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Abstract

Rosenblatt’s transformation has been used extensively for evaluation of model

goodness-of-fit, but it only applies to models whose joint distribution is continuous.

In this paper we generalize the transformation so that it applies to arbitrary probabil-

ity models. The transformation is simple, but has a wide range of possible applications,

providing a tool for exploratory data analysis and formal goodness-of-fit testing for a

very general class of probability models. The method is demonstrated with specific

examples.

Keywords: residuals, hypercube, uniform, generalized linear models, time series, sur-

vival analysis

Rosenblatt (1952) described a transformation1 mapping a k-variate random vector with a

continuous distribution to one with a uniform distribution on the k-dimensional hypercube.

The transformation is particularly important for generating residuals in nonlinear and/or

non-Gaussian time series analysis (Smith, 1985; Shephard, 1994; Diebold et al., 1998; Kim

et al., 1998), but can also be used to obtain residuals for more general probability models.

This allows for formal goodness-of-fit testing of these models (see, among others, Darling,

∗This work was supported in part by NIH Grants R21 EB005967-01A1 and R01 EB005847-01, as well as

NSF Grant CCR-0326453.
1Rosenblatt pointed out in his 1952 paper that J.H. Curtiss and I.H. Savage had also considered the same

transformation.
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1957; Justel et al., 1997; Liang et al., 2001), and also provides a means of generating diag-

nostic plots useful for exploratory data analysis. In this paper, Rosenblatt’s transformation

is generalized so that it can be applied to arbitrary probability distributions, instead of just

continuous distributions. This extends the scope of the aforementioned procedures to cover

models with non-continuous distributions, such as generalized linear models, time series

models with discrete observations, survival analysis models, and many others.

Following the notation of Rosenblatt (1952), let X = (X1, . . . , Xk) be a random vector

defined on a probability space (Ω,F , P ). Define the conditional cumulative distribution

functions

F1(x1) = P (X1 ≤ x1),

F2(x2|x1) = P (X2 ≤ x2|X1 = x1),

. . .

Fk(xk|x1, . . . , xk−1) = P (Xk ≤ xk|X1 = x1, . . . , Xk−1 = xk−1).

We will also generically define f(x−) to be the left limit limu↑x f(u), so that F1(x1−) =

P (X1 < x1), F2(x2 − |x1) = P (X2 < x2|X1 = x1), and so on. Rosenblatt’s transformation is

given by z = (z1, . . . , zk) = T1x = T1(x1, . . . , xk), where

z1 = F1(x1),

z2 = F2(x2|x1),

. . .

zk = Fk(xk|x1, . . . , xk−1).

When the distribution of X is continuous, it is straightforward to show that Z = T1X has a

uniform distribution on the k-dimensional unit hypercube. However, when the distribution

of X is discrete, or mixed discrete and continuous, this is not generally the case. This is

easily verified by considering the trivial counterexample where k = 1 and X has a Bernoulli

distribution with P (X = 1) = p.

We introduce a new transformation, T2, that can be used when X has any k-variate

distribution. The transformation is random, in the sense that it depends on auxiliary random

variables (U1, . . . , Uk), which are independent identically distributed (iid) uniform random

variables on the interval [0, 1], assumed to be independent not only of each other, but also

of (X1, . . . , Xk). The new transformation is specified by z = (z1, . . . , zk) = T2(x1, . . . , xk),

where

z1 = (1 − U1)F1(x1−) + U1F1(x1),
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z2 = (1 − U2)F2(x2 − |x1) + U2F2(x2|x1),

. . .

zk = (1 − Uk)Fk(xk − |x1, . . . , xk−1) + UkFk(Xk|x1, . . . , xk−1). (1)

The following result is proved at the end of this document.
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Theorem 1. Let X be a k-dimensional random vector X defined on (Ω,F , P ), with an

arbitrary distribution. Then T2X has a uniform distribution on the k-dimensional unit hy-

percube.

In the special case where X has a continuous distribution, then T2X is equal to T1X.

Applications. The transformation T2 can be used to test goodness-of-fit for any

probability model. For many models, it is easily applied to the observations X = x. Under

the null hypothesis H0 that the data were generated by the specified model, the residual

vector Z = T2X will be uniformly distributed on the unit (If desired, one can further apply

the inverse cumulative distribution function of a standard normal distribution, and then

under H0, the resulting values will be realizations of independent and identically distributed

standard normal random variables.) Kolmogorov-Smirnov or other tests (Darling, 1957;

Justel et al., 1997; Liang et al., 2001) can then be used.

Example 1: Generalized Linear Models. Consider a typical generalized linear model

(see, e.g. McCullagh and Nelder, 1989; Dobson, 2001) of the form Y ∼ Poisson(exp(V β))

for some Y = (Y1, . . . , Yk), a k× p design matrix V = [Vij]i=1,...,k, j=1,...,p and a p-dimensional

vector of coefficients β. Suppose that for some estimate β̂, we wish to test the null hypothesis

H0 : Y ∼ Poisson[exp(V β̂)]. In this case, the conditional structure in T2 vanishes since

observed values are assumed to be conditionally independent given Xij = xij , and the

residuals for the fitted model are simply given by

Zi =
yi−1
∑

n=0

f(n, (vi1, . . . , vik) · β̂) + Ujf(yi, (vi1, . . . , vik) · β̂), (2)

where f(n, λ) = exp(−λ)λn/n!, with the convention that the sum vanishes when yi = 0. One

could then define Wi = Φ−1(Zi), where Φ(·) denotes the cumulative distribution function of

a standard normal distribution, and under H0, Wi should be iid standard normal random

variables. Interestingly, in this context, Anscombe residuals (Anscombe, 1961) were origi-

nally intended to provide residuals whose distributions were “as normal as possible” under

H0. The transformation T2 goes a step further toward this goal, in the sense that residuals

are exactly normally distributed under H0.

To illustrate the behaviour of these residuals, consider a special case with k = 5000,

Yi ∼ Poisson(exp(vi)), (3)

with vi = cos(2πi/k) − 1, for i = 1, . . . , k. A simulated realization {y1, . . . , y5000} is shown

in Figure 1(a). Residuals Φ−1(zi) obtained using (2), under the correct model (that is,
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β̂ = 1) are shown in Figure 1(b). These clearly behave as expected, that is, they appear to

be iid realizations of standard normal random variables. Anscombe residuals are shown in

Figure 1(c), and residuals Φ−1(zi) obtained using (2) under the (incorrect) assumption that

vi ∼ Poisson(exp(−1)) are shown in Figure 1(d). The Anscombe residuals are somewhat

difficult to interpret. They are based on use of the correct model, and although their serial

correlation is close to zero, they exhibit apparent structure induced by {vi, i = 1, . . . , 10000}.

Furthermore, their time-varying discrete nature makes it difficult to see how one might use

them to construct a formal goodness-of-fit test. It is not even easy to determine visually

whether or not the model is appropriate. The T2-residuals based on the incorrect model,

on the other hand, are highly interpretable. Low values indicate the the quantiles of the

observations are lower than expected, and hence are an indication of over-fitting. Conversely,

high values indicate under-fitting. From Figure 1(d), it is easily seen that the model is under-

fitting the data for small and large i, and over-fitting the data in between.

Example 2: Time Series Analysis. T2 also has natural applications in time series

analysis. In this context, one typically builds a probability model specifying the joint distri-

bution of random variables (X1, . . . , Xk+h). The random variables X1, . . . , Xk are observed,

and random variables Xk+1, . . . , Xk+h represent some future horizon of interest. Forecasting

is carried out by determining the conditional distribution of these future values, given avail-

able observations, but clearly relies on the quality of the specified probability model. For

the family of models where (X1, . . . , Xk) has a continuous distribution, use of Rosenblatt’s

transformation T1 to compute residuals is a simple matter of determining each one-step pre-

dictive distribution function P (Xj ≤ u|Xj−1 = xj−1, . . . , X1 = x1) and evaluating it at the

observed value u = xj . Indeed this approach has been suggested, used and discussed in this

context by a number of authors, including Smith (1985); Shephard (1994); Kim et al. (1998);

Diebold et al. (1998). For many of these models, calculation of the one-step predictive dis-

tributions is a well-studied problem, partly because the likelihood is often computed using

the factorization of the joint density

p(x1, . . . , xj) = p(xj |xj−1, . . . , x1)p(xj−1|xj−2, . . . , x1) . . . p(x2|x1)p(x1),

and also because recently-developed sequential Monte Carlo methods (see e.g. Gordon et al.,

1993; Kitagawa, 1996; Doucet et al., 2001) yield good numerical approximations to these

distributions. The transformation T2 allows the use of the same goodness-of-fit diagnostics

used by the aforementioned authors, but for any time series, including those whose marginal

distributions are not continuous, for example, the saturated Gaussian models described in

Brockwell and Chan (2006).
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Example 3: Survival Analysis. Suppose that lifetimes Ti of objects are independent,

with distribution function G(t) = P (Ti ≤ t). Observations in this case may be censored.

Let ti denote the age of object i at the time of observation, if the object is “alive”, and

the lifetime of the subject, if the subject is no longer alive. If the object is still alive, we

can only infer that Ti > ti, otherwise we know that Ti = ti. Regardless of whether or not

the object is alive at the time of observation, let ai denote its age at that time. We also

introduce indicator variables {Wi}, with Wi equal to one if object i had died by the time of

measurement, and zero if the object was still alive.

Assume that we have n observations. To apply T2 in this context, we can define k = 2n,

and

X1 = W1, . . . , Xn = Wn, Xn+1 = T1, . . . , X2n = Tn.

Then to evaluate the conditional distribution functions required for T2, we have, for j =

1, . . . , n,

P (Xj ≤ x|Xj−1 = xj−1, . . . , X1 = x1)

= P (Wj ≤ x) =















0, x < 0

1 − G(aj), 0 ≤ x < 1,

1, x ≥ 1,

(4)

and

P (Xj+n ≤ t|Xj+n−1 = xj+n−1, . . . , X1 = x1)

= P (Tj ≤ t|Wj = xj) =







I[aj ,∞)(t), xj = 0

G(t)/G(aj), xj = 1.
(5)

The quantities P (Xj < x|Xj−1, . . . , X1) are easily obtained as the left limits of the functions

on the right-hand sides of (4) and (5) above. Note that we do not necessarily require that

G(·) itself be the distribution function of a continuous random variable.

Discussion. The transformation T2 provides a means of generating residuals for any

probablity model. Several examples have been given, and in each of these, the computa-

tional issues are trivial. We have shown (in the generalized linear model example) that the

approach, beyond providing methods of performing formal goodness-of-fit tests, can yield

informative plots for purposes of exploratory data analysis. Of course, in other cases, the

computations may not be so trivial, and in certain cases, the sequencing of the data may

make these computations more or less tractable.

Since the transformation involves the use of additional random variables U1, . . . , Uk, a

potentially interesting future line of work could address the problem of determining how
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much information is contained in the residuals. Consider the extreme case, for instance,

where X is a univariate constant. Then the residual obtained by T2 is simply a uniformly

distributed random variable on the interval [0, 1]. In this case, there is no information in

the model itself, and there is also no useful information contained in the residual. For

distributions with both a continuous and a discrete component, it’s not immediately obvious

whether or not one should consider all residuals to be equally important.

Acknowledgements. The author is also grateful to Peter Brockwell, Chris Genovese,

and Larry Wasserman for helpful discussions related to the work, and to an anonymous

reviewer for additional comments.

Proof of Theorem 1. Let f(x−) denote the left limit limu↑x f(u), and let ν(·) denote

the Lebesgue measure. We will write Y ∼ Unif{A} to indicate that the random variable Y

has a uniform distribution over the set A, that is, P (Y ∈ B) = ν(B ∩ A)/ν(A). The core of

the argument is encapsulated in the following result.

Lemma 2. Let X be a random variable with cumulative distribution function F . Let U be

a uniformly distributed random variable on the interval [0, 1), independent of X. Then

Z(X) = (1 − U)F (X−) + UF (X)

is also uniformly distributed on [0, 1].

Proof. Lebesgue’s decomposition allows us to write the distribution µ of X as µ = α1µc +

α2µs + α3µd, where α1 + α2 + α3 = 1, and µc, µs and µd represent the continuous, singular,

and discrete components of µ, respectively. Thus we can express X as a mixture random

variable with two components,

X =







C, with probability α,

D, with probability (1 − α).
(6)

Here α = α1 +α2, C is a random variable with distribution (µc +µs)α
−1, and D is a random

variable with distribution µdα
−1
3 . Let FC(·) and FD(·) denote, respectively, the distribution

functions of C and D, so that

F (x) = αFC(x) + (1 − α)FD(x). (7)

Since C is continuous, we must have, for all x,

FC(x) = FC(x−). (8)
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The discrete random variable D can take only countably many different values with positive

probability. Without loss of generality, let us denote the ordered sequence of these possible

values by {dj, j = 1, 2, . . .}, with P (D = dj) = pj > 0, j = 1, 2, . . . , and
∑

j pj = 1.

Define the sets

HD =
⋃

j

[F (dj−), F (dj)),

HC = [1, 0] \ HD.

Then making use of (7) along with (8), we have, for each j,

Z(dj) = [F (dj) − F (dj−)]U + F (dj−)

= (1 − α)[(FD(dj) − FD(dj−))U + FD(dj−)] + αFC(dj).

In other words,

Z(dj) ∼ (1 − α)Unif{ [FD(dj−), FD(dj)) } + αFC(dj)

∼ Unif{ [F (dj−), F (dj)) }. (9)

Then since P (D = dj) = pj = FD(dj) − FD(dj−) = F (dj) − F (dj−), it follows directly that

Z(D) ∼ Unif{HD}. (10)

Next consider an infinitesimal interval dz ⊂ HC . Let Ij = (dj−1, dj], with the convention

that d0 = −∞. Thus dz lies in exactly one of the intervals Ij, say in interval Ij∗, and we

have

P (Z(C) ∈ dz) =
∑

m

P (Z(C) ∈ dz|C ∈ Im)P (C ∈ Im)

= ν(dz)/ {α[FC(dj∗) − FC(dj∗−1)]} × [FC(dj∗) − FC(dj∗−1)]

= ν(dz)/α.

It follows directly that

Z(C) ∼ Unif{HC}. (11)

Finally, combining (6), (10), and (11), and using the property that ν(HC) = α and ν(HD) =

1 − α, we see that

Z(X) ∼ Unif{[0, 1]}. (12)

This completes the proof of Lemma 2.
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Now we are in a position to prove the main result. Under the conditions of Theorem 1,

defining Z = (Z1, . . . , Zk) = T2(X1, . . . , Xk), it follows directly from Lemma 2 that Z1 ∼

Uniform([0, 1]). Next observe that for j = 2, . . . , k, for any Borel subset A of the unit interval

[0, 1], by conditioning and making use of Lemma 2 again,

P (Zj ∈ A|Zj−1 = zj−1, . . . , Z1 = z1)

=
∫

xj−1

. . .
∫

x1

P (Zj ∈ A|Xj−1 = xj−1, . . . , X1 = x1)

·P (X1 ∈ dx1, X2 ∈ dx2, . . . , Xj−1 ∈ dxj−1|Zj−1 = zj−1, . . . , Z1 = z1)

= ν(A)
∫

xj−1

. . .
∫

x1

P (X1 ∈ dx1, X2 ∈ dx2, . . . , Xj−1 ∈ dxj−1|Zj−1 = zj−1, . . . , Z1 = z1)

= ν(A).

Thus the random variables {Z1, . . . , Zk} are independent of each other, and each has a

uniform distribution on [0, 1]. That is, (Z1, . . . , Zk) has a uniform distribution on the unit

hypercube.
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Figure 1: Test data generated from the generalized linear model (3), along with different

types of residuals. Top left: simulated observations {yi, i = 1, . . . , 5000}. Top right:

residuals, under correct model specification, obtained using T2 and applying the inverse

cumulative distribution Φ−1 of a standard normal. Bottom left: Anscombe residuals,

under the correct model specification. Bottom right: residuals obtained using T2 and

applying Φ−1, under a constant rate (incorrect) model specification.
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