Christopher J. Paciorek and Mark J. Schervish
To assess the method, we compare the Bayesian nonstationary GP model with a Bayesian stationary GP model, various standard spatial smoothing approaches, and nonstationary models that can adapt to function heterogeneity. In simulations, the nonstationary GP model adapts to function heterogeneity, unlike the stationary models, and also outperforms the other nonstationary models. On a real dataset, GP models outperform the competitors, but while the nonstationary GP gives qualitatively more sensible results, it fails to outperform the stationary GP on held-out data, illustrating the difficulty in fitting complex spatial functions with relatively few observations.
The nonstationary covariance model could also be used for non-Gaussian data and embedded in additive models as well as in more complicated, hierarchical spatial or spatio-temporal models. More complicated models may require simpler parameterizations for computational efficiency.
Keywords: smoothing, Gaussian process, kriging, kernel convolution