several in a given problem). For the full model,
with, say k£ parameters, this holds exactly, that is, C, = k. The criterion can clearly be used for
comparing subsets of the same size, but it can also be used more generally, by looking for those
models for which C,, ~ p. The purpose of C,, is to guide the researcher in the process of subset
selection (Mallows, 1995; George, 2000); choosing the model that minimizes the criterion and
then estimating the parameters of the model via least squares, although a widespread practice, is
prone to selection bias and should be avoided (Mallows, 1995; the problem is that the common
procedure does not account for the fact that the selected subset depends on the observed data).
See the discussion of the Risk Inflation Factor, below, for more on this question.

One of the motivations for the C, statistic is as an estimate of the mean square error for
prediction. It is possible instead to use cross—validation to get such an measure. Delete obser-
vation 7 for each of s = 1,...,n and fit the regression model with the i** observation deleted.
Using the fitted values, it is possible to obtain a “prediction” for the deleted point, which can be

compared to its actual value. The difference in the two is sometimes called the deleted resid-
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ual. The sum of the squared deleted residuals is the predicted residual sum of squares, PRESS
(Allen, 1974). Good models will have small values of this criterion. Similar thinking drives
the pseudo—Bayes method of Geisser and Eddy (1979) discussed previously. It is important to
note that, at least in theory, one needs to go through the procedure on each of the models being

considered, which could be a computational burden if the number of models is large.

5.3 Modern Frequentist Developments

As in the Bayesian world, refinements and innovations on frequentist procedures continue to
appear (George, 2000). New criteria, such as the risk inflation criterion (Foster and George,
1994; Donoho and Johnstone, 1994) and the covariance inflation criterion (Tibshirani and
Knight, 1999) have been proposed within the last decade. Advances in computation have cre-
ated new opportunities, with the now-standard cross—validation and bootstrap (Efron, 1979,
1982; Stone, 1974) as well as more exotic procedures such as the “little bootstrap” (Breiman,
1992), the nonnegative garrote (Breiman, 1995) and the lasso (Tibshirani, 1996) coming into
play.

Foster and George (1994) note that the variable selection problem in regression is actually
a two stage process — first, a “best” subset of predictors is selected, and then the coefficients of
the chosen subset are calculated by least squares. The second stage proceeds as if the predictors
are known to be the correct ones, rather than having been chosen. The Risk Inflation Criterion,
or RIC, is defined to be the maximum possible increase in risk due to selecting the variables

in the model, as opposed to knowing which the “correct” ones are. The inflation comes from
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comparing the risk of the fitted model to the risk of the ideal model which uses only the “right”
variables. RIC turns out to be related to other criteria we have already encountered, such as
AIC, C, and BIC, the difference being in the penalty it imposes on the dimensionality of the
model — 2 log k, where k is the dimension of the full model, using all predictors. This same
penalty was arrived at by Donoho and Johnstone (1994) for a wavelet model choice problem.
More recent work by George and Foster (2000) shows that the criteria in this family correspond
to a Bayesian model selection procedure under a particular class of priors. Their work provides
a bridge between frequentist and Bayesian criteria. An empirical Bayes analysis results here in
an adaptive dimension penalty, as opposed to the fixed penalties of AIC, BIC, C), RIC and the
like. Additional advantages of the empirical Bayes approach of George and Foster (2000) are
that it automatically allows for shrinkage of the least squares estimates of the selected variables,
and that it fits quite naturally into a model averaging framework.

The covariance inflation criterion (Tibshirani and Knight, 1999) has a similar motivation to
the RIC. It is a criterion for model selection in prediction problems, whereby a model is chosen
based on a training set of data to find the best predictor of future data. The method adjusts the
training error by the average covariance of the response and the predictors, when the model is
applied to permutations of the original data set.

Some of the other more recent developments in the area — the little bootstrap, the nonneg-
ative garrote and the lasso, mentioned above, also take advantage of advances in computing
power. Breiman’s (1995) nonnegative garrote grows out of an attempt to keep the strengths of

both subset selection and ridge regression. The advantage of the former is that it does select out
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variables; however, it is highly unstable, in that small changes in the data set can lead to very
different models. Ridge regression, on the other hand, is very stable, but does not eliminate any
variables, leading to possibly cumbersome models that are (or can be) hard to interpret. Again,
in the linear model setting, let j3; be the original least squares estimates of the coefficients, and

take ¢; to minimize

J

Z(yj - Zci/éi$ij)2 (28)
i

subject to the constraints that ¢; > 0 for all 7 and that }~, ¢; < s. By decreasing s, more of
the ¢; become zero, and the ones that don’t are shrunk, thereby also shrinking the remaining
parameter estimates, /S’Z-(s) = ¢; ;. This “garrote” is relatively stable, while eliminating some
variables from consideration. It tends to lead to larger models than ordinary subset regression,
but on the other hand it is, in many instances, more accurate (in terms of prediction). The
“little bootstrap™ (Breiman, 1992) or cross—validation (Stone, 1974; Efron, 1982) can be used
to estimate the value of the garroting parameter, s.

A similar idea is captured by Tibshirani’s lasso (1996), which chooses ;s to minimize

Z(yj - Z 5z’$z‘j)2, (29)

J

under the constraint that ", |5;| < s. Here, s controls the amount of shrinkage. As noted by
Tibshirani, a main difference between the lasso and the garrote is that the latter modifies the
ordinary least squares estimates, and hence its behavior is, at least in part, dependent on theirs.
In contrast, with the lasso there is no explicit use of the least squares estimates. Tibshirani also
offers a Bayesian interpretation of the lasso estimates, as the posterior mode under independent
double—exponential priors on the js.
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6 Conclusions

An endeavor as basic to the pursuit of science as model choice and selection is bound to gener-
ate a plethora of approaches. Bayesian and classical statisticians have both put forth proposals
for solving this most difficult and interesting of problems. With such a wealth of methods,
it can be difficult, as we have argued, for a researcher to know what is the “proper” way to
proceed.

The unifying conceptual framework we proposed is an attempt to bring order to this often
chaotic field. From this perspective, a “model” is just a discrete parameter in a larger super—
model. Model averaging, with proper priors, provides a principled and coherent Bayesian
approach to the problem at hand. Regarding other Bayesian techniques, such as the various
flavors of Bayes factors, while they may be solutions to specific decision theoretic problems, as
described in Key, Perrichi and Smith (1999), they are more narrow in focus and in applicability.
Indeed, applicability of the “default prior” methods, embodied in intrinsic and fractional Bayes
factors, needs to be checked on a case by case basis (Berger and Perrichi, 1997) and in that
sense they don’t necessarily offer an advantage even over frequentist methods.

Frequentist approaches to model selection of course do not fit neatly into the proposed
Bayesian framework, and suffer from the lack of a guiding principle. New methods are de-
veloped apparently on ad hoc grounds. To be fair, many of the so—called objective Bayesian
techniques also seem to us to be derived more as a response to something else not working, than
from proper Bayesian considerations, and this is perhaps not coincidental. Objective Bayesians

try to avoid the discomfort of selecting a subjective (proper) prior, that is, they hope to “have
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their Bayesian cake and eat it too.”
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