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Abstract

Elicitation is a key task for subjectivist Bayesians. While skeptics hold that it cannot (or
perhaps should not) be done, in practice it brings statisticians closer to their clients and subject-
matter-expert colleagues. This paper reviews the state-of-the-art, reflecting the experience of
statisticians informed by the fruits of a long line of psychological research into how people
represent uncertain information cognitively, and how they respond to questions about that
information. In a discussion of the elicitation process, the first issue to address is what it
means for an elicitation to be successful, i.e. what criteria should be employed? Our answer
is that a successful elicitation faithfully represents the opinion of the person being elicited. It
is not necessarily “true” in some objectivistic sense, and cannot be judged that way. We see
elicitation as simply part of the process of statistical modeling. Indeed in a hierarchical model
it is ambiguous at which point the likelihood ends and the prior begins. Thus the same kinds of

judgment that inform statistical modeling in general also inform elicitation of prior distributions.
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The psychological literature suggests that people are prone to certain heuristics and biases
in how they respond to situations involving uncertainty. As a result, some of the ways of asking
questions about uncertain quantities are preferable to others, and appear to be more reliable.
However data are lacking on exactly how well the various methods work, because it is unclear,
other than by asking using an elicitation method, just what the person believes. Consequently
one is reduced to indirect means of assessing elicitation methods.

The tool-chest of methods is growing. Historically the first methods involved choosing hyper-
parameters using conjugate prior families, at a time when these were the only families for which
posterior distributions could be computed. Modern computational methods such as Markov
Chain Monte Carlo have freed elicitation from this constraint. As a result there are now both
parametric and non-parametric methods available for low-dimensional problems. High dimen-
sional problems are probably best thought of as lacking another hierarchical level, which has
the effect of reducing the as-yet-unelicited parameter space.

Special considerations apply to the elicitation of group opinions. Informal methods, such as
Delphi, encourage the participants to discuss the issue in the hope of reaching consensus. For-
mal methods, such as weighted averages or logarithmic opinion pools, each have mathematical
characteristics that are uncomfortable. Finally, there is the question of what a group opinion
even means, since it is not necessarily the opinion of any participant.

Keywords: Bayesian, group decisions, heuristics and biases, prior distributions, subjective prob-

ability

1. THE ELICITATION CONTEXT

1.1. Introduction

Elicitation is the process of formulating a person’s knowledge and beliefs about one or more uncer-

tain quantities into a (joint) probability distribution for those quantities. In the context of Bayesian



statistical analysis, it arises most usually as a method for specifying the prior distribution for one
or more unknown parameters of a statistical model. In this context, the prior distribution will be
combined with the likelihood through Bayes’ theorem to derive the posterior distribution. However,
this is not the only context in which elicitation is important.

Much of the literature on elicitation has been concerned with formulating a probability distribu-
tion for uncertain quantities when there is no data with which to augment the knowledge expressed
in that distribution. This situation arises in decision making, where uncertainty about the ‘state of
nature’ needs to be expressed as a probability distribution in order to derive (and then maximise)
expected utility. Similarly, it arises in the use of mechanistic models. Such models are built in
almost all areas of science and technology, to describe, understand and predict the behaviour of
complex physical processes. The user is required to specify the values of appropriate model inputs,
in order to run the model and obtain outputs, but there is generally uncertainty about the ‘true’
values of the inputs. It is then important to formulate that uncertainty and to propagate it through
the model so as to quantify the uncertainty in model outputs.

It is convenient to think of the elicitation task as involving a facilitator who assists the expert to
formulate the expert’s knowledge in probabilistic form. In the context of eliciting a prior distribution
for a Bayesian analysis, it is the expert’s prior knowledge that is being elicited, but in general the
objective is to express the expert’s current knowledge in probabilistic form. If the expert is a
statistician, or very familiar with statistical concepts, then there may be no formal need for a
facilitator, but this is rare in practice. We shall see that elicitation is a complex process that
demands a range of skills if it is to be done well, and the role of facilitator is an important one.

What does it mean for an elicitation to be done well? It is important to distinguish between
the quality of an expert’s knowledge, and the accuracy with which that knowledge is translated

into probabilistic form. An elicitation is done well if the distribution that is derived accurately



represents the expert’s knowledge, regardless of how good that knowledge is. The expert might, for
instance, believe very strongly in a certain scientific hypothesis. Then the elicitation is accurate if
it derives a suitably high probability for that hypothesis being true, even if it is subsequently found
to be false. Even if the rest of the scientific community is much more sceptical, and inclined to
give the hypothesis a low probability, this expert believes in the hypothesis and therefore accurate
elicitation of this expert’s knowledge and beliefs should derive a high probability for it.

To achieve accurate elicitation is by no means straightforward, even if we wish to elicit the
expert’s beliefs about just a single event or hypothesis (or equivalently, for a binary random vari-
able). In this case, we require only a single probability, but the expert may be unfamiliar with the
meaning of probabilities. Even when the expert is familiar with probabilities and their meaning, it
is not easy to assess a probability value for an event accurately.

If we now consider the task of eliciting a distribution for a continuous random variable X, then
implicitly this involves eliciting an infinite collection of probabilities F'(z) = P(X < z) for all the
possible values of . This is clearly impossible, and in practice an expert can only make a finite
number (and usually a rather small number) of statements of belief about X. These might take
the form of individual probabilities or quantiles of the distribution, i.e. P(X < x) for a few distinct
values of x, or might be some other summaries of the distribution such as a mode. When it comes
to a joint distribution for a collection of random quantities, the magnitude of the elicitation task
is very much larger still.

Given the difficulty involved, why is it worth the effort to attempt elicitation? One reason has
to do with the use of elicitations to make decisions. Often a reasonable goal for elicitation is to
capture the “big message” in the expert’s opinion. The details, for example the exact shape of the
expert’s opinion, may not matter for the decision to be reached. Even when the decision is sensitive

to the exact shape of the elicited distribution, it is not the decision, but rather the expected utility



of the decision, that matters. And expected utility of the optimal decision is very often robust to
details of the expert’s opinion.

A second reason why elicitation is worthwhile has to do with the use of elicitations to make
inferences, and in particular for making possible the calculation of posterior distributions. In such
a situation, elicitation encourages the expert and the facilitator to consider the meaning of the
parameters being elicited. This has two helpful consequences. First, it brings the analysis closer
to the application by demanding attention to what is being modelled, and what is reasonable
to believe about it. Second, it helps to make the posterior distributions, once calculated, into
meaningful quantities.

Elicitation is properly conceived of as part of the familiar process of statistical modelling. Statis-
ticians are used to stating a likelihood for an applied problem. This is an opinion about how the
data are generated, conditional on certain parameters. Hierarchical models, such as random effects
models and models with latent variables, involve distributions on some parameters, conditional on
yet others. What we are calling elicitation in this article is merely the final step in this process,
the statement of probability distributions of the highest level parameters in such a hierarchy. It is

well to keep in mind that the usual principles of statistical modelling apply to elicitation as well.

1.2. The elicitation process

Figure 1 is a schematic representation of the elicitation process in terms of four separate stages.

1. The setup stage consists of preparing for the elicitation — selecting the expert(s), training

the expert(s), identifying what aspects of the problem to elicit, etc.

2. We then elicit specific summaries of the experts’ distributions for those aspects. This is

obviously the core of the process, and one where psychologists have contributed at least as



much to the methodology as statisticians.

3. The next stage is to fit a (joint) probability distribution to those summaries. In practice, this
stage often blurs with the previous one, in the sense that the choice of what summaries to

elicit is often influenced by choice of what distributional form the facilitator intends to fit.

4. Elicitation is almost invariably an iterative process, and the fourth stage involves assessing
the adequacy of the elicitation, with the option then of returning to the second stage and

eliciting more summaries from the expert(s).

This chapter is structured in accordance with this schematic. The remainder of Section 1
concerns topics relevant to the setup of the elicitation; Section 2 deals with the interaction with
the expert to elicit specific summaries; Section 3 addresses how to fit a probability distribution to
the elicited summaries; Section 4 deals with assessing the accuracy of elicitation. Questions which
arise when beliefs are elicited from several experts are considered in Section 5, and a final Section

6 offers some discussion and challenges for future research.

1.3. Whose beliefs?

We have presented elicitation as the process of formulating in probabilistic terms the beliefs of
an expert, but who is the expert? Use of the term ‘expert’ suggests an emphasis on persons to
whom society and/or his/her peers attribute special knowledge about the matters being elicited.
In practice, we often seek to identify the best available knowledge about the quantities of interest,
and for this purpose we can regard the ‘expert’ as a real expert. There are other uses of elicitation,
however, in which the expert has little or no expertise in the usual sense of that word. For example,
to study adolescent decision making around risky behaviours, one might want to ask adolescents

how they perceive those risks. Here the very point of the study is the lack of expertise of the
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Figure 1: The elicitation process.

‘experts’.

The simple answer to the question “who is the expert?” is that the expert is the person whose
knowledge we wish to elicit; the term ‘expert’ does not necessarily signify any more than that.

An important point to bear in mind when eliciting from an acknowledged expert is that expertise
can bring biases if the expert has some kind of personal interest in the result. Suppose, for example,
that a radiation expert is asked for an opinion about how serious a health problem is engendered
by the radiation release at Chernobyl. Such an expert may have spent much of his or her adult life
becoming an expert on radiation. How well that expertise pays off in terms of social attention (and
grants) depends on how urgent society perceives the issues the expert studies to be. Hence such an
expert has an incentive to emphasize the dangers. For more on this kind of bias, see Kadane and
Winkler (1988).

In Section 5 we consider the case of multiple experts, where often the desire is to combine the

expertise of several people. Then it is sensible to try to ensure that the experts’ knowledge is



complementary. Where their knowledge overlaps, it is more difficult to account for this, as we shall

see in Section 5, and there is less gain from using the extra experts.

1.4. Conducting the elicitation

We outline here various aspects of good practice in the conduct of elicitations. Many of these can
be ignored in an informal elicitation, but they are important considerations wherever substantive

decisions or inferences may depend on the expert’s distribution.

e The objective is to elicit a distribution to represent the expert’s current knowledge. It is very

useful to have a summary of what that knowledge is based upon.

e Any financial or personal interest that the expert might have, in the inferences or decisions

that will depend (even marginally) on the expert’s distribution, must be declared.

e Training should be given to familiarise the expert with the interpretation of probability and
with whatever concepts and properties of probability will be required in the elicitation. It is
useful to run through a dummy elicitation exercise to provide practice in the protocol that

the facilitator proposes to use.

e A record should be kept of the elicitation. This should ideally set out all the questions that
were asked by the facilitator together with the expert’s responses, as well as the process by

which a probability distribution was fitted to those responses.

Note that these recommendations apply whatever specific protocol the facilitator will use to
elicit the expert’s beliefs. We now proceed to detailed discussion of how to construct a suitable

protocol.



2. Psychological Considerations and Eliciting Summaries

An elicitation method forms a bridge between an expert’s opinions and an expression of these
opinions in a statistically useful form. Thus, the development of an elicitation method requires some
understanding of both the psychological part of the bridge and the statistical part. As Hogarth
(1975, p. 284) points out “... assessment techniques should be designed both to be compatible with
man’s abilities and to counteract his deficiencies”. In this section we present some results from
psychological research that should be taken into account when forming methods of quantifying an
expert’s opinion. Much of the fundamental work in this area stems from the 1960s and early 1970s,
and good reviews of this research are given in Hampton et al (1973), Hogarth (1975), Huber (1974),
Lichtenstein et al (1982), Peterson and Beach (1967), Slovic and Lichtenstein (1971) and Tversky
(1974). Later reviews are given in Chaloner (1996), Cooke (1991), Hogarth (1987), Kadane and
Wolfson (1998), Meyer and Booker (2001), Morgan and Henrion (1990), Wallsten and Budescu

(1983) and Wolfson (1995).

2.1. Heuristics and biases

A body of psychological research has been concerned with the question of how a person assesses
the probability of an event, or how he judges which of two or more events is the more likely to
occur. It appears that intuitive judgements in these tasks are based on a limited number of mental
operations, or heuristics. In general these heuristics are quite effective, but they can lead to severe
errors and systematic bias. Elicitation techniques commonly require novel assessment tasks. An
appreciation of the strategies people use to quantify their opinions can give an indication of how
(and how well) these tasks might be performed (Meyer and Booker, 2001).

One commonly used heuristic is judgement by representativeness. This is applicable for questions

of the form: What is the probability that an object A belongs to a class B? What is the probability



that event A will generate an event B? In answering these questions, which in effect require the
probability P(B|A) to be assessed, people typically compare the main features of A and B and
assign a probability depending on the degree of similarity between them. A common error made
with this kind of judgement is that little or no attention is paid to the unconditional probability
of B. As an illustration, consider the problem of evaluating the probabilities that an individual,
Mr. X, who has been described as “meticulous, introverted, meek and solemn” is engaged in one
of the following occupations: farmer, salesman, pilot, librarian, physician. Most people perform
this task by assessing the similarity of Mr. X to the stereotype of that occupation, and order the
occupations by the extent to which Mr. X is representative of these stereotypes. They completely
ignore base rates, such as the relative number of salesmen to librarians, and assign a high probability
to Mr. X being a librarian (Kahneman and Tversky, 1973). Similar results have been obtained by
Hammerton (1975), and Nisbett et al. (1976).

Another commonly used heuristic is judgement by availability. This is used when a person
estimates the frequency of a class or the probability of an event by the ease with which examples
are recalled or occurrences come to mind. Examples from large classes are usually recalled better
and faster than examples from less frequent classes, and likely occurrences are easier to imagine than
unlikely ones. Hence, mental availability is often a helpful indicator for the assessment of frequency
and probability, but availability is also affected by factors other than frequency or probability. For
example, suppose you are asked whether a randomly chosen word from an English text is more
likely to start with an “r” or have “r” as its third letter. It is easier to recall words by their
starting letter (e.g. red, rank, rogue, road, rope, ...) than by their third letter (e.g. park,
bird, wire, ...). Hence, most people judge that “r” is more likely to be the first letter of a word,
rather than the third letter, although the reverse is true (Tversky and Kahneman, 1973). Recall

is also affected by factors such as familiarity, salience and recency, and newsworthy events also
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impact disproportionately on our memory, so you might overestimate the probability of a plane
crash with fatalities, for example, particularly if such a crash has happened recently. Thus the
judgement-by-availability heuristic, though useful, can lead to marked error.

Perhaps the heuristic most widely used for probability assessment is judgement by anchoring
and adjustment. With this strategy, a person estimates an unknown quantity by starting from some
initial value and then adjusting it to obtain a final estimate. The starting value, which is usually
termed the anchor, could be suggested by the nature of the problem or the way it is formulated.
Regardless of the source of the starting value, the adjustment is usually too small (Slovic, 1972),
a phenomenon called anchoring. An experiment conducted by Tversky and Kahneman (1974)
elegantly demonstrated this effect. Subjects were asked to estimate various quantities, stated in
percentages (e.g. the percentage of African countries in the United Nations). They were given
randomly chosen starting values and had first to decide whether the value they had been given was
too high or too low, and then adjust it until they reached their best estimate. Through insufficient
adjustment, subjects whose starting values were high ended up with substantially higher estimates
than those who started with low values. For example, the median estimates of the percentage of
African countries in the U.N. was 25% for subjects who received 10% as their starting point and
45% for those who received 65% as their starting point.

As mentioned above, when subjects use the heuristic judgement-by-representativeness to assess
probabilities, they tend to ignore prior probabilities. However, many experiments have shown that
if subjects are made aware of the prior probabilities and are asked to modify these in the light of
fresh sample data, then the assessed posterior probabilities are too close to the prior probabilities,
compared with the revision indicated by Bayes’ theorem. i.e. the subjects’ modifications to the
prior probabilities are insufficient. This type of insufficiency when modifying probabilities to reflect

new data is referred to as conservatism (Edwards and Phillips, 1964). One possible explanation of
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this phenomenon is that subjects use the anchoring and adjustment strategy; the prior probability
acts as the anchor and the adjustment is insufficient.

A typical experiment to demonstrate conservatism is one in which subjects assess the probability
that coloured poker chips have been drawn from one of two bookbags, where the two bags contain
different compositions of chips e.g. 70% red and 30% blue in one bag, and 30% red and 70% blue in
the other. A coin is tossed to select one of the bags, so the prior probability of each bag is 0.50, and
the experimenter then draws a succession of chips with replacement from the selected bag, indicting
their colour to the subject. Having observed the sample evidence, the subject states his posterior
probability that the bookbag sampled contained the predominantly red or the predominantly blue
proportion of chips. Subjects’ revisions are normally conservative compared with the objective
probability calculated by Bayes’ theorem. For example, when the sample contains eight red and
four blue chips, subjects commonly give a probability for the “red” bookbag of about 0.75, whereas
the posterior probability calculated by Bayes’ theorem is 0.97.

Several studies have attempted to counteract conservatism through varying the experimental
procedure: in case subjects avoided approaching the bounds of the probability scale, unbounded
odds estimates have been used instead of probability estimates; rewards have been added to provide
an incentive to perform well; sample sizes, sequence lengths and prior probabilities have been varied.
Some of these changes have influenced the degree of conservatism, but they have not eliminated
it. (See e.g. Peterson and Beach, 1967, pp 32-33 for a review of such experiments.) In some
experiments though, the basic experimental situation has been modified so as to make it more
complex and, in these more complex situations, conservatism is not always a dominating influence
(Youssef and Peterson, 1973).

Research has also demonstrated that, in many circumstances, people expect a sample from a

population to represent all the essential characteristics of that population, even if the sample is
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small. Tversky and Kahneman (1971) refer to this false logic as the ‘law of small numbers’, which
asserts that the law of large numbers applies to small numbers as well. One experiment which
showed this fallacious belief used, as subjects, audiences at two psychology meetings. Through a
questionnaire, the psychologists were asked to decide sample sizes and also to relate sample sizes
to inferences they would make from hypothesis tests. The following is a typical example of the
questions asked:

“Suppose you have run an experiment on twenty subjects and have obtained a significant result
which confirms your theory (z = 2.23, p < 0.05, two tailed). You now have cause to run an
additional group of ten subjects. What do you think the probability is that the results will be
significant, by a one-tailed test, separately for this group?” (Tversky and Kahneman, 1971, p105)
The median answer from the two groups was 0.85. However, if one assumes a non-informative prior
distribution for the mean before the first sample was taken, then the true probability is only 0.48.
The error is readily attributable to belief in the ‘law of small numbers’; people expect all samples to
have virtually identical characteristics. For similar reasons, answers to other parts of the question-
naire indicated that the majority of respondents (a) were too easily convinced by early results from
a small experiment, (b) tested their research hypotheses on small samples without realising the
high odds against detecting the effects being studied and (c) rarely attributed unexpected results
to sampling variability because they found a causal explanation for every observed effect.

The results demonstrating the ‘law of small numbers’ and those demonstrating conservatism
appear somewhat contradictory, the former suggesting that people overestimate the value of sample
evidence while the latter suggest that people underestimate it. One conjecture is that conservatism
has an effect if people first formulate their opinion prior to being given the sample evidence, while
the ‘law of small numbers’ has an effect if people obtain the sample evidence before first formulating

their opinion (Garthwaite, 1983, p 17).
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Another form of systematic error that affects people’s judgements is called hindsight bias. This
can arise when people are asked to assess their a priori probability of an event that has actually
occurred. For example, they might be asked whether the dismantling of the Berlin wall was pre-
dictable before it happened: “In 1988, what was the probability that the Berlin wall would come
down within the next five years?” In 1988 it may have seemed unlikely that communism would
soon collapse and East and West Germany re-unite, but with hindsight the economic problems
of communist countries make it seem almost inevitable. Knowledge of what has occurred tends
to distort memory and people tend to exaggerate their a priori probability for an event that has
occurred. An experiment that shows this clearly was conducted by Fischhoff and Beyth (1975).
Just before President Nixon’s visit to China and the USSR in 1972, subjects were asked to assess
the probabilities of various possible outcomes of his visit, such as “President Nixon will meet Mao
at least once” and “The USA and the USSR will agree to a joint space program”. Shortly after the
visit and without forewarning, the subjects were asked to recall the probabilities they had given to
these events before Nixon’s visit, and they were also asked which events they thought had actually
occurred. Results showed that subjects generally overestimated their a priori probabilities for the
events they thought had occurred, and underestimated their a priori probabilities for the events
they thought had not occurred.

We have described only some of the heuristics that people employ to make numeric judgements,
and biases that affect such judgements. They were chosen for their relevance to elicitation methods.
For example, conservatism, hindsight bias and the ‘law of small numbers’ relate to people’s response
to data, and a variety of elicitation methods use the impact of sample data on opinion to quantify
beliefs about variances and covariances, as will be seen in Section 1.3. An extensive list of heuristics

and biases in human judgement is given in Hogarth (1987, pp 216-222).
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2.2. What summaries to elicit

In designing an elicitation method there is usually choice as to which quantities the expert is
asked to assess and, if possible, quantities should be chosen that are usually assessed reasonably
competently. People’s ability to estimate simple statistical quantities, such as means and variances,
has been examined in psychological research over several decades. Such quantities could constitute
part of the elicitation method for almost any form of prior distribution.

Several experiments investigate subjects’ capability at judging sample proportions (Erlick, 1964;
Nash, 1964; Pitz, 1965, 1966; Shuford, 1961; Simpson and Voss, 1961; Stevens and Galanter, 1957).
In these experiments, binary data were displayed to subjects for a limited period of time and they
were then asked to estimate one of the sample proportions. For example, Shuford (1961) projected
20x20 matrices onto a screen, one at a time. The elements of each matrix were red squares and blue
squares, and subjects observed a matrix for 1 second in some trials and for 10 seconds in others.
After each trial, subjects had to estimate the proportion of squares that had been, say, red. In this
and similar experiments, subjects generally assessed the sample proportion very accurately, with
the mean of subjects’ estimates differing from the true sample proportion by less than 0.05 in most
cases.

Similar experiments have been used to investigate people’s ability at estimating measures of
central tendency (Beach and Swenson, 1966; Peterson and Miller, 1964; Spencer, 1961, 1963). Typ-
ically, a sample of numbers is displayed to subjects who are asked to estimate the mode, median or
mean of the sample. When the sample distribution is approximately symmetric so that these three
measures are numerically similar, subjects’ estimates have shown a high degree of accuracy (Beach
and Swenson, 1966; Spencer, 1961). However, an experiment conducted by Peterson and Miller

(1964) used a sample drawn from a population whose distribution was highly skewed; subjects’
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assessments of the median and mode were again reasonably accurate, but assessments of the mean
were biased towards the median.

In most applications, to determine a prior distribution will require the variances of unknown
scalar quantities and/or sample errors to be estimated. Regrettably, it seems that people are poor
both at interpreting the meaning of ‘variance’ and at assigning numerical values to it. When
estimating relative variability, empirical evidence indicates that people are influenced by the mean
of the stimuli and estimate the coefficient of variation, rather than the variance. For example,
Hofstatter (1939) obtained assessments of the variability in the lengths of sticks tied in bundles.
He found that assessments increased with the sample variance, as it should, but as the means
increased, the assessments decreased. Lathrop (1967) has replicated this latter result. Even allowing
for the effect of means, systematic differences still arise between intuitive judgements of sample
variance and the objective values. If large deviations from the mean predominate as when, for
example, the sample is drawn from a population whose distribution is bimodal, then the variance
is overestimated. On the other hand, if small deviations from the mean predominate as when, for
example, the population distribution is normal, then the variance is underestimated (Beach and
Scopp, 1967).

One way of eliciting variances that avoids their direct assessment is to elicit credible intervals;
such intervals are useful in their own right and can yield estimates of variances if suitable distribu-
tional assumptions are made (cf Section 3.2). There are two main approaches to assessing credible
intervals for a scalar quantity, the fized interval method and the variable interval method. Let X
denote the scalar quantity of interest. With the fixed interval method, the range of values that
X can take is partitioned into intervals by the statistician/psychologist organizing the elicitation
method. For each interval, the expert assesses the probability that X will fall in that interval. (In

principle, assessed probabilities must sum to one.) The probabilities are also sometimes elicited
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through odds assessment. The expert first indicates the interval which she believes is most likely to
contain X. Then, for each of the other ‘less likely intervals’, she states odds that X will take a value
in the ‘less likely interval’ as opposed to the ‘most likely interval’. The probabilities associated with
each interval are then calculated by imposing the constraint that their sum must be one.

With the variable interval method, the expert identifies points that correspond to specified
percentiles of her subjective distribution. A method of bisection is often used, which entails a

sequence of questions of the following form:

Q1. Can you determine a value (the expert’s median) such that X is equally likely to be less than

or greater than this point?

Q2. Suppose you were told that X is below your assessed median. Can you now determine a new
value (the lower quartile) such that it is equally likely that X is less than or greater than this

value?

Q3. Suppose you were told that X is above your assessed median. Can you now determine a new
value (the upper quartile) such that it is equally likely that X is less than or greater than

this value?

An advantage of this line of questioning is that only judgements of equal odds are required, an
intuitively easier task than specifying percentiles that divide a probability in the ratio of, say, 4:1.

Many experiments have examined people’s performance at assessing credible intervals. If the
credible intervals calibrated well with reality, then the proportion of p % central credible intervals
that contain the true value of X (the quantity to which they relate) should be about p%. (The
concept of calibration is discussed further in section 4.4). The experiments show that assessing
credible intervals is a task that people perform reasonably well, but there is a clear tendency for

central credible intervals to be too short, so that this proportion is less than p %. This bias is referred
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to as overconfidence; people believe they are more accurate in estimating X than is justified (Keren,
1991). Lichtenstein et al. (1982, pp. 325-326) tabulate 28 sets of results in which 50% central
credible intervals were elicited for continuous scalar quantities. Less than 50% of the intervals
contained the true value of the scalar in 23 of the 28 sets, and the proportion never exceeded 57%.
The evidence is conflicting as to whether the fixed interval method or the variable interval method
gives better calibration; Seaver et al (1978) found the fixed interval method performed better,
while Murphy and Winkler (1974) found the converse. With the variable interval method, it is also
unclear which percentiles should be elicited. The median and quartiles are most commonly assessed
(using the method of bisection) and while this has sometimes given good results (e.g. Murphy and
Winkler, 1974; Peterson et al, 1972), other empirical work has found that overconfidence is less
if the 33 and 67 percentiles are assessed (Barclay and Peterson, 1973; Garthwaite and O’Hagan,
2000). Most empirical work has involved scalar quantities and the results may not generalize to
more complex models. For example, Garthwaite (1989) elicited 50% central predictive intervals for
the dependent variable in a simple linear regression model and found that far more than 50% of the
intervals contained correct values. The subjects had drawn graphs to help make their assessments
and this may have improved the accuracy of their median assessments and led to predictive intervals
that were more likely to contain a true value.

Much empirical research has investigated subjects’ ability to assess the extreme “tails” of a
distribution. For example, Alpert and Raiffa (1969) used the variable interval method to elicit 98%

central credible intervals. They asked “almanac” questions of the following kind:

How many foreign cars were imported into the U.S. in 1968¢

(a) Make a high estimate such that you feel there is only a 1 percent probability the true answer

would exceed your estimate.
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(b) Make a low estimate such that you feel there is only a 1 percent probability the true answer

would be below this estimate.

(Alpert and Raiffa, 1969, pp.16-17)

It should have been somewhat of a “surprise” to a subject to find the true value of a quantity
falling outside an interval. 43% of all assessments produced such surprises. This information was
given as feedback before a second session. In this second session 23% of the assessments produced
surprises, which is still very high. One reason for the large number of surprises is that assessing
tails of distributions is a difficult task, mainly because it requires the consideration of events that
are unlikely, so that comparisons do not come readily to mind. (It is unfortunate that assessing
probabilities for rare events is difficult, as expert opinion is of paramount importance when sample
data is scarce.)

Task characteristics have an effect on the way an expert views a problem and the assessments
that are elicited. Visual aids to help people quantify their opinions have been tried, such as urns
full of coloured balls (Raiffa, 1968), light pens on coloured screens (Barclay and Randall, 1975), or
simply asking assessors to mark a point on a line whose endpoints are 0 and 1 (for probabilities) or
0% to 100% for proportion. Probability wheels (Spetzler and Stael von Holstein, 1975) are another
visual aid and they have been used with some success (Morgan and Henrion, 1990, p126). In its
simplest form a probability wheel is a round pie-shaped disc of one colour that is partly covered
by a ‘slice’ of a different colour, and a pointer. The size of the slice can be varied and the expert
adjusts its size so that if the pointer is spun, then the probability it lands within the slice is equal
to the expert’s probability for some specified event.

Efforts to influence how people consider probabilities have also been explored, such as asking

them to suggest scenarios that would lead to an unlikely event (Slovic and Fischhoff, 1977), influence
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diagrams (Howard and Matheson, 1984), getting subjects to think carefully about the substantive
details of each judgement (Koriat et al., 1980), and disaggregating an implicit hypothesis into
its constituent hypotheses (Johnson et al., 1993). As an example of the effect of disaggregation,
Fischhoff, Slovic and Lichtenstein (1978) questioned experts (car mechanics) about the probable
reasons for a car not starting. The experts assessed the probability that it would not start “for some
reason other than the battery, engine or fuel system” and their average probability was 0.22. They
also assessed the probability that it would not start for more specific reasons: failure of the ignition
system, failure of the starting system, etc. Combining the probabilities of the latter disaggregated
reasons gave an average of 0.44 as the probability it would not start for reasons other than the
battery, engine or fuel system. This result is consistent with other empirical work; there is ample
evidence that the sum of separate probability assessments for constituent hypotheses generally
gives a much larger probability than a single probability assessment of the combined hypothesis
that they form (see Tversky and Koehler (1994) for a review). Morgan and Henrion (1990, p116)
comment, “It has become something of an article of faith in the decision analysis community that
disaggregation of an elicitation problem holds the potential for significantly improved performance
on many assessment tasks”.

There has been research aimed at converting probabilistic phrases (such as “quite likely” and
“extremely probable”) into numeric values (Wallsten et al., 1986; Mosteller and Yountz, 1990), and
at differentiating situations where verbal expressions of probability are preferable to numeric ones,
or vice-versa (Winschitl and Wells, 1996). People are generally more comfortable expressing their
uncertainty in verbal terms rather than numerically. Unfortunately, there is considerable variation
in the probabilities different people attach to the same phrase, and the context also affects the
probability a person associates with a phrase (Lichtenstein and Newman, 1967; Beyth-Marom,

1982; Wallsten et al., 1986). The response mode in which subjects are asked to give assessments
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also affects judgements. For example, Gigerenzer (1996) found that numeric expressions that are
formally equivalent, such as frequencies and probabilities, are not always treated as equivalent
in subjective uncertainty judgements. Also, it seems better to elicit probabilities in terms of
populations of events, such as What proportion of students starting a PhD will complete it within
five years? rather than as single (one-shot) events, like If a new PhD student is picked at random,
what is the probability that he or she will complete the PhD within five years? (Gigerenzer, 1996;
Koehler, 1996)

As noted earlier, a good elicitation method should yield a probability distribution that accu-
rately reflects the expert’s opinion, but this is hard to check and a pragmatic alternative is to
compare assessed distributions with true values when these are known (see the discussion of cali-
bration in Section 4.4). Several experiments have attempted to train subjects in order to improve
the calibration/objective accuracy of their assessments. These have typically found that objective
accuracy is improved substantially by training, but that biases such as overconfidence are tempered
rather than eliminated (Schaefer and Borcherding, 1973; Lichtenstein and Fischhoff, 1980). In these
experiments, training has usually taken the form of feedback; subjects are told the correct values
after making the assessments and the trainer stresses the direction of biases and how the expert
might reduce them. The benefits of effective feedback can be seen in the performances of weather
forecasters. Weather forecasters make regular predictions for the same quantities each day (such as
temperatures and the probability of precipitation), and thus soon learn the accuracy of their fore-
casts. Experiments have generally found them to be quite well-calibrated. For example, Peterson
et al (1972) conducted an experiment with two meteorologists in which they gave forecasts of the
maximum and minimum temperatures on the following day. Using the method of bisection, the
meteorologists expressed their forecasts in terms of 50% central credible intervals. They showed

good calibration: out of 55 forecasts, 28 fell inside the 50% credible intervals, 18 fell outside and 9
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fell on the boundaries.

In the main, research concerned with descriptive statistics for scalars has produced relatively
clear-cut conclusions. People are capable of estimating proportions, modes and medians of samples.
We are slightly less proficient at assessing sample means if the sample distribution is highly skewed
and we often have serious misconceptions about variances. We are reasonable at quantifying our
opinions as credible intervals using the fixed interval and variable interval methods. However, there
is a general tendency for the assessed distributions to imply a greater degree of confidence than is
justifiable. Practice, coupled with feedback, will reduce this bias, but assessing the extreme tails of
distributions is difficult (e.g. 98% credible intervals) and while training should reduce bias, it will
not eradicate it. Visual aids can prove useful and task characteristics often have a marked impact

on the assessments that are elicited.

2.3. Multivariate elicitation

When the expert’s opinion is sought on two or more unknown variables, then the output of the
elicitation should be the expert’s joint probability distribution for those variables. The task is
now more complex than when eliciting a distribution for a single variable, and the facilitator must
inevitably ask more complex questions.

An important special case is where the variables are independent, meaning that if the expert
were to obtain new information about some of the variables it would not change her beliefs about
the others. The concept of independence is straightforward to explain, and independence between
variables is a relatively simple judgement for the expert to make. It is also a very convenient
judgement, because when all the variables are independent their joint distribution is just the product
of their marginals. The elicitation exercise then reduces to eliciting the expert’s beliefs about each

variable separately, so only univariate elicitation techniques are required. Utilising independence to
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decompose a multivariate elicitation task into simpler univariate tasks is consistent with the idea
of disaggregation.

Psychological research also indicates that, when events are independent, joint probabilities
should be assessed via univariate probabilities, as people exhibit systematic bias when making joint
probability assessments. In particular, people tend to overestimate the probability of conjunctive
events and underestimate the probability of disjunctive events. For example, Bar-Hillel (1973) found
that people tended to overestimate the probability of drawing a red marble seven times in succession
from a bag containing 90% red marbles and 10% white marbles, and underestimate the probability
of drawing a red marble at least once in seven successive draws from a bag containing 10% red
marbles and 90% white marbles. These errors can be explained as the result of anchoring: the
probability of an elementary event provides an obvious starting point for estimating the probability
of both conjunctive and disjunctive events. For conjunctive events, the probability of the elementary
event must be reduced, which is done insufficiently, and for disjunctive events it must be increased,
which is again done insufficiently.

Discussion of the physical or historical relationships among variables can make judgements of
independence or conditional independence clear. With many elicitation methods it is transparent
as to what assessments would correspond to independence and, in application of these methods,
subjective independence between some pairs of parameters is often observed; see examples in Garth-
waite and Dickey (1991, 1992). It should be noted though, that assumptions of independence often
make assessment tasks easier for an expert. For example, if an expert has assessed the marginal
distribution of X, and X and Y are independent, then the conditional distribution of X |Y is easily
specified as “no change”. It may be that experts are too willing to accept independence where it
does not strictly apply.

Even where variables are dependent, it may be possible to restructure the problem by expressing
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it in terms of independent variables. An example might be where we seek a medical expert’s opinion
on the effectiveness of two treatments in a clinical trial. Letting X and Y denote the relevant
measures of effectiveness of the two treatments, we would not typically have independence between
X and Y. If the expert learned that X, the effectiveness of the first treatment, was higher than
she originally expected, then this would generally lead her to have an increased expectation of
the effectiveness Y of the second treatment. This may be because the expert believes that the
treatments act in similar ways, but it may also be because of uncertainty in patient recruitment.
That is, if X is smaller than expected, say, this may be because the trial has recruited patients who
are more ill, and will thereby suggest a smaller value for Y. However, the expert might be willing
to accept independence between two functions of X and Y. For instance, it may be reasonable to
suppose independence between X and Z = Y/X. Here, Z is the relative effectiveness of treatment
2 over treatment 1. Such a structure is often appropriate where treatment 1 is standard care
or placebo and treatment 2 is a new or active treatment. Where both treatments are new, the
asymmetry of the preceding structure may not be appealing, but the expert might be happy to
express independence between (X+Y)/2, the mean effectiveness, and the difference Y —X. Bayesian
hierarchical models are natural examples of structuring dependent variables in terms of conditional
independence. O’Hagan (1998) emphasises the role of structuring as an aid to elicitation. Kadane
and Schum (1996) provide an extended example of complex structuring of beliefs.

Where variables are dependent and cannot obviously be reduced to independence in this way,
we cannot escape from the complexity of multivariate elicitation. We can (and generally should)
elicit summaries of the expert’s marginal distributions, but these no longer characterise the joint
distribution completely. The question then arises as to which summaries of the expert’s joint
distributions are most effective and reliable to elicit.

Although statisticians usually model dependence in terms of correlations, directly eliciting cor-
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relation coefficients or covariances might be expected to encounter at least as many problems as
directly eliciting means and variances in univariate elicitation. Psychological research has primar-
ily considered eliciting correlation between variables that might be considered as drawn from some
population. For example, Clemen et al (2000) examine the following six methods of eliciting a

correlation between weight and height in a population of male MBA students.

1. Verbal (non-numeric) description of the strength of a correlation on a 7-point scale ranging
from ‘very strong negative relationship’ to ‘very strong relationship’. (Clemen et al made

strong assumptions to convert the verbal assessments to correlations.)

2. Direct assessment of the correlation by specifying a value between —1 and 1.

3. Ask the subject to imagine that a person has been picked at random from the population. Give
the person’s percentile for one variable, and ask the subject to assess the person’s percentile

for the second variable.

4. Ask the subject to imagine that two people, A and B, have been picked at random from the
population. Conditional on A being greater than B for one variable, ask the subject to assess

the probability that A is also bigger than B for the other variable.

5. Ask the subject to imagine that a person has been picked at random from the population.
The subject is asked to assess the probability that for both variables the person is below a

specified percentile.

6. Ask the subject to imagine that a person has been picked at random from the population.
Conditional on the person being below a specified percentile for one variable, ask the subject

to assess the probability that the person is also below that percentile for the second variable.
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Clemen et al found that method 2 performed best. This is surprising since others have sug-
gested that the direct assessment of moments is a poor method of quantifying opinion (Morgan
and Henrion, 1990; Kadane and Wolfson, 1998; Gokhale and Press, 1982). Method 4 asks for a
concordance probability to be assessed, which can equated to a value of Kendall’s 7. Assumptions
of normality are then made so as to relate Kendall’s 7 to the Pearson correlation coefficient. As-
sessment of concordance probabilities to examine correlation has been examined by Gokhale and
Press (1982), who found it preferable to alternative methods they consider, and by Kunda and
Nisbett (1986), who concluded that reasonably accurate correlation estimates are obtained pro-
vided (a) subjects are very familiar with observations from the population in question, and (b) the
data relate naturally to a numeric scale. In several experiments, subjects have been shown samples
from a bivariate population and then asked to judge the ‘degree of relatedness’ between the two
variables. In these experiments, it has been found that subjects make use of only a limited portion
of the available data, sometimes basing their judgements on just the proportion of time the positive
outcome for one of the binary variables occurred with a positive outcome for the other (Smedsland,
1963; Inhelder and Piaget, 1958; Jenkins and Ward, 1965; Ward and Jenkins, 1965).

Statistically, it is important to distinguish between eliciting an expert’s beliefs about a popu-
lation correlation coefficient and eliciting the value of the correlation in the expert’s beliefs about
two variables. In the first case, the correlation coefficient is the variable whose probability distri-
bution we wish to elicit. This task is addressed, for instance, by Gokhale and Press (1982). The
second case is the situation that arises in multivariate elicitation, where the correlation (or some
other measure of association) is to be elicited as one summary of the expert’s joint distribution for
two variables. Where the two variables can be considered as single draws from a population, then
some of the methods described above may be appropriate. However, many cases of multivariate

elicitation do not fit this situation. Consider, for example, eliciting someone’s beliefs about the fuel
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economy and the acceleration of a new car. This car is not some random draw from any population.
Methods 4 to 6 in Clemen et al’s study are no longer appropriate.

None of the methods examined by Clemen et al use graphs in any way. It seems likely that
graphical methods could perform better, especially as it is very natural to plot a graph to describe
the relationship between two variables such as height and weight. This approach would represent
association between variables in terms of regression, which is related to correlation. For two vari-
ables X and Y, for instance, we might try to elicit the regression function m(z) = E(Y | X = x).
If the expert accepts the proposition that this function is linear, we might simply elicit m(z1) and
m(xg) for any x1 # xo. Eliciting more than two points on the function (‘over-fitting’, see section
4.1) would allow the assumption of linearity to be checked, or a more accurate fitting of a straight
line. Here as elsewhere, it may be preferable to elicit medians than means.

A body of psychological research has examined multiple regression. In this research, the z-
variables are generally referred to as cues, Y is termed the criterion and the regression coefficients
are referred to as cue-weights. Subjects predict the value of the criterion, basing their predictions
on the known values of the cues. It has been found, in a wide variety of situations, that a subject’s
responses can be represented quite well by a linear model that relates the criterion to the cues.
The correlations between subjects’ responses and the responses predicted by linear models (fitted
to the same responses that determined the model) have generally taken values in the 0.70’s when
the judgemental task is from a “real world” situation, and in the 0.80’s and 0.90’s for less complex
artificial tasks. In some studies, the model derived from one sample of predictions was used to
forecast a second sample of predictions. The forecasts produced in this way were only slightly
less accurate than those produced by a model actually based on the second sample of predictions
(Einhorn, 1971; Slovic and Lichtenstein, 1968; Wiggins and Hoffman, 1968). Experiments also show

that, provided cues are monotonically related to the predicted variable, a simple linear combination
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of main effects will do a remarkably good job at forecasting a subject’s assessments, even if subjects
know that interactions exist. One implication is that, when eliciting the dependence of one variable
on one or more other variables, it is reasonable to constrain an expert’s assessments to fit a linear
model and to ignore interactions, unless it becomes clear that some interactions are important. An
extensive review of cue-weighting experiments is given in Slovic and Lichtenstein (1971).

A joint distribution involves more than modelling conditional means or medians. Hence, the
task of eliciting a joint distribution is more complex than determining an expert’s cue-weights.
Generally, conditional probabilities are a natural way to augment marginal probabilities when
trying to specify a joint probability distribution, and in particular allow conditional dispersion to
be elicited and modelled. Conditional medians and other quantiles are extensively exploited, for
instance, by Kadane et al (1980), Dickey et al (1986) and Kadane (1996).

An alternative to conditional probabilities is joint probabilities. Having elicited P(X < x), for
instance, we might elicit the joint probability P(X < z,Y < y) or, equivalently, the conditional
probability P(Y < y|X < z). Note, however, that conditional probabilities are usually elicited
in the form of P(Y < y|X = z), and conditioning on X < z rather than on X = z may be
cognitively more complex. On the other hand, we have already noted that experts do not assess
joint probabilities accurately, even when the variables are independent. We might also expect joint
probabilities like P(X < z,Y < y) to be subject to a kind of representativeness bias, and so be
positively /negatively biased if the association between X and Y is positive/negative, although this

does not appear to have been studied.
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3. Fitting a Distribution

Once the facilitator has obtained from the expert a number of specific statements, the elicitation
task is completed by converting these into a probability distribution. Different levels of complexity
are found in the fitting of a probability distribution to the expert’s statements. If the elicitation is
to obtain a prior distribution which will then be updated in a Bayesian analysis of some additional
data, it is usual to fit a probability distribution using standard parametric families of distributions.
However, where the elicitation is to formulate uncertainty about inputs to a decision problem or a
mathematical model, such as in the risk assessment of a complex engineering project, much more

simplistic elicitation and fitting are common.

3.1. Uniform and triangular distributions

The simplest form of elicitation is to ask the expert to specify a range [a, b] in which the parameter
is believed to lie. If this is all that is elicited from the expert, then it is common to assume a uniform
probability distribution over [a,b]. This can be criticised as too simplistic in at least two respects.
First, the expert almost certainly would not believe that the unknown quantity in question is as
likely to be very close to the limits a and b as to be at a more central point in the interval. Second,
unless the range [a, b] represents absolute physical limits to the possible values of the quantity (in
which case the first criticism applies even more strongly), it is unreasonable to give zero probability
to the event that the quantity lies outside the range.

As a simple response to the first criticism, another common practice is to use a triangular

distribution. For this purpose the expert is asked also to specify a mode, say c. Then the assumed
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distribution has the density

2% if a<zx<ec

flz) =

20—y i c<a<h

The acceptability of uniform and triangular distributions as representations of uncertainty about
model inputs in engineering applications is indicated by their featuring strongly in Oberkampf et
al (2004), but O’Hagan and Oakley (2004) criticise this practice as a failure to elicit adequately.
Even where substantially more information is elicited from the expert, uniform distributions may
be assumed over intervals. Suppose that in addition to the range [a, b] the expert also specifies prob-
abilities p1, po,...,pr that the uncertain quantity lies in the intervals [a,c1], (c1,¢2], ..., (ck—1,b].
(This may be done by fixing the ¢;s and asking for the probabilities, or by fixing the p;s and asking

for quantiles.) Then the facilitator may simply assign the histogram distribution
Pi . .
fla) = —— if g1 <zx<c¢,i=1,2,...,k,

where ¢y = a and ¢ = b. Although the expert’s beliefs would generally be better represented by a
distribution with smooth density function, this histogram form may be adequate, particularly if k

is not small. Feedback to the expert may be useful at this point.

3.2. Fitting parametric distributions

More complex elicitation methods usually impose structure on an expert’s opinion by assuming that
his or her knowledge can be well-represented by some member of a specified family of distributions.
If the expert has specified information that fits a convenient parametric distribution, it makes sense

to use it. This strategy has costs and benefits similar to those for statistical modeling in general.
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Members of the hypothesized family are distinguished by parameters (called hyperparameters) and
the elicitation task then reduces to choosing appropriate hyperparameter values to capture the
main features of the expert’s opinion. If the expert’s opinion does not correspond approximately to
any member of the family, discrepancies are likely to show up in the expert’s answers to elicitation
questions, much as a sampling model can succumb to traditional diagnostic checks. The family
of distributions is typically chosen to be the natural conjugate family (or a tractable extension
of that family), which facilitates subsequent analysis if sample data become available, although
advances in Bayesian computation through MCMC methods make it viable to use other families.
For many sampling models, the conjugate family is reasonably flexible and can represent a variety
of opinion through suitable choice of hyperparameters. Further flexibility is available through
mixtures of conjugates. Dalal and Hall (1983) and Diaconis and Ylvisaker (1985) demonstrate that
such mixtures can arbitrarily accurately represent any actual belief, although we are not aware of
any work in which an expert’s opinion is elicited in terms of a mixture, other than for variable
selection problems (Garthwaite and Dickey, 1992, 1996).

Two elicitation tasks that have attracted substantial attention are quantifying opinion about
a Bernoulli process and quantifying opinion about a linear regression model. We first focus on
each of these problems in turn before briefly discussing elicitation for other sampling models. The
judgemental tasks that are central in much of this work are the assessment of means, medians and
quantiles, revision of opinion when sample data becomes available, and specifying relevant aspects
of a ‘prior sample’ whose information content would approximately equate to one’s knowledge.
As a guiding principle, experts should be asked questions about quantities that are meaningful
to them. This suggests that questions should generally concern observable quantities rather than
unobservable parameters, although questions about proportions and means might also be considered

suitable, as psychological research suggests that people can relate to these quantities. However, in
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some application areas, particular statistical models are so familiar to experts that their parameters
have acquired well understood scientific meaning. It may then be appropriate to ask experts directly
about such parameters, as discussed in Kadane (1980) and Winkler (1980). The facilitator should
always try to understand what terms make the expert most comfortable for elicitation.

Four basic methods have been used to quantify subjective opinion about p, the unknown pa-
rameter of a Bernoulli process. In illustrating assessment questions we shall suppose that p is the
proportion of students at the University of Chicago who are male, which is the example used in

Winkler (1967), the first paper to address this elicitation problem.

1. One method is to ask the expert to specify her median estimate of p and to give one or more
quantiles (usually at least two) of her subjective distribution for p. These may be plotted
and a smooth cumulative distribution function drawn through them, giving a nonparametric
representation of the expert’s opinion. More commonly, it is assumed that the expert’s
opinion can be well-represented by a beta distribution (the conjugate distribution for Bernoulli
sampling), and a beta distribution is selected whose quantiles are similar to those the expert
gave. The beta distribution might be selected using a table presented in Winkler (1972, Table
5) that lists several quantiles for a variety of parameter values. We shall refer to this method

of elicitation as the quantile method; it is also often called the credible interval method.

2. The second method is the hypothetical future sample (HFS) method. The expert first esti-
mates the proportion under consideration (e.g. the proportion of students who are male) and
then revises her opinion in the light of information from additional (hypothetical) samples.
For example, she might be asked questions of the form: “Suppose a random sample of 50 stu-
dents were taken and 20 of them were male. Now what is the probability that one additional

student, chosen at random, is male?” Again it is assumed that the expert’s opinion corre-
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sponds to a beta distribution; its parameters are uniquely determined by the expert’s prior
and posterior (given the hypothetical sample data) estimates of the proportion. In general,
the expert is confronted with several hypothetical samples in which the number of students
and the proportion of these who are male is varied. Each yields a separate estimate of the
hyperparameters and some form of averaging is used to reconcile them. A general issue arises
here in the case that the resulting hyperparameter estimates are very disparate. This may
reflect assessment inaccuracy, i.e. the beta distribution may be correct and the elicitation
method may be the best available, but the expert’s answers to questions are subject to sub-
stantial variability. On the other hand, it also warns that the elicited distribution could be a
poor representation of the expert’s opinion, either because her opinion does not correspond to
a beta distribution, or because the elicitation method asks questions that are hard to answer

accurately. See also the discussion of internal consistency in Section 4.1.

. The third method is the equivalent prior sample (EPS) method, in which an expert expresses
her knowledge as an equivalent prior sample. Quoting Winkler (1967, p. 779), “You have
some knowledge concerning University of Chicago students. Can you determine two numbers
r and n such that your knowledge would be roughly equivalent to having observed exactly r
males in a random sample of n University of Chicago students, assuming that you had very
little knowledge about the sex of University of Chicago students before seeing this sample?”

The prior distribution is taken to be a beta distribution with parameters » and n — r.

. The fourth method is the probability density function (PDF') method, in which the expert
specifies the most likely value of p, say D, and then assesses other points of the p.d.f. for p.
For example, Winkler (1967) asks the expert to give two values of p (one on each side of p) that

she considers half as likely as p, and to also specify quantiles, which in this context are defined

33



as points that divide the area under the graph of the p.d.f. in specified proportions. (There
is obviously strong similarity between the PDF method and the quantile method, as both
make use of quantile assessments.) A nonparametric estimate of the expert’s opinion may be
obtained by asking her to draw a graph of her p.d.f., taking into account the assessments she

has given.

All four of the above methods tend to produce prior distributions that are unrealistically “tight”
(i.e. they have variances that are too small). For example, Schaefer and Borcherding (1973)
conducted an experiment in which 22 subjects used the EPS and quantile methods to quantify their
opinions about various proportions. Before any training, each subject assessed 50% central credible
intervals for eighteen different proportions using each method. The proportion of these intervals
that contained true values was 15.7% for the EPS method and 22.5% for the quantile method. The
task in the HFS method, revising opinion in the light of additional data, is similar to the task in
the “bookbag-and-pokerchips” experiment, where conservatism has a marked effect. Insufficient
revision of opinion when given the hypothetical data would result in a distribution that is too
tight. Winkler (1967) felt that conservatism also influences the EPS method, hypothesizing that
subjects equate their knowledge to too large a sample size, through not realizing the value of sample
information. The quantile method tends to yield distributions that are again too tight, but slightly
less tight than the PDF method and much less tight than the HFS and EPS methods (Winkler,
1967). On this basis the quantile method seems preferable, and it also seems the method of choice
when judged by scoring rules. (Scoring rules are discussed in Section 4.3). Some experiments have
examined the effect of training and these found that the bias of tightness was reduced for all three
methods with particularly marked improvement for the EPS method (Stael von Holstein, 1971;
Schaefer and Borcherding, 1973).

Elicitation methods have also been devised that avoid direct questions about p (which is not an
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observable quantity) and instead ask questions about sampling distributions, such as “the number
of students who would be male in a random sample of twenty University of Chicago students”.
Chaloner and Duncan (1983) use this form of question in a variant of the PDF method. The expert
states the most likely number of males in the sample, x say, and then assesses the relative likelihood
of x males rather than x — 1 males, and of x males rather than x + 1 males. Assessments are used
to estimate the parameters of a beta distribution and the implied endpoints of the shortest 50%
predictive interval are then calculated. These endpoints are given as feedback to the expert, who
comments on the length of the interval. If she finds it too short or too long, the parameter estimates
are revised repeatedly until she is satisfied with its length. The process is repeated for a variety of
sample sizes and the resulting parameter estimates are amalgamated in some way. Gavaskar (1988)
also uses questions about the sampling distribution in a variant of the HFS method. The expert
first specifies the most likely number of males in a random sample of some specified size (as in the
method of Chaloner and Duncan) and then revises her assessment after being given hypothetical
sample data, as in the HFS method. Assessments are again used to determine the parameters of
a beta distribution. This is done for a variety of sample sizes. Interestingly, Gavaskar conducted
a computer simulation to assess the sensitivity of parameter estimates to errors in an expert’s
assessments. He compares his method with that of Chaloner and Duncan (1983) and finds that
his method is much less sensitive. However, in a simulation study of this nature it is difficult to
choose appropriate error distributions for the different methods and he may have underestimated
the magnitude of errors that are induced by hypothetical samples.

Turning to multiple linear regression, we suppose the model is Y = x’3+¢, where € ~ N (0, 02).
The usual conjugate prior distribution specifies that o2 equals wd times the reciprocal of a chi-
squared random variable with ¢ degrees of freedom, and that given o, 5 has a normal distribution

with some mean b and some variance-covariance matrix ¢2R. For this prior distribution, w, §, b
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and R are the hyperparameters that need to be assessed via an expert’s assessments.

To quantify opinion about these quantities, Zellner (1972) suggests questioning an expert about
the regression coefficients. Some experts may be able to think of regression coefficients directly
but, as noted earlier, it is usually better to question people about observable quantities, such as
Y, rather than ask direct questions about unobservable quantities, such as regression coefficients.
To this end, elicitation methods generally ask the expert about observations Y7,...,Y,, at values
X1,...,Xm;, of x. This has the possible disadvantage though, that uncertainty about Y results
both from the expert’s uncertainty about the values of the regression coefficients and from random
variation. To separate these sources of uncertainty, Garthwaite and Dickey (1988) ask questions
about Y, the average value of Y if a large number of observations were taken at a single value,
X;, arguing that averages are quantities to which people can relate, and that an expert can give
assessments about Y; without the need to consider random error. We briefly outline the elicitation
methods that have been proposed by Kadane, Dickey, Winkler, Smith and Peters (1980), Oman
(1985), and Ibrahim and Laud (1994), which all question an expert about Y, and the method of
Garthwaite and Dickey (1988). In this section we refer to these papers as KDWS&P, Oman, 1&L,
and G&D, respectively.

Let X = (x1,...,X;m). We refer to x; as a design point and X as a design matrix. To estimate
the mean vector, b, at each design point KDWS&P elicit the median of Y, G&D elicit the median
of Y, Oman elicits the mean of Y, and I&L elicit the expert’s ‘best guess’ (or prior prediction) of
Y. Denoting the vector of assessments by y, the methods equate b to (X'X)~!'X’y, which would
be the least squares estimate if y were a vector of observations at X. (Oman also offers two less
attractive alternative methods of eliciting b: asking the expert to assess b directly, and asking the
expert to specify prior expected covariances.) With each elicitation method, the distribution of YV

at any design point is unimodal and symmetric so that, in principle, it should not matter which
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point estimate of Y is assessed. In practice though, the distribution of Y may be skew. Then the
(unanswered) question arises as to which feature of a skew distribution should correspond to the
point of symmetry of a symmetric distribution that is used to represent it.

To elicit w and 0, G&D and I&L elicit assessments that depend only upon experimental error.
G&D ask the expert to suppose that two observations are taken at the same design point. It is
pointed out to the expert that the observations will not be identical because of random variation,
and the median of their absolute difference is elicited. The expert is then given a hypothetical
datum and she then states her updated median of their absolute difference. 1&L use assessments of
the mean and variance of the precision (0 ~2) to determine w and § and, in related work (Laud and
Ibrahim, 1995), they use assessments of the median and the 95th percentile of the distribution of the
precision. Oman does not elicit w and §, and restricts his posterior analysis to inferences that depend
only on a point estimate of o2, which he obtains using empirical Bayes methods. KDWS&P elicit &
by asking the expert to assess the median (y 50), upper quartile (y 75)and 93.75 percentile (y.g375) at
a design point. (y.9375 is elicited through repeated bisections; y 50 — y.75 — y.875 — Y.9375.) The
ratio (y.9375 — ¥.50)/(y.75 — ¥.50) depends only on § and hence provides an estimate of it. KDWS&P
repeat the assessments at several design points and average the estimates of ¢ that each set of
assessments yields. The method used by KDWS&P to elicit w is complex and the reader is referred
to their paper for details. A central task is to ask the expert to suppose that two independent
observations are taken at a specified design point. The median of one of the observations is elicited;
then the expert is given a hypothetical value for that observation and assesses the conditional
median of the other observation.

All the above methods may be criticized for using assessment tasks that people are not very
good at performing. Direct questions about the distribution of a precision (I&L) are surely hard to

answer; G&D use conditional assessments that will be biased by conservatism and in addition they
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only elicit the minimum number of assessments to determine the hyperparameters; KDWS&P found
that extreme values of § were not uncommon with their method. As d is a difficult hyperparameter
to assess, it is a good idea to elicit more than one estimate of it and to then reconcile the different
estimates in some way. If estimates of § are to be combined arithmetically, empirical evidence
favours taking their geometric mean, rather than their average (Al-Awadhi and Garthwaite, 2001).

The most complicated hyperparameter to elicit is the variance-covariance matrix, o?R,; this
may contain a large number of elements that each need to be elicited and the matrix itself must
be positive-definite. In KDWS&P, a crucial step in assessing this matrix is the elicitation of a
variance-covariance matrix for a multivariate t-distribution. We next describe that part of their
method in some detail because it can be useful in a variety of elicitation problems. Also, it requires
sophisticated mathematics and statistics, so it illustrates that statisticians need to be involved in
the development of elicitation methods; in the past some statisticians have suggested that their
development should be left to psychologists.

Suppose Y = (Y1,...,Y,,) has a multivariate ¢-distribution on & degrees of freedom, Y ~
ts(a, P). Then P is referred to as the spread of Y, S(Y) and, if 6 > 2, the variance of Y equals
[0/(6 — 2)|P. (The variance does not exist if 6 < 2.) To elicit P, KDWS&P proceed as follows.

The expert assesses:

(a) His or her medians of Y7, ..., Y;,, which we denote by y7, ..., y,.

(b) The upper quartile of Y7, denoted by y1, 75.

(c¢) Conditional medians. A conditional set of values is built up in stages and, at the ith stage (i =

1,...,m—1), it consists of values y?, . ,y?. Given Y7 = y?, B y?, the expert gives the
conditional median of Yj for j =i+ 1,...,m, the assessment being denoted y;, 50 | yd, .
(d) Conditional quartiles. Given y{, ... ,y? , the expert assesses ;11,75 | v, ... ,y? , the conditional
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upper quartile of Yj 1.

In elicitation methods, the most widely used method of estimating variances or spreads from
quartile assessments is to divide the assessed interquartile range or semi-interquartile range by the
corresponding range of a standard distribution. Let ¢[, 0.75] denote the semi-interquartile range
of a univariate t-distribution on § degrees of freedom. The variance of Y; does not exist if § < 2 so

KDWS&P determine spreads,

SM) = (y1,75 — y1)?/(t[5, .75])? (1)
and
SO [0, 4 = i, mslyds - 90} — {yirr,50098, - 99 1) @)
LI e T (t[0 +1i,.75])2 ’

for i =1,...,m — 1. The order of the conditional assessments enables conditions to be based on
an expert’s earlier answers; y{ is set equal to yi + %{S(Yl)}l/2 and, for i =2,...,m — 1, y? is set

equal to yi 50|yl -, yg—y + 3{IS(Valyd, o yd 32
An iterative method is used to calculate P. Let P; denote the covariance matrix of Y7,...,Y;

and put P; = S(Y7). The following equations give P, after Pq,...,P; have been estimated. Put

Lit1 = {(Wi+1.50187) — viers - Wirr,s0lwls - 9)) — wi Y, (3)
—1
v —ur (sl —ws o (wisoly?) — v
yi — v Y5 — v e (a0l y8) — up
Ti+1 = Li+1 (4)
yi — v Y5 — v v — i
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and

S(Yig1ly?, oy y?)  [1 4 /6] )
i) = 0, Oy P, gy | i FiTi ®)

Then put
P; P; Tt
P11 = . (6)
T, Pi S(Yiy1)
The procedure stops when P, = P has been obtained; results in KDWS&P show that P is certain
to be a positive-definite matrix.

A general feature of the method of KDWS&P is that for every hyperparameter it elicits more
assessments than necessary, and then uses some form of averaging to obtain hyperparameter esti-
mates. This is obviously sound practice. Also, the largest deviations from the averages are reported
to the expert, so that she can judge the extent to which some of her answers may be in error and
require changing. The x-values that are used in the elicitation method will affect the quality with
which expert opinion is captured and Kadane and Wolfson (1998) suggest a procedure for their
selection.

Oman does not attempt to relate R to the expert’s opinion. Instead, he chooses design points
that cover the region of interest and that give a design matrix X that is as near orthogonal as
possible. He then sets R equal to 7(X’X)~! and estimates 7 using empirical Bayes methods. 1&L
are concerned with the analysis of designed experiments. They let X be the design matrix for
which data will be gathered and, like Oman, assume that R = 7(X’X)~!. The hyperparameter
7 is then chosen to reflect the weight that should be attached to the expert’s opinion, relative to
the weight that should be attached to the data from the experiment. Hence, 1&L choose R partly
to reflect the expert’s knowledge, but their approach is pragmatic and is not a serious attempt to

determine the prior variance of 3. (Otherwise, their approach implies that prior opinion about the

40



relationship between Y and the z-variables is dependent upon the experiment to be conducted.)

G&D develop an alternative method of eliciting P, the spread of Y. It is based on a novel
assessment task that requires the expert first to select the design point at which she can predict
Y most accurately, and then to repeat this task several times with an increasing set of restrictions
on the xz-values she can choose. The method was developed for the use of industrial chemists and
exploits their experience of choosing design points to conduct experiments. It is not as flexible
as that of KDWS&P, in that it cannot be used with polynomial regression or with x-variables
that are factors. However, it can be extended to elicit prior distributions that are suitable for
variable-selection problems (Garthwaite and Dickey, 1992). A feature common to the methods of
KDWS&P and G&D is that a structured set of sequential questions is used to ensure that P is a
positive-definite matrix.

A drawback of the method of KDWS&P is that for many of its tasks the expert must update
her beliefs on the basis of hypothetical data, so assessments are likely to be biased by conservatism.
Al-Awadhi and Garthwaite (1998) suggest a modification whereby the diagonal elements of P are
estimated from unconditional assessments. The modification involves scaling P in such a way that
estimates of correlations are unchanged, so P is still certain to be a positive-definite matrix while
the impact of conservatism should be reduced. Al-Awadhi and Garthwaite also suggest estimating
the spreads of univariate distributions from assessments of both the lower and upper quartile
(KDWS&P use medians and upper quartiles), so that an estimated spread reflects both halves of
the subjective distribution. Eliciting both quartiles also enables marked asymmetry to come to
light.

Turning to elicitation methods for other sampling models, the above paper of Al-Awadhi and
Garthwaite (1998) gives a method of eliciting a conjugate prior distribution for sampling from a

multivariate normal distribution. This work is extended in Garthwaite and Al-Awadhi (2001) so

41



as to elicit a more flexible non-conjugate prior distribution. The methods follow the approach of
KDWS&P to assess spread matrices (with the modifications mentioned above) and follow the ap-
proach of G&D to elicit degrees of freedom parameters. The method of KDWS&P is also exploited
by Dickey et al. (1986) to develop assessment methods for matrix-t models and and a closely related
method is used by Garthwaite and Al-Awadhi (2003) for logistic regression. An elicitation method
for logistic regression is also given by Chen et al. (1999), using similar ideas to I&L. Chaloner and
Duncan extend their method of quantifying opinion about a Bernoulli process (Chaloner and Dun-
can, 1983) so as to elicit a Dirichlet distribution that represents prior opinion about a multinomial
sampling model (Chaloner and Duncan, 1987). Other models that have attracted attention include
the proportional hazards model (Chaloner et al., 1993), Weibull lifetime distributions (Singpurwalla
and Song, 1987), AR(1) time series models (Kadane et al., 1996), and ANOVA models (Black and
Laskey, 1989). Graphical feedback is an important component in the methods of Chaloner and
Duncan (1983, 1986), Chaloner et al. (1993) and Garthwaite and Al-Awadhi (2003) and it seems a
potentially powerful means of improving the quality of assessed distributions.

Almost all the above methods represent expert opinion by some form of conjugate distribution.
This has limitations, notably when the sampling model is a multivariate normal distribution. In a
frequentist analysis for a multivariate normal distribution, the sample variance-covariance matrix
is both an estimate of the population variance and, after division by the sample size, it is also
the estimated variance of the sample mean. In the standard conjugate distribution, a single vari-
ance matrix again fulfils both these roles. An experiment by Al-Awadhi and Garthwaite (2001)
demonstrated that this is inappropriate. They examined different forms of assessment task and
compared alternative ways of estimating hyperparameters. To quantify opinion about the vector
of means, it proved preferable to ask directly about the means rather than individual observations

while, to quantify opinion about the variance matrix, it was better to ask about deviations from
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the mean. One alternative to the conjugate distribution is to assume that the population mean
and variance are independent in the prior distribution, an approach followed in Garthwaite and
Al-Awadhi (2001).

Elicitation methods for broader classes of problem have also been proposed. Bedrick et al. (1996)
suggest a method for generalised linear models in which the predictive distributions at different
design points are elicited and then combined to form a prior distribution. For convenience, Bedrick
et al. mainly consider the case where the predictive distributions are independent of each other, so
that combining them is straightforward. Properties of their method are discussed and they show it
has similarities to data augmentation. Clemen and Reilly (1999) consider the general problem of
constructing a joint prior distribution for several hyperparameters. They use a copula to form the
joint distribution from an expert’s subjective judgements of marginal distributions and correlations.
No restrictions are placed on the marginal distributions and dependence between the marginals is
modelled by the copula that underlies a multivariate normal distribution. People are not good at
assessing correlations and Clemen and Reilly address this problem by discussing various techniques
for their assessment. They report a small empirical study that forms part of the basis for their
well-informed views; Clemen et al (2000) report a larger study of methods for assessing correlations,

as discussed above in Section 1.2.3.

3.3. Nonparametric fitting

Any fitting of a parametric distribution to the expert’s stated summaries implies assumptions about
the form of the expert’s underlying probability distribution. Although the distributional form may
be acceptable to the expert, he or she is rarely in a position to question the assumptions critically.
This is even more true in the case of multivariate distributions.

Just as there are many statisticians who are uncomfortable with parametric assumptions in
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modelling data, it is arguably preferable in elicitation not to make parametric assumptions. (In-
deed, in the subjective Bayesian framework, the likelihood is just as much a judgement as the
prior distribution, and should in principle also be formally elicited.) A number of nonparametric
approaches are possible in elicitation.

One is simply to decline to fit a distribution at all, and to use just the expert’s stated summaries
and nothing more. It is then necessary to find ways to make use of this limited specification of
beliefs. In the context of eliciting a prior distribution for a Bayesian analysis, Bayes linear methods
have been advocated by Goldstein (1999). The Bayes linear approach is based upon eliciting only
first and second order moments (i.e. means, variances and covariances). The underlying theory is a
Bayesian analogue of the Gauss-Markov theorem, but the advocates of the Bayes linear approach
have developed a substantial body of methodology to facilitate applications. Bearing in mind the
difficulties that we have noted earlier in asking experts to assess moments, the Bayes linear approach
places higher demands on the statistical understanding of the expert, or else requires a substantial
training input.

Berger and O’Hagan (1988) effectively allow the expert’s prior distribution for a single unknown
parameter to be any unimodal distribution having specified quantiles. They compute the range of
posterior inferences over this range of prior distributions, for given data. This is a fully nonpara-
metric approach, although it may be difficult to implement in more complex situations. It also
allows distributions that the expert would easily be able to reject as inaccurate representations of
his or her knowledge.

A more recent approach is that of Oakley and O’Hagan (2002), which adopts the framework of
modern Bayesian nonparametrics. The expert’s beliefs about the random variable X are supposed
to be represented by a probability density function f(x). To the facilitator f is an unknown

function. The facilitator has a prior distribution for f, and this is updated to a posterior distribution
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after ‘observing’ the ‘data’ comprising the expert’s summary values. It is worth looking at this
formulation in a little more detail.

Since f is a function, the facilitator’s prior is a distribution over the space of possible values
of the whole function. Formally, Oakley and O’Hagan (hereafter, O&O) suppose that f has a
Gaussian process prior distribution. Its prior expectation is a member g(z;6) of some parametric
family indexed by #. The prior variance of f(z) is g(z;6)20? and the correlation between f(x)
and f(z') is a decreasing function of the distance between x and z’. The hyperparameters 6 and
o2 are given weak prior distributions. The method is nonparametric because f is not assumed
to be exactly a member of any parametric family, and indeed it is allowed to take any form at
all. Nevertheless, the facilitator expects the expert’s true density function f to be close, in some
sense, to some member of the parametric family defined by g. The closeness is governed by the
hyperparameter o2, which O&O learn about from the expert’s summary ‘data’. The correlation in
the Gaussian process ensures that departures of f(z) from g(x;6) are smooth.

Although in this approach the facilitator does not constrain the expert’s distribution to fit the
parametric family, it is clear that the facilitator is supplying some information through the Gaussian
process prior distribution. There is the belief that f should be ‘close’ to g, and that it should be
a smooth density function. Technically, from the assumption of a Gaussian process the facilitator
has a normal distribution for each f(z). Strictly, this cannot be completely realistic because f(x)
must be non-negative, but the normality is important for tractability of the O&O approach, and
they argue that it is relatively innocuous.

A significant benefit of the O&O approach is that it yields a complete posterior distribution for
f. The posterior mean can be regarded as an estimate of f based on the expert’s summaries, and
hence as the elicited probability distribution. But O&O then have a posterior distribution that

quantifies the possible inaccuracy of the elicitation (as called for by Dickey, 1980). They give the
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0.2

Figure 2: Example from Oakley and O’Hagan (2002). Median and pointwise 95% intervals for the
expert’s density function (solid lines), and the true density function (dotted line)

following synthetic example in which the expert’s true probability distribution is a bimodal mixture
of two normal distributions. The parametric family ¢ is the normal family. Figure 2 shows the
posterior median and 95% pointwise credible intervals for f based on seven elicited quantiles from
the expert. We see that, despite believing initially that the expert’s distribution would be similar
to a normal distribution, the facilitator’s posterior distribution accurately reproduces the expert’s

true bimodal f.

4. Testing Adequacy of Elicitation

In view of the many practical difficulties of elicitation, how can one know whether the elicited dis-
tribution is, in any sense, an adequate representation of the expert’s knowledge? Before addressing
this, we should consider whether there is, in some sense, a ‘true’ representation. Does the expert

have a ‘true’ personal probability distribution for the uncertain quantities?
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Winkler (1967, p.778) writes,

“The assessor has no built-in prior distribution which is there for the taking. That is, there is
no ‘true’ prior distribution. Rather, the assessor has certain prior knowledge which is not easy to
express quantitatively without careful thought. An elicitation technique used by the statistician
does not elicit a ‘true’ prior distribution, but in a sense helps to draw out an assessment of a prior
distribution from the prior knowledge. Different techniques may produce different distributions
because the method of questioning may have some effect on the way the problem is viewed.”

On the other hand, O’Hagan (1988) explicitly defines ‘true’ probabilities as those that would
result if the expert were capable of perfectly accurate assessments of her own beliefs. O’Hagan
regards different ‘stated’ probabilities, that might result from different elicitation methods, as
more or less inaccurate attempts to specify the expert’s underlying ‘true’ probabilities. In contrast,
Winkler’s position seems to be that the results of different elicitations are all assessments of slightly
different probabilities. A possible reconciliation is that a ‘true’ distribution would be the result of
a method that leads the expert to view the problem from as complete and unbiased a perspective
as possible through appropriate use of cognitive tools.

In this section, we first consider how to test the internal consistency of the expert’s statements,
together with any assumptions made by the facilitator. We then discuss assessing the adequacy of

the elicitation, in terms of whether the acknowledged inaccuracies in the elicitation process matter.

4.1. Internal consistency

A system of probability statements is coherent if the probabilities are all consistent with the laws
of probability. If, for instance, an expert states P(E) = 0.4, P(F) = 0.3 and P(E or F') = 0.6,
when E and F are mutually exclusive events, then these probabilities are non-coherent. One way

to check the quality of an expert’s statements is for the facilitator to ask for sets of probability
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assessments that allow tests of coherence. We must expect that the expert’s elicited statements
will fail coherence tests. This is almost inevitable in view of the imprecision with which the expert
can make these judgements. The question then arises of how we should reconcile the internal
inconsistency of the elicited statements.

In the case of an incoherent set of individual probabilities, as in the example of mutually
exclusive events, the simplest answer is to confront the expert with the inconsistency and to invite
her to revise one or more of the stated values. In general we should expect this revision to improve
the expert’s assessments.

A careful examination of reconciling incoherent probability assessments is given by Lindley,
Tversky and Brown (1979, hereafter LT&B). In their approach, the reconciliation is done by the
person that we have called the facilitator. The facilitator takes a view of the accuracy with which
the expert will have been able to assess the stated probabilities. Thus, in the example of mutually
exclusive events, the facilitator needs to formulate a joint probability distribution p(e,s) for the
expert’s underlying true probabilities e = (P(E), P(F')) and for the expert’s stated probabilities s
for the three events FE, F and ‘E or F’. The facilitator’s beliefs about the expert’s true probabilities
would then be expressed by p(e|s = (0.4,0.3,0.6)). In practice, LT&B envisage the facilitator
formulating the joint distribution via a prior distribution p(e) for e and a ‘likelihood’ p(s|e) for
the expert’s assessment errors, so that the facilitator’s posterior distribution p(e|s = (0.4,0.3,0.6))
is derived by Bayes’ theorem. LT&B refer to this solution as the ‘internal approach’; contrasting
it with an ‘external approach’ that we consider in Section 5.1.

As in the simpler method of asking the expert to revise her own probabilities, this reconciliation
can lead to more accurate assessments. However, the improvement is now formally expressed by
the familiar Bayesian property that the facilitator’s posterior distribution of e will generally be

more concentrated than the prior distribution.
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In the context of eliciting a parametric probability distribution sometimes only as many sum-
maries are elicited as are required to identify unique values of the required hyperparameters. It is
then usually the case that any set of elicited summaries will be consistent with the fitted distribu-
tion, and hence with each other. It is therefore not possible to find any non-coherence. However,
if the facilitator asks for at least one more summary from the expert, then it becomes possible to
test for coherence. This has been called over-fitting.

Note, however, that inconsistent statements from the expert may simply indicate that the
expert’s distribution cannot be adequately represented by a member of the chosen family. For
instance, if the expert’s beliefs are sought concerning a proportion 7, the facilitator might choose
to work with the assumption of a beta distribution. Then if the expert specifies that the median is
0.4, the lower quartile is 0.3 and the upper quartile is 0.5, then no beta distribution will fit these
specifications. The Be(4.733,7.1) distribution fits the median and lower quartile, but has an upper
quartile of 0.494, while the Be(4.16,6.24) distribution fits the median and upper quartile, but has a
lower quartile of 0.293. However, it is unreasonable to expect the expert to specify these quantiles
to such accuracy, and the assessments in practice would not be seen as challenging the assumption
of a beta distribution. Instead a compromise such as Be(4.4,6.6), with lower quartile 0.296 and
upper quartile 0.497, clearly fits the elicited values very well.

If on the other hand the expert had specified a lower quartile of 0.2, then the beta family
assumption is called into question. The expert’s distribution appears to be negatively skewed but
with a median below 0.5, two properties which are together inconsistent with a beta distribution.
In general, given a set of expert statements that is larger than is needed to identify unique hyper-
parameters, we can choose an elicited distribution that, in some sense, fits the elicited statements
as closely as possible; an example is given in O’Hagan (1998). The quality of fit can be seen as

indicating the accuracy of the elicitation, while a sufficiently poor fit casts doubt on the assumed
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family of distributions.

In the case of parametric elicitation, then, over-fitting has the potential either to refine the
specification of hyperparameters or to refine the assumed distributional family. Notice, however,
that to decide between these two options the facilitator needs to have some idea of the accuracy of
the expert’s judgements. Given that this kind of judgement by the facilitator is required, it may
be that an extension of the approach of LT&B might be developed for this case, but we are not
aware of any published work in this direction.

The O&O nonparametric elicitation method of Section 3.3 also adopts essentially the approach
of LT&B, in the sense that the facilitator derives a posterior distribution for the expert’s underlying
density function, using the elicited statements as data. Note, however, that O&O treat the expert’s
summaries as error-free, and so they do not consider an analogue of the likelihood p(s|e).

An idea similar to over-fitting is feedback. For instance, in a parametric elicitation when we
have elicited enough summaries to fit a unique member of the chosen family, instead of eliciting one
or more further summaries the facilitator informs the expert of the values of those summaries that
are implied by the expert’s statements so far (and the assumed distributional form). In general,
feedback entails displaying the implications of other statements and inviting the expert to confirm
or deny that these are reasonable expressions of her beliefs. Whereas over-fitting will almost
invariably expose inconsistencies in the expert’s statements, feedback often simply results in the
expert confirming the implied values. As such, over-fitting is generally preferred, but feedback
can be very useful to show complex implications, such as displaying the fitted density function
graphically.

It is also worth noting that the expert will often make qualitative statements during the elic-
itation that can be checked informally against quantitative summaries. For instance, the expert

may appear uncertain and have difficulty specifying a credible interval, and yet may actually give
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a narrower interval than in another task where they informally indicated more certainty. The facil-
itator should be alert for any opportunity to assist the expert by checking the consistency of their

opinions, whether expressed or implied.

4.2. Fitness for purpose

Although over-fitting and coherence checking have the potential to improve the elicitation pro-
cess, appreciable imprecision will inevitably remain in the elicited summaries and in the fitted
distribution. Whether this imprecision matters depends on the purpose for which the elicitation is
performed.

Recognition that an elicited prior distribution does not necessarily reflect the expert’s knowledge
accurately has led to quite widespread use of sensitivity analysis in Bayesian statistics (O’Hagan
and Forster, 2004, chapter 8). This may involve varying the hyperparameters of a parametric fit
or more sophisticated variation of all aspects of the distribution. The general thrust of the robust
Bayesian movement was to allow the true prior distribution to lie in a nonparametric class of
distributions containing the elicited distribution. Then this approach proceeded to derive bounds
on posterior inferences as the prior varied across the class of possible priors. Berger (1994) reviews
this body of research. A more common use of sensitivity analysis in practical Bayesian analyses
has been just to explore in an ad hoc way a small number of alternative prior distributions.

Whether the elicitation is to obtain a prior distribution for some Bayesian analysis, to obtain
expert judgements for inputs of some decision model or for some other purpose, sensitivity analysis
has the same objective. It is to determine whether, when the elicited distribution is varied to other
distributions that might also be consistent with the expert’s knowledge, the results derived from
that distribution change appreciably. If not, the elicitation has adequately represented the expert’s

knowledge.
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How can we determine whether the result changes ‘appreciably’ as the elicited distribution
changes? There is a clear answer to this question when the result is a decision that is to be made
optimally with respect to some utility function. Then it is not the change in the decision that
matters but the change in expected utility. We consider the difference between, on the one hand,
the expected utility that is obtained by the optimal decision with respect to the elicited prior and,
on the other hand, the maximum expected utility that can be obtained by the optimal decision
with respect to any other distribution in the class. This difference represents the potential gain
in expected utility that might be obtained by more careful elicitation. See Kadane and Chuang
(1978) and Chuang (1984).

The problem with any sensitivity analysis is to specify the class of distributions. If we allow the
distribution to vary more from the elicited distribution, then we can expect greater discrepancies
in the results. The classes of priors used in robust Bayesian analysis are arbitrary and not based
on analysis of the elicitation process. The ‘internal approach’ of LT&B and the method of O&O
both yield the facilitator’s posterior distribution for the expert’s underlying probabilities or density
function. They therefore provide formal expression of the uncertainty around the particular elicited
distribution, which can in principle form the basis for subsequent sensitivity analysis. Their formal
structures are more complex to apply, but otherwise there seems no alternative to the kind of

informal, ad hoc sensitivity analysis most commonly employed.

4.3. Scoring Rules

In empirical work, probability distributions may be elicited for uncertain quantities whose actual
values are known to the experimenters. In other circumstances, such as weather forecasting, pre-
dictive distributions may be assessed for quantities whose values become known subsequently. In

both cases it can be useful to compare assessed probability distributions with the observed data to
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provide an objective measure of its accuracy. This is the purpose of a scoring rule.

Formally, a scoring rule is a formula for awarding a score to the expert, which can be thought of
as a reward. It is a function both of the expert’s elicited probability distribution for the uncertain
quantity and of that quantity’s true value.

One common application of scoring rules is to compare alternative elicitation methods or differ-
ent variants of an elicitation method. In empirical research, one elicitation method is often judged
to be better than another if it gets better scores. Note, however, that better scores result both
from the expert assessing her beliefs more accurately and from the expert having more (or more
accurate) knowledge.

Other purposes of a scoring rule are to provide an incentive for experts to record their opinions
well, and to help train experts to quantify their opinions accurately. To this end, it is important
that a scoring rule should encourage experts to record their true beliefs. More precisely, “The
scoring rule is constructed according to the basic idea that the resulting device should oblige each
participant to express his true feelings, because any departure from his own personal probability
results in a diminution of his own average score as he sees it.” (de Finetti, 1962, p. 359). A scoring
rule with this property is termed proper. Various proper scoring rules have been proposed and
several, including those most commonly used, are described in Matheson and Winkler (1976). See

also O’Hagan and Forster (2004, sections 2.54 to 2.58).

4.4. Calibration

There is a large and somewhat murky literature on the subject of calibration. At its simplest, the
idea is that perhaps a person’s elicited probabilities show a particular flaw, in that, of the events
the person says has probability p of happening, some function g(p) of them actually occur. Then

the thought is that when the person announces p as their probability of some event, knowing better,
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the user of this information has g(p) as their probability (Lichtenstein et al., 1982). Such a program
has the following flaw. Suppose the person being elicited is faced with a coin that person believes
to be fair, and hence announces p = % as the elicited probability of ‘tails’. What values can g(%)

take? Since the g(.) are supposed to be probabilities, and ‘tails’ and ‘heads’ are mutually exclusive

and exhaustive, we must have g(3) + g(3) = 1, i.e. g(3) = 3. Now suppose there are three events

1
3

equally likely, in the view of the person being elicited. The same argument shows g(%) = z and
g(%) = % Indeed this argument demonstrates g(r) = r for every rational number r. An assumption
of continuity or measurability of g then suffices to show g(z) = = for all real numbers, 0 < z < 1.
Hence recalibration on this basis contradicts the coherence of either the pre- or post-transformation
probabilities. Note that this argument does not apply to functions g that involve more than the
elicited probabilities. For example, it is not a contradiction to coherence to think that a person
may be over-confident in the sense that the probability (%) assigned to the interquartile range is
too high, and hence the probability assigned to the tails is too low. Similarly, it might be noticed
that a weather forecaster systematically over-predicts rain, and hence under-predicts the event of
no rain.

In practice, calibration is relevant where, as in the case of weather forecasters, experts regularly
make similar probability statements so that it is possible to check calibration and feedback is

immediate, relevant and frequent. Even without a formal calibration check, receiving regular

feedback would tend to ensure that their forecasts are reasonably well calibrated.
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5. Multiple Experts

5.1. Synthesising separate elicitations

Where important decisions or inferences are to be made, it is common to wish to draw upon the
expertise of several experts. A number of approaches have been proposed as to how to elicit, and
how to synthesise, the different experts’ knowledge. Formal methods of combining probability dis-
tributions are reviewed by Genest and Zidek (1986) who give a very useful annotated bibliography,
and French (1985) among others. We first consider the situation where the experts do not interact.
Separate probability distributions are elicited from the experts, in separate elicitation sessions. It
is then natural to ask how we can synthesise these different distributions into a single distribution.

Two of the most popular methods fall into the category known as opinion pools. The linear
opinion pool is a convex combination (a weighted average) of the individual probability distribu-
tions comprising it, and the logarithmic opinion pool is a normalized weighted geometric mean
(equivalent to applying a linear pool to the logarithms of the individual probability densities and
then normalizing the result). An important property that an opinion pool might be expected to
have is that it be externally Bayesian (Madansky 1978), meaning that, when there is an agreed
likelihood function, the opinion pool of the posterior distributions should coincide with the poste-
rior distribution obtained from the opinion pool of the prior distributions. Except in trivial cases,
the linear opinion pool fails to have this property, while the logarithmic pool does have it, when the
weights sum to one. However, a second property that we might require is invariance to event com-
bination. Suppose for instance that we elicit the experts’ probabilities for two mutually exclusive
events A and B. Letting C be the event ‘A or B’, each expert’s probabilities (assuming they are
coherent) satisfy P(C) = P(A) + P(B). Combination invariance would then require that the same

property should hold for the pooled probabilities of A, B and C. McConway (1981) shows that
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only the linear opinion pool satisfies a general marginalization criterion of this type. It is therefore
not possible to find a mechanistic opinion pooling method that both is externally Bayesian and
satisfies the marginalization criterion.

Note that the logarithmic opinion pool also suffers from the fact that a single expert’s opinion
that a certain set has probability zero implies that the pool must also assign zero probability to
that set. See Genest and Zidek (1986) for a wide-ranging discussion of these issues.

Both linear and logarithmic pools allow different weights to be assigned to the experts, which
can be used to give more weight to experts whose probability distributions are believed to be more
accurate. Cooke (1991) describes a method of choosing weights based on the experts’ performance
in assessing distributions for seed variables, which are quantities whose true value is known to the
facilitator but not to the experts. Evidence that this produces better elicitation than simple equal
weighting of the experts is presented in Cooke and Goossens (2000).

Mechanistic pooling methods can lead to a form of double counting of expertise if the knowledge
of some of the experts overlaps substantially. Then it is inappropriate to weight them all equally
with other experts, but the method of seed variables will also tend to overweight such a group.

Another criticism of all these pooling methods is that it is not clear whose opinion (if anyone’s)
the resulting probability distribution represents. A quite different approach to putting multiple
experts’ opinions together is to imagine each opinion as data input to a single ‘supra Bayesian’,
who uses these opinions to update his or her views. This is the ‘external approach’ of Lindley,
Tversky and Brown (1979). It was proposed earlier by Morris (1974) and is further developed by
Lindley (1985), French (1985), Genest and Schervish (1985); see also the discussion of Genest and
Zidek (1986). This approach is completely Bayesian, but requires a very substantial elicitation of

the supra Bayesian’s opinions about the expert opinions to be pooled.
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5.2. Group elicitation methods

We now consider approaches where the experts interact as a group. One simple and practical group
elicitation approach is to bring the experts together to discuss the uncertain quantity or quantities
about which their beliefs are to be elicited, and through this sharing of their expertise to seek a
consensus view. In effect, this treats the group as a single individual. Phillips (1999) presents a
formal justification of this behavioural aggregation approach. There are, however, new psychological
issues that arise in the interaction between the members of the group. This kind of group elicitation
requires a knowledgeable and experienced facilitator who needs to be aware of the possibilities of
strong personalities in the group having too much weight in the discussion, or of judgements based
on overlapping experience being overweighted through being repeated in the discussions. It may
also be that the pressure to reach consensus leads to the experts suppressing dissenting views, or
alternatively it may not be possible to reach consensus.

The Delphi method is a formal technique for managing the group interaction. The method
proceeds by first eliciting the various experts’ opinions separately, then feeding each expert’s views
to all the other experts along with some explanation of that expert’s reasoning. The experts are
then invited to revise their own elicitations. The method then operates iteratively, feeding back
the revised elicitations to all the experts, with explanation of the reasons for revisions, and so
on. Although some of the complications of group interaction are removed, the method is likely to
produce a less efficient sharing of knowledge than the behavioural aggregation approach. It is also
still necessary for the facilitator to manage the interaction, since one expert’s reasons may have
undue influence if very forcefully expressed. Pill (1971) reviews the Delphi technique. In addition,
there is a truly vast literature on its use in political science and government.

A variant of Delphi is discussed by DeGroot (1974), who proposes that each expert revises
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his/her opinion by applying a linear opinion pool to all the experts’ distributions, with weights
that reflect the importance that each pool member puts on the opinions of each of the other
participants. The system of revisions then forms a Markov Chain whose transition matrix is the
matrix of weights, and DeGroot obtains conditions for them to converge to a consensus. See also
Lehrer (1976).

In contrast to these practical group elicitation methods, we can also take a more axiomatic
approach and try to identify what would be rational ways for experts to seek a combined expression
of beliefs. Bayesian theory is profoundly a theory of rational individual decision-making. Basically,
it imposes a minimal condition on an individual’s statements of what bets would be acceptable
(namely the avoidance of Dutch Book), and accepts all responses that meet that condition. How
can this theory be extended to groups?

In order to make progress on this question, one needs to know how the group decision-making
structure works, and how it relates to the views of the individuals in the group. Before starting,
it is necessary to eliminate one obvious special case, that of a dictatorship. In a dictatorship, the
choices of only one individual matter for the group’s choices, namely those of the dictator. Hence
if the dictator behaves individually in accordance with the Bayesian axioms, the group will as well.
By eliminating this case, we insist that more than one person’s views matter in how the group
makes decisions.

Suppose instead the group makes decisions by majority vote, and suppose each member of the
group has a transitive ranking of the alternatives. Surely in this case, something reasonable should
be true of the decisions of such a group. Well, perhaps not. Suppose the group consists of three
people (the minimum for interesting majority votes), and are expressing preferences among three
alternatives, A, B, and C. Suppose voter 1 ranks them in that order, i.e. prefers A to B to C.

These preferences will be denoted A > B > C. Suppose voter 2’s preferences are B > C' > A, and
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voter 3’s are C' > A > B. In a choice between A and B, voters 1 and 3 prefer A to B. Between
B and C, voters 1 and 2 prefer B to C. Finally, between A and C, voters 2 and 3 prefer C' to
A. Hence the majority preferences can be summarized as A > B > C > A. No group utility
function can summarize such choices because they are not transitive. This simple example has
been generalized to every non-dictatorial group decision-making process in a celebrated theorem of
Arrow (1951, 1963). A huge literature has grown up around this result, mainly under the heading
of political economy.

A second approach to the problem of Bayesian group decision-making asks for preferences
between risky outcomes for two or more Bayesians. However they make their decisions, these
Bayesians seek to compromise. The only condition imposed on their compromises is that they obey
the Pareto Principle: if each member of the group prefers A to B, the compromise cannot prefer
B. Suppose there are two Bayesians and three alternatives. Two trivial cases must be dealt with
first. If the Bayesians agree in their probabilities, every non-trivial convex combination of their
utilities, together with their agreed probability, will provide a Bayesian compromise satisfying the
Pareto Principle. Similarly, if their utilities coincide, every non-trivial convex combination of their
probabilities will similarly suffice. The result of Seidenfeld, Schervish and Kadane(1989) is that
these are the only cases in which a Bayesian compromise can be found. When there are more
than two Bayesians involved, the Pareto Principle is less binding, so in certain cases a Bayesian
compromise can be found (see Goodman, 1988).

These results cast serious doubt on what might be meant by the probability and utility function
of a group seeking to be Bayesian. In what sense can the probability and utility function of the

group be representative of the decisions the group might make?

99



6. Discussion

From the 1960s to at least the early 1980s, research in elicitation was substantial, and was charac-
terised by some close collaborations between statisticians and psychologists. More recently, there
seems to have been much less research in both the statistics and psychology communities, and col-
laboration between them has lapsed. There are, however, signs that this is changing. The growing
sophistication of Bayesian computational methods has led to a dramatic increase in the breadth and
complexity of Bayesian applications. Bayesians are beginning to show more interest in elicitation
and, being freed from the computational constraint to use tractable, conjugate priors, there is a
need to develop processes capable of eliciting complex, non-standard distributions. A recent review
of case studies and software is Kadane and Wolfson (1998). This in turn is likely to lead to renewed
collaboration with psychologists.

Despite the existence of a broad and diverse literature in elicitation, which has provided many
valuable procedures and insights, there remains very considerable scope for further research. Some

important topics in the authors’ opinion are the following.

e Multivariate elicitation. Where it is necessary to elicit a joint probability distribution for two
or more quantities, there has been relatively little investigation by psychologists (particularly
when the quantities cannot be regarded as instances of a larger population). In this context,
also, the available multivariate parametric families typically impose unrealistic constraints on

experts’ beliefs.

e Nonparametric elicitation. We find the use of uniform, triangular or histogram distributions
unrealistic, but fitting parametric distributions also imposes constraints that may be unreal-
istic. There has been little work on nonparametric fitting, and although a nonparametric fit

might represent an expert’s beliefs more accurately it is not clear whether this will actually
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matter in practice (see the discussion in Section 4.2).

e Graphical tools. We believe there is substantial, as yet relatively unexplored, potential in

graphical methods.

An aim of much statistical research is to wring as much from data as we possibly can, but using
expert opinion better (or using it at all) could add more information than slight improvement in
efficiency through better techniques of data analysis. Too often, ad hoc methods must be employed
when an expert’s opinion is to be quantified; ideally, there should be a range of tried and tested

elicitation methods in a statistician’s toolbox.
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