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1. Introduction.

The usual model for probability relies on three axioms: (i) non-negativity (P{A} ≥ 0 for all

events A), (ii) total probability (P{S} = 1, where S is the sure event), and (iii) countable

additivity (P{∪∞i=1Ai} =
∑∞

i=1 P{Ai}, where the events Ai are disjoint). However, de

Finetti [3] and others argue for the replacement of countable additivity with the more

general finite additivity (P{∪n
i=1Ai} =

∑n
i=1 P{Ai}, where the events Ai are disjoint and

finite in number). A finitely additive probability measure is also known in the literature

as a probability charge.

Mere finite additivity has some peculiar consequences, including non-conglomerability

([3]), reasoning to a foregone conclusion ([8]), and paying not to see data ([9]). At the same

time the additional flexibility available under finite additivity can be intuitive and natural.

For example, while under countable additivity one can have a uniform distribution on a

finite set or a bounded interval, one cannot have a countably additive uniform distribution

on a countable set such as the natural numbers.

This leads to the question of what finitely additive uniform distributions on the natural

numbers look like. Clearly one must have probability zero for each finite set, and hence
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probability one for each cofinite set. But what about infinite sets whose complement is

also infinite, such as the even numbers or the prime numbers? Kadane and O’Hagan made

an initial foray in this direction in [7], exploring two natural ideas about what uniformity

means in these circumstances: (a) that each set with a limiting relative frequency should

have as its probability that limiting relative frequency, and (b) that each residue class mod

m should have probability 1/m. Because each residue class mod m has limiting relative

frequency 1/m, (a) is at least as restrictive an assumption as (b). Kadane and O’Hagan

show by example that (a) is strictly more restrictive than is (b). That is, they give an

example of a set G having a possible value under (b) that is not possible under (a).

The purpose of this paper is to extend the discussion of finitely additive uniform

distributions to a third notion of uniformity, namely shift-invariance. In particular, if

s(n) = n + 1 for all natural numbers n, then the condition of shift invariance is P{G} =

P{s−1(G)} for all sets G. We show that shift-invariance lies strictly between (a) and

(b). More specifically, we prove that the set L of probability charges that extend limiting

relative frequency is a proper subset of the set S of shift-invariant charges, which in turn

is a proper subset of the set R of charges that map residue classes uniformly. In addition,

we show that for each of these inclusions, there exists a set G for which the set of values

µ(G) obtained when µ is allowed to range over the smaller set of charges is a proper subset

of the set of values produced by the larger set of charges.

The remainder of this article is organized as follows. In §2, we introduce shift-invariant

charges, and in §3, we show that L ⊆ S ⊆ R. In §4, we investigate the sets of values that

the charges in L, S, and R take on at a given set G. The examples given in this section

establish the properness of the inclusions of §3. Finally, §5 offers some concluding remarks.
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2. Shift-invariant probability charges.

Let N denote the set {1, 2, . . .} of natural numbers, and let C be a collection of subsets of

N such that N ∈ C. We define a finitely additive probability charge on C to be a function

µ : C → [0, 1] which takes on the value 1 at N and which has the property that for any

finite collection of disjoint subsets G1, . . . Gn ∈ C, we have

µ(Gi ∪ . . . ∪Gn) =
n∑

i=1

µ(Gi).

We continue to let s : N → N be the shift function which sends n to n + 1 and say

that C is shift-invariant if C is invariant under s−1. In this case, we let SC denote the

set of finitely additive probability charges on C that are shift-invariant in the sense that

µ(G) = µ(s−1(G)) for any G in C. In particular, the collection of all subsets of N, which

we denote by N , is shift-invariant and we write S = SN . Our purpose in this section is

first to give a criterion for when an element in SC can be extended to an element in S and

then to use the criterion to produce three notable examples of elements in S.

Before proceeding, we remind the reader of two key results. The first is given in [1]

and asserts that, as a consequence of the Hahn-Banach theorem (which in turn depends

on the axiom of choice), there exists a special linear functional T on the space of bounded

sequences of real numbers. This functional is called the Banach Limit and satisfies a host

of properties including

B1. If xn ≥ 0 for all n, then T ((x1, x2, . . .)) ≥ 0.

B2. T ((x1, x2, . . .)) ≤ Supxn.

B3. T ((x, x, . . .)) = x.

B4. T ((x1, x2, x3, . . .)) = T ((x2, x3, . . .)).

B5. If (xn) converges to y, then T ((xn)) = y.

We note, as the authors of [1] do, that if µ is any finitely additive probability charge on

N , then the function ν : N → [0, 1] given by

ν(G) = T ((µ(G), µ(s−1(G)), µ(s−2(G)), . . .)) (2.1)

is, by properties B1-B4 and the additivity of T , a finitely additive probability charge on

N which is shift-invariant. We will depend on property B5 in §4.

The second result we cite can be found in [7] and states that if C is a collection of

subsets of N with N ∈ C and µ is a finitely additive probability charge on C, then µ can be
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extended to a probability charge on N if and only if for all collections of sets A1, . . . , At

and B1, . . . , Bu in C such that
t∑

i=1

IAi
≤

u∑
j=1

IBj
, (2.2)

we have
t∑

i=1

µ(Ai) ≤
u∑

j=1

µ(Bj), (2.3)

where IA is the indicator function of A.

Theorem 2.4. Let C be a shift-invariant collection of subsets of N such that N ∈ C, and

let µ ∈ SC . Then µ can be extended to an element in S if and only if (2.2) implies (2.3)

for all collections of sets A1, . . . , At, B1, . . . , Bu in C

Proof. If µ can be so extended, then by the result from [7] quoted above, (2.3) must hold

whenever a collection of sets A1, . . . , At, B1, . . . , Bu in C satisfies (2.2). Conversely, assume

that for all A1, . . . , At, B1, . . . , Bu in C, (2.2) implies (2.3). Then the result in [7] states

that µ can be extended to a finitely additive probability charge on N . The probability

charge ν given by (2.1) is then shift-invariant and, by property B3, satisfies ν(G) = µ(G)

for all G ∈ C. This completes the proof of the theorem.

Example 2.5. Let b = (bn) be an increasing sequence of natural numbers and for a subset

G of the natural numbers, let

dn(G, b) =
|G ∩ {1, . . . , bn}|

bn
.

Let G be the collection of subsets of N for which the limit

lim
n→∞

dn(G, b)

exists and for these subsets, set µb(G) equal to this limit. It is easily checked that µb is

finitely additive and shift-invariant on G. To see that µb can be extended to a shift-invariant

charge on all of N, we follow the proof given in [7] in the case that b is the sequence of all

natural numbers. The argument uses Theorem 2.4 and begins with the assumption that

A1, . . . , At, B1, . . . , Bu are in G and satisfy (2.2). Interchanging a summation and a limit,

we then observe that
t∑

i=1

µb(Ai) = lim
n→∞

b−1
n

bn∑
k=1

t∑
i=1

IAi
(k),
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and that the corresponding equation obtained by replacing t with u and Ai with Bj holds

as well. It follows immediately that (2.3) is valid. We note that when b is the sequence

of natural numbers, (dn(G, b)) is the usual relative frequency sequence and that in general

for any b, the probability charge µb is an extension of limiting relative frequency.

Example 2.6. Let f be a function from N to the non-negative reals, and assume that

lim
n→∞

n∑
k=2

|f(k)− f(k − 1)|
n∑

k=1

f(k)
= 0. (2.7)

Let G be the collection of subsets G of N for which the limit

lim
n→∞

∑
k∈G∩{1,...,n}

f(k)

n∑
k=1

f(k)

exists and for these subsets, set µf (G) equal to this limit. Then µf is finitely additive and

shift invariant on G. To demonstrate that µf can be extended to a shift invariant charge

on N, we again use Theorem 2.4. As before, assume that A1, . . . , At and B1, . . . , Bu are in

G and satisfy (2.2). The extendability of µf now follows from the fact that the equation

t∑
i=1

µf (Ai) = lim
n→∞

( n∑
k=1

f(k)
t∑

i=1

IAi(k)

n∑
k=1

f(k)

)

holds, as well as the corresponding equation for the set Bj .

We remark that any non-increasing function f for which
∑∞

k=1 f(k) diverges satisfies

condition (2.7). Thus one can take f(n) = nc for any c such that −1 ≤ c ≤ 0. In the case

that c = 0, we recover the standard limiting relative frequency. In the case that c = −1,

we obtain the logarithmic density described, for instance, in [4].

Example 2.8. Let µ be a finitely additive probability charge on N . We produce an

associated element µ′ in S as follows. For any set G and positive integer n, let

µn(G) =

n−1∑
k=0

µ(s−k(G))

n
.
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Next let G be the collection of subsets G of N for which the limit

lim
n→∞

µn(G)

exists and for these subsets, let µ′(G) equal this limit. Then µ′ is a shift invariant charge

on G. We turn once more to Theorem 2.4 to verify that it can be extended to N . Let

A1, . . . , At, B1, . . . , Bu be a collection of sets in G such that (2.2) holds. Then, for all k ≥ 0,

t∑
i=1

Is−k(Ai) ≤
u∑

j=1

Is−k(Bj).

Since µ is a probability charge, the result from [7] cited prior to Theorem 2.4 implies that

t∑
i=1

µ(s−k(Ai)) ≤
u∑

j=1

µ(s−k(Bj)).

We conclude that

t∑
i=1

µ′(Ai) =
t∑

i=1

lim
n→∞

n−1∑
k=0

µ(s−k(Ai))

n

= lim
n→∞

n−1
n−1∑
k=0

t∑
i=1

µ(s−k(Ai))

≤ lim
n→∞

n−1
n−1∑
k=0

u∑
j=1

µ(s−k(Bj))

=
u∑

j=1

µ′(Bj).

The charge µ′ will play a critical role in §4.
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3. Notions of uniformity.

For any subset G of N, let

dn(G) =
|G ∩ {1, . . . , n}|

n
. (3.1)

Let L be the set of finitely additive probability charges µ on N which extend limiting

relative frequency, that is which have the property that

µ(G) = lim
n→∞

dn(G)

whenever G is a subset of N for which this limit exists. Let R be the set of finitely additive

probability charges on N that map every residue class mod m, for every m ∈ N, to 1/m.

In [7], the authors prove that L is a proper subset of R.

In this section we show that the set S of shift-invariant charges on N lies between

L and R . Since any shift-invariant charge necessarily maps each residue class mod m to

1/m, we see at once that S ⊆ R. What we establish below is that L is a subset of S. In

§4, we prove that the inclusions of L in S and S in R are strict.

Lemma 3.2. Let G be a subset of N satisfying G∩s−1(G) = ∅. Then there exists a subset

H of N such that H ∩G = H ∩ s−1(G) = ∅ and such that the limiting relative frequency

of H ∪G exists and is equal to 1/2.

Proof. Let G be a subset of N and assume that G ∩ s−1(G) = ∅. Define a subset H of N
by means of the following rule. An integer n ∈ N is in H if and only if n is odd and not

in G ∪ s−1(G). Clearly H ∩ G = H ∩ s−1(G) = ∅. To establish that the limiting relative

frequency of H ∪G is 1/2, we show that for every odd natural number n, one and only of

the pair (n, n+1) is in H∪G. Assume first that n ∈ (H∪G). Since n is assumed to be odd,

we know that n+1 is not in H. In the case that n ∈ H, we see by the definition of H that

n /∈ s−1(G), or equivalently, that n + 1 /∈ G. In the case that n ∈ G, the fact that G and

s−1(G) are disjoint implies that n+1 /∈ G. We conclude that n+1 /∈ (H ∪G). Conversely,

assume that n + 1 /∈ (H ∪ G). Then n is not in s−1(G). If n were in addition not in G,

then, since n is odd, it would be in H. Thus, n is either in G or H, and consequently is in

H ∪G. This completes the proof of the lemma.

Proposition 3.3. The sets L, S, and R satisfy

L ⊆ S ⊆ R.
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Proof. As mentioned earlier, it is immediate that S is contained in R. It remains to show

that every element in L is shift-invariant. To this end, let µ be an element in L and G

be a subset of N. In addition, let G1 be the intersection of G and the set of positive odd

integers, and let G2 = G−G1. To show that µ(G) = µ(s−1(G)) it suffices to show that

µ(Gi) = µ(s−1(Gi)) (3.4)

for i = 1 and 2.

Fix i and note that Gi ∩ s−1(Gi) = ∅. Thus, according to Lemma 3.2, there exists a

subset H of N such that H ∩Gi = H ∩ s−1(Gi) = ∅ and such that H ∪Gi has a limiting

relative frequency. Since

|dn(H ∪Gi)− dn(H ∪ s−1(Gi))| ≤
2
n

,

it follows that H ∪ s−1(Gi) also has a limiting relative frequency and that

µ(H ∪Gi) = µ(H ∪ s−1(Gi)).

Using the fact that H ∩Gi = H ∩ s−1(Gi) = ∅ and finite additivity, we conclude that (3.4)

holds and the proposition is proved.
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4. The range of probabilities for a set.

We change our perspective now and investigate the extent to which each of our notions of

uniformity constrains the probability of a given set. In particular, for a subset G of N, we

are interested in the sets

VL(G) = {r ∈ [0, 1]
∣∣∣ ∃µ ∈ L such that µ(G) = r}

VS(G) = {r ∈ [0, 1]
∣∣∣ ∃µ ∈ S such that µ(G) = r}

VR(G) = {r ∈ [0, 1]
∣∣∣ ∃µ ∈ R such that µ(G) = r}.

In addition, we consider the set D(G) of limit points of the relative frequency sequence

(dn(G)). By Proposition 3.3, we know that VL(G) ⊆ VS(G) ⊆ VR(G). Example 2.5 (or

Theorem 1 in [7]) leads quickly to the realization that this sequence of inclusions can be

extended to

D(G) ⊆ VL(G) ⊆ VS(G) ⊆ VR(G). (4.1)

In this section we show that for each inclusion in (4.1), there exists a set G such that the

inclusion is strict. One consequence, formulated as part of Theorem 4.11 at the end of the

section, is that the inclusions of Proposition 3.3 are themselves strict.

In [7], the authors show that VL(G) and VR(G) are closed intervals. We begin by

showing that the same is true of D(G) and VS(G).

Proposition 4.2. The set D(G) is a closed interval.

Proof. Let l and u be the greatest lower bound and least upper bound, respectively, of

D(G). Since the set of limit points of a set is closed, we know that l and u are in D(G).

It suffices then to demonstrate that for any d satisfying

l < d < u, (4.3)

there is a subsequence of (dn(G)) which converges to d. Such a subsequence can be formed

inductively as follows. Let dn1(G) be the first term of (dn(G))) which is less than d. Such

a term exists by (4.3). Then for i even, let dni(G) be the first term after dni−1(G) which is

greater than d and for i odd, let dni(G) be the first term after dni−1(G) which is less than

d. Notice that in both cases, (4.3) assures us of the existence of dni
(G). Clearly, (dni

(G))

oscillates above and below d. The reason it converges to d is that for any i,

|dni
(G)− d| ≤ |dni

(G)− dni−1(G)| ≤ 1
ni

.
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This concludes the proof of the proposition.

Proposition 4.4. The set VS(G) is a closed interval.

Proof. To show that VS(G) is an interval observe that for any two elements µ and µ′ in S

and any τ ∈ [0, 1], the charge τ · µ + (1 − τ) · µ′ is also in S. Thus, the interval between

any two points in VS(G) is contained in VS(G).

To prove that VS(G) is closed, assume that z is a limit point of VS(G). Then there

exists a sequence of charges µn in S such that

lim
n→∞

µn(G) = z.

Let

ν(G) = T ((µ1(G), µ2(G), ...)),

where T is the Banach Limit introduced in §2. Let B1-B5 refer to the properties of the

Banach Limit labeled as such in §2. Note that B1-B3 imply that ν(N) = 1 and that

0 ≤ ν(G) ≤ 1 for all G. Since each µn is shift-invariant, we find that ν is as well. Since

each µn is finitely additive and T is linear, we see that ν is finitely additive. Thus, ν ∈ S.

Finally, since ν(G) = z by property B5, we have z ∈ VS(G). We conclude that VS(G) is

closed, and the proof of the proposition is complete.

The remainder of this section is devoted to exhibiting, for each of the inclusions in

the nested sequence (4.1), a set G such that the containment is proper.

Example 4.5. We consider first the inclusion D(G) ⊆ VL(G).

Let G be the subset of N whose indicator function sequence is

00 10 1100 11110000 1111111100000000 . . . .

It is not difficult to verify that D(G) = [1/2, 2/3]. We prove here that the lower end-point

of VL(G) is 0. The same proof applied to the complement Gc of G shows that the lower

end-point of VL(Gc) is 0, and in turn that the upper end-point of VL(G) is 1. Thus we

establish that VL(G) = [0, 1].

Let µ denote the limiting relative frequency charge, defined on the collection L of sets

for which the limiting relative frequency exists. Our strategy is to apply Theorem 2 of [7],

which states that the lower end-point of VL(G) is the supremum of

r−1
( t∑

i=1

µ(Ai)−
u∑

j=1

µ(Bj)
)
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over all integers r and sets A1, . . . , At, B1, . . . , Bu in L satisfying

t∑
i=1

IAi
−

u∑
j=1

IBj
≤ rIG. (4.6)

In particular, we show that for the set G under consideration, whenever (4.6) holds, we

have
t∑

i=1

µ(Ai)−
u∑

j=1

µ(Bj) ≤ 0.

It follows that 0 ∈ VL(G).

Let LA =
∑t

i=1 µ(Ai) and LB =
∑u

j=1 µ(Bj). Our argument exploits the fact that the

indicator function sequences of the sets appearing on the left-hand side of (4.6), because

they are in L, cannot oscillate as dramatically as that of G. In particular, each such set, in

contrast to G, must have roughly the same number of elements in an interval of the form

2z to 2z + 2z−1 as in the neighboring interval from 2z + 2z−1 to 2z+1. Thus any attempt

to make LA large necessarily forces LB to be, at least in the limit, equally large. We make

this line of reasoning precise by choosing ε > 0 and letting N be such that for all n > 2N ,

|dn(Ai)− µ(Ai)| <
ε

t
and |dn(Bj)− µ(Bj)| <

ε

u
.

It follows that for every n > 2N ,

∣∣∣
n∑

k=1

fA(k)

n
− LA

∣∣∣ < ε and
∣∣∣

n∑
k=1

fB(k)

n
− LB

∣∣∣ < ε, (4.7)

where

fA(k) =
t∑

i=1

IAi(k) and fB(k) =
u∑

i=1

IBj (k).

Next, for any positive integer z, let

FA(z) =
2z+1∑

k=2z+2z−1+1

fA(k)

and similarly let

FB(z) =
2z+1∑

k=2z+2z−1+1

fB(k).
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Then, for z sufficiently large, we have according to (4.7)

FA(z) =
2z+1∑
k=1

fA(k)−
2z+2z−1∑

k=1

fA(k)

> 2z+1(LA − ε)− (2z + 2z−1)(LA + ε)

= 2z−1(LA − 7ε)

and

FB(z) =
2z+1∑
k=1

fB(k)−
2z+2z−1∑

k=1

fB(k)

< 2z+1(LB + ε)− (2z + 2z−1)(LB − ε)

= 2z−1(LB + 7ε).

Since IG(k) = 0, for 2z + 2z−1 + 1 ≤ k ≤ 2z+1, we see from (4.6) that FB(z) ≥ FA(z). It

follows that

2z−1(LB + 7ε) > 2z−1(LA − 7ε),

from which we conclude that LA−LB < 14ε. Since we can choose ε to be arbitrarily small,

we find that LA − LB ≤ 0 as claimed.

Example 4.8 We turn to the inclusion VL(G) ⊆ VS(G).

Let

G =
∞⋃

n=1

{n2, n2 + 1, . . . , n2 + n− 1}.

Note that G is the subject of Example 4 in [7]. By the analysis given there, there exists

a probability charge µ ∈ R satisfying µ(G) = 0. Let µ′ ∈ S be the associated charge

whose construction is given in Example 2.8 of the present paper. We proceed to show that

µ′(G) = 0 by establishing inductively that µ(s−k(G)) = 0 for all k.

Base case: The charge µ was chosen so that µ(G) = 0.

Inductive step: Let i be a non-negative integer and assume that µ(s−i(G)) = 0. We

evaluate µ(s−(i+1)(G)) by decomposing s−(i+1)(G) into the disjoint union of the two sets

Mi+1 = s−i(G) ∩ s−(i+1)(G)

and

Ni+1 = s−(i+1)(G)−Mi+1. (4.9)
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Since Mi+1 is a subset of s−i(G), we have µ(Mi+1) = 0. Direct inspection reveals that

Ni+1 is the set of natural numbers which are i + 1 less than a square. By extension, let

N0 denote the set of squares themselves, i.e., N0 = {1, 4, 9, 16, . . .}. In [7], the authors

establish that µ(N0) = 0. Their proof depends on the observation that for any subset H of

N, the upper end-point of VR(H) is equal to the infimum over all m ∈ N of rm/m, where

rm is the number of residue classes mod m that have non-empty intersection with H. In

the case of N0, the fact that the number of quadratic residues modulo an odd prime p

is (p + 1)/2 is sufficient to establish that this infimum is 0. Since the number of residue

classes mod p that have non-empty intersection with s−j(N0), for j > 0, is also (p + 1)/2,

the same argument applies equally well to these sets. In particular, we find that the set

Ni+1 appearing in (4.9) satisfies µ(Ni+1) = 0 and the induction is complete.

A similar argument shows that if ν ∈ R is chosen so that ν(Gc) = 0, as can be done

according to Example 4 in [7], then the associated charge ν′ ∈ S satisfies ν′(Gc) = 0.

Indeed, the only complication that arises is the need to compute, for any odd prime p and

any j > 0, the number of residue classes mod p that contain a positive integer of the form

n2 + n− j. However, substituting m− (p + 1)/2 for n reveals that the set of residues mod

p of the form n2 + n− j is simply a shift of the set of quadratic residues mod p. Thus the

number in question is (p + 1)/2 and the proof goes through as before. As a consequence,

we find not only that 0 ∈ VS(G), but also that 0 ∈ VS(Gc). It follows that VS(G) = [0, 1].

Since the limiting relative frequency of G is 1/2, we see that VL(G) is a proper subset of

VS(G).

Example 4.10. Our final example relates to the inclusion VS(G) ⊆ VR(G).

Let G be the set with indicator function sequence

011011 011101110111 01111011110111101111 . . . .

Then G has limiting relative frequency 1. Let µ be an element of S. To compute µ(G),

note that G ∪ s−1(G) is cofinite, and so by additivity, we have 1 = 2µ(G)− µ(G1), where

G1 = G∩s−1(G). Thus µ(G) = 1/2+µ(G1)/2. Note in addition that the 0’s in the indicator

function sequence of G1 appear in consecutive pairs and that there is a point after which

the number of 1’s between a pair of 0’s is at least two. Thus s−2(G1) ∪ G1 is cofinite

and we find, by additivity again, that 1 = 2µ(G1)− µ(G2) where G2 = G1 ∩ s−2(G1). So

µ(G1) = 1/2+µ(G2)/2 and µ(G) = 3/4+µ(G2)/4. Next, we use the fact that G2∪s−4(G2)
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is cofinite to establish that µ(G) = 7/8 + µ(G2 ∩ s−4(G2))/8. Indeed, continuing in this

way, we find that for all positive integers n,

µ(G) >
2n − 1

2n

and hence, µ(G) = 1. A similar argument can be made to show that µ takes on the value

1 at every set for which the length of strings of 0’s in the indicator sequence is bounded

and the length of strings of 1’s goes to ∞.

Finally, observe that every residue class in N has infinitely many members excluded

from G. Thus, by Theorem 6 in [7] there is a charge in R which takes on the value 0 at G.

Since R contains S and µ(G) = 1 for all µ ∈ S, we find that VR(G) = [0, 1]. In particular,

VS(G) is a proper subset of VR(G).

We conclude this section with the following summary of our results.

Theorem 4.11.

i) For any subset G of N, the inclusions in (4.1) hold. Moreover, for each inclusion,

there exists a set G for which the containment is proper.

ii) The sets L, S, and R satisfy

L ( S ( R.
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5. Conclusion.

Improper prior distributions (that have infinite mass) are sometimes used in statistics to

represent “ignorance,” a practice advocated by Jeffreys ([5]) and Laplace (see [2]). Finitely

additive distributions (charges) have many of the properties of improper distributions (see

[6]) and hence form a useful test-bed for understanding improper distributions.

In the context of the natural numbers, a finitely additive distribution can give each

number equal probability. The question that this article explores is how to represent unifor-

mity with respect to infinite non-cofinite sets. While there is only one uniform distribution

on a finite set, or on a bounded interval, we consider several reasonable operationalizations

of uniformity for finitely additive charges on the natural numbers.

This paper is a continuation of the investigation in [7]. That paper was concerned

with two sorts of uniform finitely additive distributions on the natural numbers: (1) those

that extend limiting relative frequency (the set of these is denoted by L) and (2) those

that map residue classes uniformly (the set of these is denoted by R). That paper showed

L ⊆ R,

and that the inclusion is proper.

This paper introduces a third type of uniform probability charge on the natural num-

bers, those that are shift-invariant (the set of these is denoted by S). Proposition 3.3

shows

L ⊆ S ⊆ R.

Examples 4.8 and 4.10 show that these inclusions are proper as well.

It is not our perspective to label one of these notions of uniformity as “correct” in

some sense and the others “wrong;” rather we observe only that they are different, and

leave the choice to those who require a uniform distribution on the natural numbers.
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