
Sampling Weights, Model Misspecification and Informative

Sampling: A Simulation Study

Marianne (Marnie) Bertolet∗

Department of Statistics
Carnegie Mellon University

Abstract
Linear mixed-effects (LME) models analyze data that contain complex patterns of vari-

ability, specifically involving different nested layers. While LME models can match well the
stratification and clustering of survey data, it is not clear how sampling weights should be
incorporated into LME estimates. This report uses twelve simulation studies to compare
two published methods of inserting sampling weights into LME estimates, Pfeffermann
et al. (1998), denoted PSHGR, and Rabe-Hesketh and Skrondal (2006), denoted RHS.
There are five main conclusions based on these simulations. 1) The PSHGR and RHS
point estimates are very similar, with differences due to numerical instabilities in the es-
timation procedures. 2) Confidence intervals based on the sandwich estimator and the
design based estimator of the variances provide similar coverage when there is no model
misspecification. However, when there is model misspecification, the design-based variance
estimator has unexpectedly large coverage, implying that the variance estimates are too
large. 3) When there is model misspecification that does not induce informative sampling,
weighted estimates do not reduce bias of the estimators. 4) When there is informative sam-
pling, the weighted estimators do reduce the bias of the point estimates, though they do
not eliminate it. 5) The unweighted estimate has the smallest variance. When there is in-
formative sampling, the unweighted estimates are biased. The weighted unscaled estimate
corrects the bias in the fixed effects, but produces more bias in the random effects. The
scaled 1 weightings remove the bias in the fixed effects, and overcorrect for the weighted
unscaled bias in the random effects. The scaled 2 weightings remove the bias in the fixed
effects and are in between the weighted unscaled and weighted scaled 1 bias in the random
effects.
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1 Introduction

Linear mixed-effects (LME) models analyze data that contain complex patterns of variabil-

ity, specifically involving different nested layers. While LME models can match well the

stratification and clustering of survey data, the debate continues whether or not sampling

weights should be used and, if used, how they should be incorporated into LME estimates.

This report analyzes two published methods of inserting sampling weights into LME esti-

mates, Pfeffermann et al. (1998), denoted PSHGR, and Rabe-Hesketh and Skrondal (2006),

denoted RHS. The specific goals are: 1) To compare the results from the different methods

of inserting weights into LME models, 2) To compare the sandwich estimator of the vari-

ance of the point estimates to the design-based estimator, 3) To compare the results that

use different scalings of the weights, 4) To investigate the assertion that adding sampling

weights can compensate for informative sampling in LME models and 5) To investigate

the assertion that adding sampling weights can compensate for model misspecification in

LME models. Results of the simulation studies are presented for side-by-side comparisons

of parameter estimates under different simulated conditions.

Section 3 summarizes the previous simulation studies, including their designs and re-

sults. Section 4 provides a description of the format of the new simulation results presented

in this dissertation. Section 5 describes and presents results from the 12 new simulations.

Section 6 compares the simulations with respect to a mean squared error metric. Section

7 summarizes the results from the 12 new simulations and explain how these new results

verify and expand the previous simulation results. Finally, Section 8 contains a technical

appendix.

The main contribution of this report are the 12 simulation sets and the conclusions

from them. There are five main conclusions based on these simulations. 1) The PSHGR

and RHS point estimates are very similar. The differences in the point estimates are due to

numerical instabilities in the estimation procedures. 2) Confidence intervals based on the

sandwich estimator and the design based estimator of the variances provide similar coverage

2



when there is no model misspecification. However, when there is model misspecification,

the design-based variance estimator has unexpectedly large coverage, implying that the

variance estimates are too large. 3) When there is model misspecification that does not

induce informative sampling, weighted estimates do not reduce bias of the estimators. 4)

When there is informative sampling, the weighted estimators do reduce the bias of the point

estimates, though they do not eliminate it. 5) The unweighted estimate has the smallest

variance. When there is informative sampling, the unweighted estimates are biased. The

weighted unscaled estimate corrects the bias in the fixed effects, but produces more bias

in the random effects. The scaled 1 weightings remove the bias in the fixed effects, and

overcorrect for the weighted unscaled bias in the random effects. The scaled 2 weightings

remove the bias in the fixed effects and are in between the weighted unscaled and weighted

scaled 1 bias in the random effects.

2 Simulation Goals and Summary of Results

As mentioned above, there are five specific goals for this report. In this section I describe

each of them and provide a summary of the results from the simulations.

The first goal is to compare the results from the different methods of inserting weights

into LME models. There are three published methods on inserting weights into LME

models, Rabe-Hesketh and Skrondal (2006), denoted RHS, Korn and Graubard (2003),

denoted KG, and Pfeffermann et al. (1998), denoted PSHGR. These methods use pseudo-

maximum likelihood methods and differ in the location during the maximum likelihood

estimation where the census quantities are estimated with weighted sample quantities. As-

parouhov (2006), denoted ASP, published the same procedure as RHS at the same time.

I focus on the RHS method, as opposed to the ASP method, as the software to imple-

ment RHS was available to me whereas the software to implement ASP was not available

to me. The simulations in this report compare the RHS and PSGHR methods, as the

KG method requires univariate, bivariate, trivariate and quadvariate conditional weights
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(wi|k, wij|k, wijs|k and wlmst|k) that are generally not available. These simulations found

that the RHS and PSHGR methods provide remarkably similar results. The differentiation

between the methods is that the software that implements RHS (the gllamm() function

in Stata) is not always numerically stable. This is due to the numerical quadrature imple-

mented for the RHS method. For more details on the numerical instabilities, see Section

8.3.

The second goal is to compare the sandwich estimator (used by RHS) and a design-

based estimator (used by PSHGR) when obtaining the variances of the point estimates. It

appears that when there is no model misspecification, that the confidence intervals based on

the sandwich estimator have similar coverage levels as the confidence intervals based on the

design-based estimates. However, when there is model misspecification, the design-based

confidence intervals have coverage that is unexpectedly large, implying that the variance

estimates are too large.

The third and fourth goals of this report, described below, relate to the controversy

of including sampling weights in model-based analyses. This controversy has been exten-

sively debated, including but not limited to Fienberg (1989), Hoem (1989), Kalton (1989),

Mislevy and Sheehan (1989), Thomas and Cyr (2002), Patterson et al. (2002) and Little

(2004).

The third goal of this report is to investigate the assertion that adding sampling weights

can compensate for model misspecification in LME models. The simulations in this chapter

indicate that the weights can help for model misspecification only when the model mis-

specification induces informative sampling. Bias related to a misspecified model that does

not relate to the sampling design are unaffected by the sampling weights.

The fourth goal of this report is to investigate the assertion that adding sampling

weights can compensate for informative sampling in LME models. The simulations in this

chapter support those conclusions. The inverse sampling weights can help compensate for

bias induced by informative sampling, though they do not eliminate the bias.
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The last goal of this report is to investigate the different scalings of the weights, denoted

as unweighted, weighted unscaled, weighted scaled1 and weighted scaled 2 PSHGR and

RHS. The weighted LME estimates are consistent if the number of clusters increases as

the population size increases. If the conditional weights (wi|k, the inverse probability that

individual i is sampled provided cluster k is in the sample) are multiplied by a cluster level

constant, then the consistency argument remains unchanged. This allows us to consider

scalings of the weights to reduce the bias in the variance components. The simulations in

this chapter compare the different scalings when the data are not balanced and when the

models are more complicated than random intercept models. These simulations found that

the unweighted estimate has the smallest variance. When there is informative sampling,

the unweighted estimates are biased. The weighted unscaled estimate corrects the bias in

the fixed effects, but produces more bias in the random effects. The scaled 1 weightings

remove the bias in the fixed effects, and overcorrect for the weighted unscaled bias in the

random effects. The scaled 2 weightings remove the bias in the fixed effects and are in

between the weighted unscaled and weighted scaled 1 bias in the random effects.

This report also contains a number of appendices collected together in Section 8 that

provide additional detail about the simulation methods and results. In particular, Section

8.6 summarizes the computer code written to run the simulations and provides web-links

to the code for the interested reader.

3 Previous LME Simulation Results

3.1 Overview

Table 1 contains a summary of the previous simulation designs performed by the authors of

the methods described in this thesis. The method by RHS was also published concurrently

by ASP, whose simulation results are included in Table 1. This order of the presentation

represents the order in which the weights are added; RHS (and ASP) insert the weights

5



before the derivative is taken, KG insert the weights immediately after the derivative is

taken, and PSHGR insert the weights in the process of solving for the parameter values.

In evaluating the previous studies with respect to the goals of this chapter, note that

none of the authors compared their method to the other methods presented in this thesis,

so there are no previous direct comparisons. All the authors’ estimating models matched

their generating models, so there was no model misspecification in previous simulations.

Below, I summarize the authors’ studies based upon the third and fourth goals listed above;

to investigate the effect of weights on informative sampling and to compare the different

scalings of the weights. In addition to my goals listed above, many of the authors were

interested in the effect of sample sizes on the estimates and these are also listed in Table

1. Finally, I will also note the authors’ methods of computing variances of their point

estimates.

3.2 RHS Simulation Summary

Rabe-Hesketh and Skrondal (2006), denoted RHS, performed simulations with a logistic

random intercept model, one cluster level covariate, x1k, and one individual level covariate,

x2ik,

log
(

P (Yik = 1)
1− P (Yik = 1)

)
= 1 + x1k + x2ik + U0k

Their finite population contains 500 clusters, each with the same number of elements per

cluster (either 5, 10, 20, 50 or 100). They oversample clusters whose absolute value of

the random effect (U0k) was less than one and oversample individuals whose random error

(εik) is less than zero. They sample approximately 300 clusters and approximately half of

the elements in the sampled cluster. The RHS results are summarized in Table 2. For this

table, an estimate was labeled biased if the confidence interval (mean over 100 iterations

± 2 times standard deviation of the 100 iterations divided by 10) did not contain the true
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RHS ASP KG PSHGR
Simulation Comparions None None None None

G
en

er
at

ed
(a

nd
E

st
im

at
ed

)
M

od
el Random Intercept Model:

Yik = β0 + U0k + εik

X X X

Logistic Random Intercept
Model: logit(Yik) =
β0 + β1x1ik + β2x2k + U0k

X X

Two level model X X X X
Multiple-level model X

Sa
m

pl
in

g
Sc

he
m

e Non Informative Cluster,
Non Informative Elements

X X

Informative Cluster,
Non Informative Elements

X X X

Non Informative Cluster,
Informative Elements

X X

Informative Cluster,
Informative Elements

X X

Weights and Scalings a U, WU,
WS1, WS2

U, WU,
WS1, WS2

U, WU,
WS1, WS2

U, WU,
WS1, WS2

WS1ISb,
WS2ISb,
Method Cb

P
op

ul
at

io
n

an
d

Sa
m

pl
e

Si
ze

s

Cluster Population Size (K) 500 Unknown 1500 300
Cluster Sample Size (k) about 300 100 33, 99 35, 75
# Population Elements
per Cluster (Nk)

5, 10, 20,
50, 100

Unknown 100, 5 Random:
38 to 147

# Sampled Elements
per Cluster (nk)

0.5 Nk 5, 20, 100 75, 5, 4 9, 38,
0.4Nk,
0.1Nk

Table 1: Summary of Previous Simulation Study Designs
aU = Unweighted, WU = Weighted Unscaled, WS1 = Weighted Scaled 1, WS2 = Weighted Scaled 2
bWS1IS = Weighted Scaled 1 Invariant Selection, WS2IS = Weighted Scaled 2 Invariant Selection. See

Section 3.3 for more details
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value.

When analyzing the effect of the weights on informative sampling, note that the un-

dersampling of large random intercepts (i.e. undersample |U0k| ≥ 1) should cause the

unweighted estimates of σ2
0k to be too small and the undersampling of error terms greater

than zero (i.e. εik ≥ 0) should cause the unweighted estimate of β0 to have negative bias.

As can be seen from Table 2, the unweighted estimate of β0 is biased under all sample

sizes. The weights reduce this bias, however it is not until the cluster population sizes

are Nk = 50 that the bias becomes negligible (recall from Table 1 that the sample size is

roughly half of the population size). The unweighted estimates of σ2
0k are also biased. The

effect of adding the weights is mixed for σ2
0k. For the Nk=5, the bias is reduced by all the

weights. For the other values of Nk, there is at least one weighting scheme that produces the

same (or larger) bias than the unweighted estimate and there are some weighting schemes

that appear to do well, however none of the weighting schemes eliminate the bias.

When analyzing the the differences in the scaling of the weights, recall that the scaling

is to help correct the bias in the weighted unscaled estimates of the random effect variances.

The weighted unscaled estimates of σ2
0k have a positive bias. Both the scaled 1 and scaled

2 estimates appear to overcorrect this bias, resulting in negative bias for the corresponding

weighted estimates of σ2
0k, however the bias of the weighted scaled 2 estimates appear to be

smaller than the bias in the weighted scaled 1 estimates. For the larger population sizes,

Nk = 20 or 50, the weighted unscaled estimates do as well or better than the weighted

scaled 2 estimates.

RHS use the sandwich estimator to compute the standard errors of the point estimates.

To evaluate the variances, RHS simulate the model 1000 times when the cluster size was

Nk = 50 (while sampling 1/2 of the elements per cluster) and computed confidence inter-

vals. The coverage of the RHS 95% confidence intervals created with the sandwich estimate

variances range from 94.1% to 94.7% for the fixed effects, and is 92.4% for σ2
0k.
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Design Weighting Scheme β0 β1 β2 σ2
0k

Simulation 1 Clusters: unweighted bias (0.60) bias (0.08) bias (0.06) bias (0.61)
Nk=5 Undersample |Uk| > 1 weighted unscaled unbiased bias (0.19) bias (0.22) bias (0.47)

Elements: weighted scaled 1 bias (0.32) unbiased bias (0.06) bias (0.42)
Undersample εik > 0 weighted scaled 2 bias (0.25) unbiased unbiased bias (0.30)

Simulation 2 Clusters: unweighted bias (0.63) bias (0.13) bias (0.14) bias (0.23)
Nk=10 Undersample |Uk| > 1 weighted unscaled bias (0.04) bias (0.06) bias (0.11) bias (0.19)

Elements: weighted scaled 1 bias (0.17) bias (0.09) bias (0.09) bias (0.60)
Undersample εik > 0 weighted scaled 2 bias (0.12) bias (0.06) unbiased bias (0.26)

Simulation 3 Clusters: unweighted bias (0.64) bias (0.16) bias (0.16) bias (0.18)
Nk=20 Undersample |Uk| > 1 weighted unscaled unbiased bias (0.05) bias (0.05) bias (0.09)

Elements: weighted scaled 1 bias (0.09) bias (0.06) bias (0.05) bias (0.30)
Undersample εik > 0 weighted scaled 2 bias (0.06) unbiased unbiased bias (0.17)

Simulation 4 Clusters: unweighted bias (0.65) bias (0.18) bias (0.18) bias (0.13)
Nk=50 Undersample |Uk| > 1 weighted unscaled unbiased unbiased bias (0.02) bias (0.05)

Elements: weighted scaled 1 bias (0.04) unbiased bias (0.02) bias (0.13)
Undersample εik > 0 weighted scaled 2 unbiased unbiased unbiased bias (0.06)

Table 2: RHS Simulation Design and Results

3.3 ASP Simulation Summary

Asparouhov (2006), denoted ASP, performed quite extensive simulations in his paper.

These simulations vary the type of informative sampling, the intraclass correlation and

the model being simulated. He uses many scalings for the weights, including unweighted,

weighted unscaled, weighted scaled 1 and weighted scaled 2 estimation methods. ASP

ran one simulation comparing the unweighted, weighted unscaled, weighted scaled 1 and

weighted scaled 2 weights. He investigated the effect of the intra-class correlation on the

weighted scaled 2 estimates and looked at a multilevel logistic regression with weighted

scaled 2 estimates. The results of his simulations are summarized in Table 3.

For the informative sampling and intra-class correlation simulations, ASP uses the

random intercept model,

yik = 0.5 + U0k + εik, U0k ∼ N(0, 0.5), εik ∼ N(0, 2) (1)

where the population cluster size is 100, and the number of sampled individuals per cluster
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Design Recommended Notes
Weighting

Scheme
Informative Sampling Alternate method where Weighted Scaled 1 and Weighted

all weights are scaled by Scaled 2 both also did well. All methods
the estimated population size do best when cluster size is large or

divided by the sample size informativeness is weak.
Intra-Class Correlation Weighted Only Weighted Scaled 2 was analyzed.

Scaled 2 It was confirmed that when the ICC is
small all parameters exhibit more bias.

Multi-Level Logistic Weighted Only Weighted Scaled 2 method was
Scaled 2 analyzed. Bias increases as sample size

decrease and informativeness increases.

Table 3: ASP Simulation Design and Results

is 5, 20 and 100. The population sizes are unknown. The informative sampling simulation

samples individuals proportional to (1 + exp{−yik
α })

−1, where the level of informativeness

is determined by the constant α. With this sampling, larger values of yik are oversampled,

which means that elements with larger random intercepts, U0k and/or larger random er-

rors, εik are oversampled. I would expect to see that the variances of U0k and εik to be

underestimated, with the variance of U0k to be affected more by the informative sampling.

ASP’s results are as expected. None of the weighting methods performed well on

all three parameters (the intercept and the variances of U0k and εik) unless the level of

informativeness was small, or the sample size was large (over 100). The weighting methods

generally correct for the informative sampling in the fixed effects, however for the random

effects it takes sample sizes of 100 to see corrections.

When analyzing the differences in the scalings of the weights, the best weighting to use

is not clear. For the informative sampling simulation, weighted scaled 1 , weighted scaled

2 and ASP’s method C (where the scaling for the weights is the estimated population size

divided by the sample size,
∑

ik wik/
∑

k nk) all perform equivalently.

ASP uses the sandwich estimator to compute the standard errors of the point estimates.

He reported the coverage of the corresponding 95% confidence intervals for all estimates.
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Finally, ASP also performs simulations that verify that the bias of the variance com-

ponents increase as the ICC increases. ASP also estimates a multi-level logistic regression

model with a random effect and concludes that the bias increases as the sample size de-

creases and informativeness increases.

3.4 KG Simulation Summary

KG are primarily concerned with method of moment estimators, however for the random

intercept model with no covariates, the method of moment estimators match the weighted

MLE estimates. They ran simulations using a random intercept model,

yik = 1 + U0k + εik, U0k ∼ N(0, 1), εik ∼ N(0, 1).

The simulations contain 1500 population clusters (K), of which 33 or 99 are sampled (k).

The population cluster sizes (Nk) are 100 and 5, and sample cluster sizes (nk) are 75 and

5 (Nk = 100), and 4 (Nk = 5). The goal of KG’s method is to improve the small sample

properties of the weighted estimators. The bias from the KG simulations are summarized

in Table 4. They did not report the estimates of β0. It is unknown how many simulations

are averaged for these means, and the variances of these means were not reported for these

simulations.

When analyzing the effect of the weights on informative sampling, their simulations

show that the bias is effectively removed with their weighted estimates, even with small

sample sizes (K = 1500, k = 33, Nk = 100, nk = 5). This is impressive; however the

KG method uses additional information that the other methods do not use (the bivariate,

trivariate and quadvariate inclusion weights, wij|k, wijl|k, wijlm|k).

KG did not compare their weights in this simulation to unweighted, weighted unscaled,

weighted scaled 1 or weighted scaled 2 estimates.

KG use the jackknife estimator for design based survey sampling to estimate the vari-
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Design Sampling σ2
0k σ2

ε

Clusters: k = 33 or 99,K = 1500 0.03 unbiased
Undersample |Uk| > 0.6745 nk = 75, Nk = 100 0.01 unbiased

Elements:SRS k = 33 or 99,K = 1500 0.01 0.01
nk = 5, Nk = 100 unbiased unbiased

k = 33 or 99,K = 1500 0.01 0.01
nk = 4, Nk = 5 0.01 unbiased

Clusters: k = 33 or 99,K = 1500 0.01 unbiased
Census nk = 75, Nk = 100 unbiased unbiased

Elements: SRS k = 33 or 99,K = 1500 unbiased 0.01
Undersample |εik| > 0.6745 nk = 5, Nk = 100 unbiased unbiased

k = 33 or 99,K = 1500 unbiased unbiased
nk = 4, Nk = 5 0.01 unbiased

Table 4: KG Simulation Design and Results

ances of their point estimates. They did not compute the variances for the simulation

summarized in Table 4.

3.5 PSHGR Simulation Summary

Stapleton (2002) and Huang and Hidiroglou (2003) conducted simulation studies using the

PSHGR method. Their results are not described here as they support the results from the

PSHGR simulation study, which is described next. PSHGR ran three simulation studies

varying the level of informative sampling in a random intercept model with no covariates,

yik = 1 + U0k + εik, U0k ∼ N(0, 0.2), εik ∼ N(0, 0.5).

For each simulation there were 300 population clusters and 35 were sampled. They also ran

simulations where 75 clusters were sampled, though they did not show those results and

indicated that the results were similar. The number of population elements per cluster,

Nk, was random and bounded between 38 and 147 with a mean of 80. They varied the

number of sampled elements, nk, between 38, 0.4×Nk, 9 and 0.1 × Nk. The simulations

contained different combinations of informative cluster sampling, non-informative cluster
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Design Weighting Scheme β0 σ2
0k σ2

ε

Simulation 1 Clusters: PPS Unweighted biased varied* biased
where Size = Uk Weighted Unscaled unbiased varied* unbiased

Elements Weighted Scaled 1 unbiased varied* varied*
Undersample εik > 0 Weighted Scaled 2 unbiased varied* unbiased

Simulation 2 Clusters: PPS Unweighted biased varied* unbiased
where Size = Uk Weighted Unscaled unbiased varied* varied*
Elements: SRS Weighted Scaled 1 unbiased unbiased unbiased

Weighted Scaled 2 unbiased unbiased unbiased
Simulation 3 Clusters: PPS Unweighted unbiased unbiased unbiased

where Size = Nk Weighted Unscaled unbiased varied* varied*
Elements: SRS Weighted Scaled 1 unbiased unbiased unbiased

Weighted Scaled 2 unbiased unbiased unbiased
* bias varied according to sample size

Table 5: PSHGR Simulation Design and Results

sampling, informative individual sampling and non-informative individual sampling. The

simulations and results are in Table 5. PSHGR did not provide estimates of variances for

all the simulated scenarios. As a rule of thumb, in Table 5, I marked an estimate as biased

if the average over the iterations deviates more than 10% from the true value.

When analyzing the effect of weights on informative sampling, note that sampling

clusters proportional to U0k should introduce bias in the unweighted estimates of β0 and

σ2
0k. Sampling of individuals proportional εik should introduce bias in the estimate of β0 and

σ2
ε . PSHGR found that when there is informative sampling of clusters, the expected biases

appear. The use of the weights compensates for the bias in the estimate of β0, however the

effect of the weights on the estimates of the variance components varies according to the

sample size.

When analyzing the differences in the scaling of the weights, PSHGR tentatively rec-

ommended weighted scaled 2 estimates. The bias of the weighted unscaled estimates varied

according to the sampling size for all of the sampling scenarios. The weighted scaled 1 and

weighted scaled 2 estimates performed better when there was less informative sampling.

PSHGR estimate the variances of the point estimates with design-based methods. They
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did not estimate the variances in their simulation study.

3.6 Summary

From the initial simulations, KG appears to have the lowest bias. The methods need to be

compared using the same simulated conditions to get an accurate comparison. Because KG

requires the higher order (i.e. bivariate, trivariate and quadvariate) conditional weights,

they use more information than the other methods, which may result in better estimates.

In reviewing the RHS, ASP and PSHGR simulations, it is not clear which method provides

better results.

RHS and ASP found that the coverage levels of the confidence intervals based on the

sandwich estimator were very close to the intended coverage. PSHGR provided simulation

estimates of variances based on the design based variance estimator but did not evaluate

their performance.

None of the four papers investigating the weights contained simulations with model

misspecification.

All of the simulations showed that adding weights to the analysis helped compensate

for the bias due to informative sampling. The informative sampling in all of the simulations

was directly based on either the value of the random effect, U0k, the random error, εik or

the value of the outcome variable, yik.

RHS and PSHGR both tentatively recommend the weighted scaled two estimates when

there is informative sampling. ASP appears to favor weighted scaled 2 weights, as those

are the weights used to evaluate the intra-class correlation and the multi-level logistic

regression. RHS, ASP and PSHGR found the bias decreases as the sample size increases

for all weighting schemes.
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4 Format of New Simulation Results

Figure 1 contains a sample of the format of the new simulation results presented in this

dissertation; it is the first row of Figure 4, which appears later in Section 5 (as do most

of the other tables and equations referred to here). The caption on the figure specifies the

name and simulation number which correspond to the columns in the summaries in Tables

6 and 7. Also included in the caption is the equation number of the generating equation.

For Figure 1, a summary of the simulation is in the “Mis Ran 5” column of Table 6. The

generating model for Figure 1 is in Equation 10. To the left of the plots is the estimated

model for the variables in that row. In Figure 1, the estimated model is in Equation 11.

Each of the panels in Figure 1 represents a possible parameter in the estimated model.

The parameter name is in bold at the top of the plot. Next to the parameter name

(in parenthesis) is the variable associated with that parameter, if applicable. Below the

parameter name is the range for the parameter. If there is no range (and no plot) printed,

then that parameter was not estimated in this model, such as the σ2
0k parameter in Figure

1. The solid vertical line indicates the true value of the parameter as it is in the generating

model. The horizontal lines represent the 0.025 to 0.975 empirical quantiles over the

simulation replicates for that set of estimates. The circle in the horizontal line represents

the average of the estimates. Each plot contains eight horizontal line plots.
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Figure 1: Results for Misspecification of Random Variables, Simulation Set 5
Generated Model - Equation 10

Sample Presentation Result
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The red horizontal line plots represent the PSHGR simulations, and the black horizontal

line plots represent the RHS simulations. Each of the horizontal line plots has a caption,

such as “R - S2 ( 70/86/100)”. The first term in the caption is either an R (for RHS) or

a P (for PSHGR) representing the estimation method used. The second term represents

the type of weighting estimation used, either S2 for weighted scaled 2 estimates, S1 for

weighted scaled 1 estimates, WU for weighted unscaled estimates or UN for unweighted

estimates. Finally, there are three numbers listed. The first number is the number of

estimated confidence intervals that contained the true parameter value. These confidence

intervals are computed as the point estimate for the given simulation plus or minus 2

times the standard error. The standard error is computed using a sandwich estimator

for RHS and a design based estimator for PSHGR, as they did in their papers. The

second number represents the number of the iterations where the variance was able to be

computed. For RHS, the code to run the simulations is not always able to estimate variances

for the estimated point estimates (the estimate of the Hessian is sometimes numerically

unstable). Finally, the third number in the caption is the number of iterations where the

point estimates are able to be estimated. If the number of iterations is less than 100 for

RHS, then it means that some iterations did not converge for any of number of quadrature

points between 15 and 35. If the number of iterations is less than 100 for PSHGR, then it

means that the iterative generalized least squares algorithm did not converge within 500

iterations.

For example, the RHS weighted unscaled estimates of σ2
ε are in the fifth plot from the

left. The caption on the horizontal line plot is “R - WU (48/95/100)”. This means that of

the 100 iterations, all 100 of them are able to produce weighted unscaled estimates of the σ2
ε

parameter. Of the 100 iterations that are able to produce point estimates, 95 of them are

able to produce estimates of the variances. Of the 95 iterations able to produce estimates

of the variance, 48 of the estimated confidence intervals contained the true parameter value

of 0.5. Thus, the estimated coverage of the 95% RHS confidence intervals (as computed
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with the sandwich estimator variance) is 48/95=50.5%. The horizontal line represent the

0.025 and 0.975 quantiles of the 100 point estimates generated. The average of the 100

estimates is about 0.4, representing a bias of approximately 0.1. When comparing this

to the RHS unweighted estimate of σ2
ε , it is clear that there is a smaller spread for the

unweighted variances than the weighted variances. In addition, the unweighted estimates

are approximately unbiased, and the 95% confidence interval covers the true parameter

values 90/100=90% of the time.

5 New Simulation Results

The new simulations presented below confirm and expand upon the previously published

results. The new simulations that are performed refer to the RHS method, published con-

currently with ASP, as the RHS method because the software used to run the simulations

was written by Rabe-Hesketh and Skrondal (see www.gllamm.org). In addition, the simula-

tions by KG are summarized in this chapter, however I did not perform further simulations

of their method as most analysts will not have the joint and quadruple conditional weights

(wij|k and wijlm|k) weights needed to implement their method.

There are a total of 12 simulation sets, broken into 4 categories: 1) Misspecification

of the Fixed Effects, 2) Misspecification of the Random Effects, 3) Misspecification of

Stratification Layers and 4) Misspecification of Clustering Layers. The simulation sets are

summarized in Tables 6 and 7. Each simulation category contains model misspecification

and/or informative sampling. The definitions of sampling completely at random, sampling

at random, sampling not at random (or informative sampling) are analogous to the similar

missing data terminology from Little and Rubin (2002) and are used to describe the extent

of informative sampling in the simulations.

The summary of each simulation reflects on the conclusions from this chapter.

1. The PSHGR and RHS point estimates are very similar. The differences in the point
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Fixa
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Fixa
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Ranb

5

Mis
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Random Intercept Model:
Yik =
1 + U0k − 2x1k + 2x2ik + εik,
U0k ∼ N(0, 0.2),
εik ∼ N(0, 0.5)

X X X X

Random Slope Model:
Yik =
1+(−2+U1k)x1k+2x2ik+εik,
U0k ∼ N(0, 0.2), εik ∼
N(0, 0.5)

X X

Random Slope Model:
Yik =
1+−2x1k+(2+U2k)x2ik+εik,
U0k ∼ N(0, 0.2), εik ∼
N(0, 0.5)

X X

E
st

im
at

ed
M

od
el Same as generated X X X X X X X X

Missing x1k X X X X
Missing x2ik X X X X
Missing U1k

added random intercept U0k

X X

Missing U2k

added random intercept U0k

X X
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m
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g
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m

e

Cluster Sample PPS Nk,
element sampling PPS
independent variable

X X X

Cluster Sample PPS Nk,
element sampling PPS x2ik

X

Cluster Sample PPS x1k,
element sampling PPS
independent variable

X

Cluster Sample PPS x1k,
element sampling PPS x2ik

X

Cluster Sample PPS U1k,
element sampling PPS
independent variable

X

Cluster Sample PPS U2k,
element sampling PPS
independent variable

X

Table 6: Simulation Designs for the Misspecification of Fixed and Random Effects
aMis Fix = Misspecification of Fixed Effects
bMis Ran = Misspecification of Random Effects
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Stratified / Clustered X X
Clustered / Stratified X X
Clustered X X X
Clustered 1 X
Clustered 2 X

Sa
m

pl
in

g
Sc

he
m

e

Clusters Sampling PPS Size,
Element Sampling PPS
independent variable

X X X X

Clusters Sampling PPS U ,
Element Sampling PPS
independent variable

X X

Table 7: Simulation Designs for the Misspecification of Stratification and Clustering Layers
cMis Strat=Misspecification of Stratification Layers
dMis Clust= Misspecification of Clustering Layers
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estimates are due to numerical instabilities in the estimation procedures.

2. The sandwich estimator, used by RHS , is a better estimator of the variance of the

point estimates than the design-based variance estimator used by PSHGR. However,

the sandwich estimator is not as numerically stable since computation of the Hessian

is not always possible. The PSHGR design-based variance estimator appears reason-

able when the model is correctly specified, however the estimates are sometimes too

large when the model is misspecified, especially for the variance components.

3. When there is model misspecification that does not induce informative sampling,

weighted estimates do not reduce bias of the estimators.

4. When there is informative sampling, the weighted estimators do reduce the bias of

the point estimates, though they do not eliminate it.

5. The unweighted estimate has the smallest variance. When there is informative sam-

pling, the unweighted estimates are biased. The weighted unscaled estimate corrects

the bias in the fixed effects, but produces bias in the random effects. The scaled 1

weightings remove the bias in the fixed effects, and usually reduces (or overcorrects)

for the weighted unscaled bias in the random effects. The scaled 2 weightings remove

the bias in the fixed effects and are in between the weighted unscaled and weighted

scaled 1 bias in the random effects. There are some cases where the scaled 1 estimates

are more biased in the same direction as the weighted unscaled estimates. In these

cases, the weighted scaled 2 estimates are still between the weighted unscaled and

weighted scaled 1 weights. The variation of the estimates across the 100 iterations

are somtimes similar for all estimates (weighted or unweighted). When the variation

across the 100 iterations varies by the weighting, then the smallest variation is in

the unweighted estimates, followed by the weighted scaled 1, weighted scaled 2 and

unweighted estimates.
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5.1 Misspecification of Fixed Effects - Non-Informative Sampling - Sim-

ulation Set 1

A summary of this simulation set is in the “Mis Fix 1” column of Table 6. The generating

model is a random intercept model,

yik = 1 + U0k − 2x1k + 2x2ik + εik, U0k ∼ N(0, 0.2), εik ∼ N(0, 0.5), (2)

where x1k ∼ N(3, 9) and x2ik ∼ N(1, 25). There are 300 population clusters, with a

random uniform number of population units per population cluster between 50 and 100.

The sample contains 35 clusters and 20 units per cluster. The sampling of clusters is

proportional to the magnitude of the population cluster size, Nk. Sampling of individuals

within clusters is proportional to an independently generated random variable assigned to

each element1. There are three estimated models in this simulation set. One matches the

generated model, one removes the fixed effect for x1k , and one removes the fixed effect for

x2ik,

yik = β0 + U0k + β1x1k + β2x2ik + εik, U0k ∼ N(0, σ2
0k), εik ∼ N(0, σ2

ε ) (3)

yik = β0 + U0k + β2x2ik + εik, U0k ∼ N(0, σ2
0k), εik ∼ N(0, σ2

ε ) (4)

yik = β0 + U0k + β1x1k + εik, U0k ∼ N(0, σ2
0k), εik ∼ N(0, σ2

ε ). (5)

The sampling scheme is sampling completely at random for all three estimated models.

5.1.1 Summary

The results from this simulation set are in Figure 2. A detailed description of the results

is in Section 8.1.

In this simulation, the estimation using the PSHGR method generally matched the
1Each element was assigned a random variable aik ∼ Uniform(−5, 5). They were then sampled propor-

tional to (1 + exp(−aik))−1.
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estimation using the RHS method. Some differences between PSHGR and RHS appear in

Figure 2. The PSHGR unweighted estimates of σ2
0k from Equation 4 have a larger mean

and a larger 0.025 empirical quantile than RHS.
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Figure 2: Results for Misspecification of Fixed Effects, Simulation Set 1Generated Model - Equation 2

24



The PSHGR weighted unscaled estimate of σ2
0k from Equation 4 has a larger mean and

larger 0.025 and 0.975 empirical quantiles than RHS. Finally, the PSHGR weighted scaled

1 estimate of σ2
ε has a larger mean and larger 0.025 and 0.975 quantiles than RHS. These

differences (and smaller differences not visible in Figure 2) are due to numerical instabilities

in the RHS and PSHGR estimations, and are described in detail in Section 8.1.

When analyzing the coverage of the confidence intervals, look at the simulation where

the estimating model is from Equation 3, which matches the generating model and has the

least bias. The coverage from the RHS 95% confidence interval coverage varies between 85%

and 95% in the fixed effects and between 83% and 87% in the variance components. For

PSHGR, the 95% confidence interval coverage varies between 87% and 95% for the fixed

effects and between 89% to 96% in the variance components. RHS produced sandwich

estimates for the variance for between 83 and 100 of the 100 iterations for the estimates

in Figre 2. The PSHGR estimates of the variance of σ2
0k were quite large in estimated

models from Equations 4 and 5, causing the confidence interval coverage to be much larger

than the coverage from RHS. This may indicate a problem with the variance estimator for

PSHGR. To verify this, the coverage of the confidence intervals for the expected parameter

value should be obtained.

The second and third estimated models from Equations 4 and 5 contained model mis-

specification. When a covariate was included in the generating model but not the estimating

model, a model misspecification bias was found in all weighting methods. The removal of

a fixed covariate caused the intercept to change by the mean of the missing covariate times

its associated parameter. The variance of the missing covariate moved into the intercept

variance (if it was a cluster covariate) or the random error variance (if it was in individual

covariate). It is possible that the missing covariate could affect both variance estimates if

the covariate was an individual covariate whose mean varied across clusters. See Section

8.1 for more details for this simulation. The various weighting methods did not help against

model misspecification bias.
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These simulations did not contain any informative sampling, so there was no informative

sampling bias.

All weighting methods provided similar mean estimates of the β coefficients. The 0.024

and 0.975 quantiles over the simulation runs sometimes vary according to weighting scheme.

When the model is correctly specified, all estimates (weighted and unweighted) have similar

spread across the simulations. When the model is misspecified, the spreads sometimes

differ. When they do, the unweighted has the smallest spread, followed by the weighted

scaled 1, weighted scaled 2 and weighted unscaled estimates. There is a difference in the

weighting schemes with the estimation of the variance components. The weighted unscaled

estimates have a bias, the weighted scaled 1 estimate compensates (or overcompensates)

for the weighted unscaled bias and the weighted scaled 2 bias is between the weighted

scaled 1 and the weighted unscaled bias. How close the weighted scaled 2 bias is to the

weighted scaled 1 bias appears to vary. When the model is correctly specified, the weighted

scaled 1 and weighted scaled 2 estimates of the variance components (both σ2
ε and σ2

0k) are

close. When there is model misspecification, the weighted scaled 2 estimates appear to be

balanced in between the weighted scaled 1 and the weighted unscaled estimates.
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5.2 Misspecification of Fixed Effects - Partially Informative Sampling -

Simulation Sets 2 and 3

A summary of these simulations sets are in the “Mis Fix 2” and “Mis Fix 3” columns of

Table 6. The generating model for both simulation sets is a random intercept model,

yik = 1 + U0k − 2x1k + 2x2ik + εik U0k ∼ N(0, 0.2), εik ∼ N(0, 0.5).

where x1k ∼ N(3, 9) and x2ik ∼ N(1, 25). The population has 300 clusters, each with a

random number of units per cluster between 50 and 100. The sample contains 35 clusters

and 20 units per cluster. The three estimated models are

yik = β0 + U0k + β1x1k + β2x2ik + εik, U0k ∼ N(0, σ2
0k), εik ∼ N(0, σ2

ε )

yik = β0 + U0k + β2x2ik + εik, U0k ∼ N(0, σ2
0k), εik ∼ N(0, σ2

ε )

yik = β0 + U0k + β1x1k + εik, U0k ∼ N(0, σ2
0k), εik ∼ N(0, σ2

ε ).

5.2.1 Result Description for Misspecification of Fixed Effects – Simulation Set

2

For Misspecification of Fixed Effects - Simulation Set 2, the sampling of clusters is pro-

portional to the magnitude of the population cluster size, Nk. The sampling of individuals

in a cluster is proportional to the magnitude of the individual level covariate x2ik. The

simulation is sampling at random when the covariate x2ik is included in the estimating

model, and informative sampling when the estimating model did not contain the covariate.

When the model did contain the covariate x2ik, then the estimation behaved exactly as in

Misspecification of Fixed Effects - Simulation Set 1, where there is no informative sampling.

When the model did not contain the x2ik covariate, the estimation behaved exactly as in

Misspecification of Fixed Effects - Simulation Set 4, where there is informative sampling.

For space considerations, the results for Misspecification of Fixed Effects - Simulation Set
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2 were not presented here.

5.2.2 Result Description for Misspecification of Fixed Effects - Simulation Set

3

For Misspecification of Fixed Effects - Simulation Set 3, the sampling of clusters is pro-

portional to the magnitude of the cluster level covariate x1k. The sampling of individuals

is proportional to an independently generated random variable assigned to each element2.

The simulation was sampling at random when the variable x1k was included in the esti-

mating model, and informative sampling when the estimating model did not contain the

covariate x1k. When the model did contain the covariate x1k, then the estimation behaved

exactly as in Misspecification of Fixed Effects - Simulation Set 1, where there is no in-

formative sampling. When the model did not contain the x1k covariate, the estimation

behaved exactly as in Misspecification of Fixed Effects - Simulation Set 4, where there is

informative sampling. For space considerations, the results for Misspecification of Fixed

Effects - Simulation Set 3 were not presented here.

2Each element was assigned a random variable aik ∼ Uniform(−5, 5). They were then sampled propor-
tional to (1 + exp(−aik))−1.
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5.3 Misspecification of Fixed Effects - Informative Sampling - Simulation

Set 4

A summary of this simulation set is in the “Mis Fix 4” column of Table 6. The generating

model is a random intercept model,

yik = 1 + U0k − 2x1k + 2x2ik + εik U0k ∼ N(0, 0.2), εik ∼ N(0, 0.5), (6)

where xk ∼ N(3, 9) and xik ∼ N(1, 25). There are 300 population clusters, with a random

uniform number of population units per population cluster between 50 and 100. The sample

contains 35 clusters and 20 units per cluster. The sampling of clusters is proportional to

the magnitude of the cluster covariate, x1k. Sampling of individuals is proportional to the

magnitude of the individual covariate, x2ik. The three estimated models are

yik = β0 + U0k + β1x1k + β2x2ik + εik, U0k ∼ N(0, σ2
0k), εik ∼ N(0, σ2

ε ) (7)

yik = β0 + U0k + β2x2ik + εik, U0k ∼ N(0, σ2
0k), εik ∼ N(0, σ2

ε ) (8)

yik = β0 + U0k + β1x1k + εik, U0k ∼ N(0, σ2
0k), εik ∼ N(0, σ2

ε ) (9)

The simulation is sampling at random when both the x1k and x2ik covariates are included

in the estimating model, and informative sampling when the estimating model does not

contain either (or both) of the covariates.

5.3.1 Summary

The results from this simulation set are in Figure 3. A detailed description of the results

is in Section 8.1.

In this simulation, the estimation using the PSHGR method mostly matched the esti-

mation using the RHS method. There are some differences between the PSHGR and RHS

estimates, but they are not large enough to be seen in Figure 3. See Section 8.1 for more
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details.

The coverage of the confidence intervals between RHS and PSHGR are similar for the

estimated model in Equation 7. The RHS 95% confidence intervals for the β coefficients

are between 73% and 97% and for the variance components they are between 58% to 87%

. The coverage of the PSHGR 95% confidence intervals for the β coefficients from the

estimated model in Equation 7 are between 76% and 97% and for the variance components

they are between 56% and 88%. The major difference between PSHGR and RHS is that

PSHGR can compute the variances of the point estimates in all the simulation runs for

all the parameters, whereas RHS computes the variances between 87% and 100% of the

simulation runs. In addition, the PSHGR confidence intervals for σ2
0k in the estimated

model from Equation 8 have larger coverage than expected, especially for the weighted

unscaled estimate. This may indicate a problem with the variance computation for PSHGR.

To verify this, the coverage of the confidence intervals for the expected parameter value

should be obtained.
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Figure 3: Results for Misspecification of Fixed Effects, Simulation Set 4Generated Model - Equation 6
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The second and third estimated models contain model misspecification. The estimated

models from Equations 8 and 9 contain model misspecification that induces informative

sampling. For the estimated model defined in Equation 8, the weighted estimates of the

intercept are near -5, as the are in Figure 2 under the estimated model in Equation 4 where

there is no informative sampling. This is not near the true value of 1. This difference in the

estimates is due to the model misspecification that is not related to informative sampling. A

similar trend is seen in the estimate of the intercept from the estimated model in Equation

9. The weighted methods do not compensate for the model misspecification bias.

The second and third estimated models contain informative sampling. The informative

sampling bias can be seen by comparing the unweighted estimates to the weighted estimates

for β0 from estimating models in Equations 8 and 9. It can also be seen in the estimates for

σ2
0k, but it is not so obvious. The unweighted estimate of σ2

0k is the same size or larger than

the weighted unscaled estimate of σ2
0k in Figure 2 under the estimating model in Equation

4 where there is no informative sampling. However, the unweighted estimate of σ2
0k is

smaller than the weighted unscaled estimate of σ2
0k in Figure 3 under the estimating model

in Equation 8 where there is informative sampling. The same can be seen under estimated

models in Equations 5 and 9, however it is not so clear since these estimates are against the

constraint that σ2
0k ≥ 0. See section 8.1 for more details. Note that the weights do not fully

compensate for the informative sampling bias, as can be seen by comparing the estimates

of σ2
ε from the estimated model in Equation 9 to the estimates of σ2

ε in Figure 2 under the

estimated model in Equation 5. The addition of the weights helped to compensate for the

informative sampling.

All weighting methods generally provide similar point estimates and ranges for the

β coefficients. The exception is that the spread of the weighted unscaled estimates of

β2 appear to be larger. The estimates for β0 from the estimated model in Equation 9

vary more then the other β coefficients. For both σ2
ε and σ2

0k, there is some bias in the

unweighted estimates. The weighted unscaled estimates have a larger bias, the weighted
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scaled 1 estimate compensates (or overcompensates) for the weighted unscaled bias and

the weighted scaled 2 bias is in between the weighted scaled 1 and the weighted unscaled

bias. Note that the weighted scaled 2 estimates of σ2
ε and σ2

0k when the model is correctly

specified are further from the weighted scaled 1 estimates than in Figure 2. This indicates

that the scaled 2 weights may help with estimation of the variance components under

sampling at random. The unweighted estimates a smaller 0.975, 0.025 quantile spread

than the weighted estimates in all these simulations. When the spreads of the weighted

estimates vary, then the weighted unscaled spread is the largest, followed by the weighted

scaled 2 estimates spread and the weighted scaled 1 estimates spread.
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5.4 Misspecification of Random Variables - Non-Informative Sampling -

Simulation Set 5

A summary of this simulation set is in the “Mis Ran 5” column of Table 6. The generating

model is a random slope model with the random slope on a cluster level covariate,

yik = 1 + (−2 + U1k)xk + 2xik + εik U1k ∼ N(0, 1), εik ∼ N(0, 0.5), (10)

where x1k ∼ N(3, 9) and x2ik ∼ N(1, 25). There are 300 population clusters, with a

random uniform number of population units per population cluster between 50 and 100.

The sample contains 35 clusters and 20 units per cluster. The sampling of clusters is

proportional to the magnitude of the population cluster size, Nk. Sampling of individuals

within clusters is proportional to an independently generated random variable assigned to

each element3. There are two estimated models in this simulation set. One matches the

generated model, and one removes the random slope U1k and adds a random intercept U0k,

yik = β0 + (β1 + U1k)xk + β2xik + εik, U1k ∼ N(0, σ2
1k), εik ∼ N(0, σ2

ε ) (11)

yik = β0 + β1xk + β2xik + U0k + εik, U0k ∼ N(0, σ2
0k), εik ∼ N(0, σ2

ε ) (12)

The sampling scheme is sampling competely at random for both estimated models.

5.4.1 Summary

The results from this simulation set are in Figure 4. A detailed description of the results

is in Section 8.1.

In this simulation, the estimation using the PSHGR method mostly matched the esti-

mation using the RHS method. There are some differences between the PSHGR and RHS

estimates, but they are not large enough to be seen in Figure 4. See Section 8.1 for more
3Each element was assigned a random variable aik ∼ Uniform(−5, 5). They were then sampled propor-

tional to (1 + exp(−aik))−1.
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details.

The coverage of the confidence intervals of RHS and PSHGR are similar, with the RHS

95% confidence intervals for the β coefficients from the estimated model in Equation 11

are between 75% to 95%, and for the variance components they are between 50% and

90%. The coverage of the PSHGR 95% confidence intervals for the β coefficients from the

estimated model in Equation 11 are between 72% to 95%, and for the variance components

they are between 49% and 96%. RHS was able to produce sandwich estimator variances for

between 77% and 100% of the simulation runs, while PSHGR was able to produce design

based estimator variances for 100% of the simulation runs. Again, the number of confidence

intervals for PSHGR covering the true parameter appears larger than the RHS intervals,

especially for the random effects and for the estimated model in Equation 12, where there

is model misspecification. This may indicate a problem with the variance estimator for

PSHGR. To verify this, the coverage of the confidence intervals for the expected parameter

value should be obtained.

35



0.6 1.0 1.4

●

Beta_0

P−UN ( 83 / 100 / 100 )

●

R−UN ( 88 / 93 / 100 )

●

P−WU ( 72 / 100 / 100 )

●

R−WU ( 71 / 95 / 100 )

●

P−S1 ( 82 / 100 / 100 )

●

R−S1 ( 80 / 98 / 100 )

●

P−S2 ( 79 / 100 / 100 )

●

R−S2 ( 70 / 86 / 100 )

E
st

im
at

ed
 M

od
el

 −
 E

qu
at

io
n 

3.
11

−2.6 −2.2 −1.8 −1.4

●

Beta_1 (x_1k)

P−UN ( 91 / 100 / 100 )

●

R−UN ( 85 / 93 / 100 )

●

P−WU ( 87 / 100 / 100 )

●

R−WU ( 84 / 95 / 100 )

●

P−S1 ( 89 / 100 / 100 )

●

R−S1 ( 86 / 98 / 100 )

●

P−S2 ( 87 / 100 / 100 )

●

R−S2 ( 76 / 86 / 100 )

1.97 1.99 2.01 2.03

●

Beta_2 (x_2ik)

P−UN ( 95 / 100 / 100 )

●

R−UN ( 92 / 93 / 100 )

●

P−WU ( 90 / 100 / 100 )

●

R−WU ( 85 / 95 / 100 )

●

P−S1 ( 88 / 100 / 100 )

●

R−S1 ( 86 / 98 / 100 )

●

P−S2 ( 89 / 100 / 100 )

●

R−S2 ( 77 / 86 / 100 )

0.4 0.8 1.2 1.6

●

Sigma^2_1k (x_1k)

P−UN ( 93 / 100 / 100 )

●

R−UN ( 84 / 93 / 100 )

●

P−WU ( 93 / 100 / 100 )

●

R−WU ( 75 / 95 / 100 )

●

P−S1 ( 91 / 100 / 100 )

●

R−S1 ( 74 / 98 / 100 )

●

P−S2 ( 92 / 100 / 100 )

●

R−S2 ( 64 / 86 / 100 )

0.3 0.4 0.5 0.6

●

Sigma^2_epsilon

P−UN ( 96 / 100 / 100 )

●

R−UN ( 90 / 100 / 100 )

●

P−WU ( 49 / 100 / 100 )

●

R−WU ( 48 / 95 / 100 )

●

P−S1 ( 83 / 100 / 100 )

●

R−S1 ( 82 / 98 / 100 )

●

P−S2 ( 69 / 100 / 100 )

●

R−S2 ( 62 / 88 / 100 )

Sigma^2_0k

−1 0 1 2 3

●

Beta_0

P−UN ( 88 / 100 / 100 )

●

R−UN ( 77 / 77 / 100 )

●

P−WU ( 88 / 100 / 100 )

●

R−WU ( 69 / 81 / 100 )

●

P−S1 ( 88 / 100 / 100 )

●

R−S1 ( 83 / 93 / 100 )

●

P−S2 ( 88 / 100 / 100 )

●

R−S2 ( 74 / 85 / 100 )

E
st

im
at

ed
 M

od
el

 −
 E

qu
at

io
n 

3.
12

−2.5 −2.0 −1.5 −1.0

●

Beta_1 (x_1k)

P−UN ( 95 / 100 / 100 )

●

R−UN ( 70 / 77 / 100 )

●

P−WU ( 84 / 100 / 100 )

●

R−WU ( 70 / 81 / 100 )

●

P−S1 ( 84 / 100 / 100 )

●

R−S1 ( 79 / 93 / 100 )

●

P−S2 ( 84 / 100 / 100 )

●

R−S2 ( 73 / 85 / 100 )

1.97 1.99 2.01 2.03

●

Beta_2 (x_2ik)

P−UN ( 95 / 100 / 100 )

●

R−UN ( 75 / 77 / 100 )

●

P−WU ( 90 / 100 / 100 )

●

R−WU ( 72 / 81 / 100 )

●

P−S1 ( 88 / 100 / 100 )

●

R−S1 ( 81 / 93 / 100 )

●

P−S2 ( 90 / 100 / 100 )

●

R−S2 ( 76 / 85 / 100 )

Sigma^2_1k (U_1k)

0.3 0.4 0.5 0.6

●

Sigma^2_epsilon

P−UN ( 96 / 100 / 100 )

●

R−UN ( 75 / 100 / 100 )

●

P−WU ( 49 / 100 / 100 )

●

R−WU ( 40 / 85 / 100 )

●

P−S1 ( 84 / 100 / 100 )

●

R−S1 ( 79 / 96 / 100 )

●

P−S2 ( 68 / 100 / 100 )

●

R−S2 ( 60 / 87 / 100 )

−10 0 10 20 30

●

Sigma^2_0k

P−UN ( 2 / 100 / 100 )

●

R−UN ( 0 / 77 / 100 )

●

P−WU ( 82 / 100 / 100 )

●

R−WU ( 12 / 81 / 100 )

●

P−S1 ( 76 / 100 / 100 )

●

R−S1 ( 13 / 93 / 100 )

●

P−S2 ( 28 / 100 / 100 )

●

R−S2 ( 11 / 85 / 100 )

Figure 4: Results for Misspecification of Random Variables, Simulation Set 5
Generated Model - Equation 10
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The second estimated model contains model misspecification. The random slope term

is removed and a random intercept term is added. The random intercept variance contains

the variance of the random slope term (U1kx1k), however there is some negative bias in

the estimates. The expected variance of the random intercept is approximately 18, while

the simulated means are between 13.5 and 16, see Section 8.1 for details. This is expected

due to the low intra-class correlation, see Asparouhov (2006). None of the other estimates

are affected by the model misspecification. Note that the weighted estimates do not ap-

pear to compensate for the model misspecification, though it is not entirely clear what

compensating for model misspecification would mean in this example.

These simulations did not contain any informative sampling, so there was no informative

sampling bias.

All weighting schemes provide similar point estimates and ranges for the β parameters.

The exception is that the spread for the weighted unscaled estimate of β2 is larger than

the other weighted schemes. The variance of the unweighted estimates is smaller. The

estimates of the random slope follow the trend that the weighted scaled 2 estimate is

between the weighted unscaled and the weighted scaled 1. The bias doesn’t quite follow

the same pattern as the weighted scaled 1 estimates show more bias in the same direction as

the weighted unscaled, as opposed to σ2
ε and σ2

0k where the weighted scaled 1 compensates

for the bias in the weighted unscaled estimates. All the unweighted estimates a smaller

0.975, 0.025 quantile spread than the weighted estimates. When the spreads of the weighted

estimates vary, then the weighted unscaled spread is the largest, followed by the weighted

scaled 2 estimates spread and the weighted scaled 1 estimates spread.
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5.5 Misspecification of Random Variables - Informative Sampling - Sim-

ulation Set 6

A summary of this simulation set is in the “Mis Ran 6” column of Table 6. The generating

model is a random slope model, with the random slope on the cluster level covariate,

yik = 1 + (−2 + U1k)x1k + 2x2ik + εik U1k ∼ N(0, 1), εik ∼ N(0, 0.5), (13)

where x1k ∼ N(3, 9) and x2ik ∼ N(1, 25). There are 300 population clusters, with a

random number of population units per population cluster between 50 and 100. The sample

contains 35 clusters and 20 units per cluster. The sampling of clusters is proportional

to the magnitude of the random effect, U1k. Sampling of individuals within clusters is

proportional to an independently generated random variable assigned to each element4.

There are two estimated models in this simulation set. One matches the generated model,

and one removes the random slope U1k and adds a random intercept U0k,

yik = β0 + (β1 + U1k)xk + β2x2ik + εik, U1k ∼ N(0, σ2
1k), εik ∼ N(0, σ2

ε ) (14)

yik = β0 + β1x1k + β2x2ik + U0k + εik, U0k ∼ N(0, σ2
0k), εik ∼ N(0, σ2

ε ) (15)

The sampling scheme is informative sampling at the cluster level.

5.5.1 Results Summary

The results from this simulation set are in Figure 5. A detailed description of the results

is in Section 8.1.

In this simulation, the estimation using the PSHGR method mostly matched the es-

timation using the RHS method. The PSHGR estimate of β0 under the estimated model

in Equation 15 has a lower mean and a lower 0.025 quantile and a higher 0.975 quantile
4Each element was assigned a random variable aik ∼ Uniform(−5, 5). They were then sampled propor-

tional to (1 + exp(−aik))−1.
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than the corresponding RHS estimate. This and other differences between PSHGR and

RHS are described in more detail in Section 8.1. The coverage of the confidence intervals

of RHS and PSHGR are similar, with the RHS 95% confidence intervals for the β coef-

ficients from the estimated model in Equation 14 are between 10% to 96%, and for the

variance components they are between 31% and 89%. The coverage of the PSHGR 95%

confidence intervals for the β coefficients from the estimated model in Equation 14 are

between 11% to 95%, and for the variance components they are between 41% and 94%.

RHS was able to produce sandwich estimator variances for between 80% and 100% of the

simulation runs, while PSHGR was able to produce design based estimator variances for

100% of the simulation runs. In general, the number of PSHGR confidence intervals that

cover the true parameter is larger than for RHS, especially when the model is misspecified

as in the estimated model in Equation 15. This may indicate a problem with the variance

computation for PSHGR. To verify this, the coverage of the confidence intervals for the

expected parameter value should be obtained.
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Figure 5: Results for Misspecification of Random Variables, Simulation Set 6
Generated Model - Equation 13
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The second estimated model contained model misspecification. The random slope term

was removed and a random intercept term was added. The random intercept variance

contained the variance fo the random slope term (U1kxik). None of the other estimates

were affected by the model misspecification.

Both estimated models contain informative sampling. When the estimated and gener-

ated models match each other, the informative sampling causes the unweighted estimates

of β1k and σ2
1k to be biased. All of the weighted estimates help to compensated for this

informative sampling. When the random slope is removed from the model and a random

intercept is added, the estimate of β1 contained the same informative sampling bias in the

unweighted estimate. The informative sampling bias of the σ2
1k estimate is now reflected in

the estimate of σ2
0k. When comparing the unweighted estimate of σ2

0k to the same estimate

from the estimating model from Equation 12, it is clear that the unweighted estimate from

the estimating model in Equation 15 is smaller. None of the other terms were affected.

All the weighted estimates performed similarly for the β coefficients. As in the previous

simulations, for σ2
ε and σ2

0k, the weighted unscaled estimates are biased, the weighted scaled

1 estimates overcompensate for the bias, and the weighted scaled 2 estimates are in between.

Note that unlike the previous simulation set that was non-informative, the pattern of the

weights in the estimate of σ2
1k follows the pattern of the other variance components. The

unweighted estimates a smaller 0.975, 0.025 quantile spread than the weighted estimates in

all these simulations. When the spreads of the weighted estimates vary, then the weighted

unscaled spread is the largest, followed by the weighted scaled 2 estimates spread and the

weighted scaled 1 estimates spread.
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5.6 Misspecification of Random Variables - Non-Informative Sampling -

Simulation Set 7

A sumary of this simulation set is in the “Mis Ran 7” column of Table 6. The generating

model is a random slope model, where the random slope is on the individual level covariate,

yik = 1− 2x1k + (2 + U2k)x2ik + εik U2k ∼ N(0, 0.8), εik ∼ N(0, 0.5). (16)

where x1k ∼ N(3, 9) and x2ik ∼ N(1, 25). There are 300 population clusters, with a

random uniform number of population units per population cluster between 50 and 100.

The sample contains 35 clusters and 20 units per cluster. The sampling of Clusters is

proportional to the magnitude of the population cluster size, Nk. Sampling of individuals

within clusters is proportional to an independently generated random variable assigned to

each element5. There are two estimated equations in this simulation set. One matches the

generated model, and one removes the random slope U2k and adds a random intercept U0k,

yik = β0 + U1kx1k + (β2 + U2k)x2ik + εik, U2k ∼ N(0, σ2
2k), εik ∼ N(0, σ2

ε ) (17)

yik = β0 + β1x1k + β2x2ik + U0k + εik, U0k ∼ N(0, σ2
0k), εik ∼ N(0, σ2

ε ) (18)

This sampling scheme is sampling completely at random.

5.6.1 Summary

The results from this simulation set are in Figure 6. A detailed description of the results

is in Section 8.1.

In this simulation, the estimation using the PSHGR method mostly matched the esti-

mation using the RHS method. There are some differences between the PSHGR and RHS

estimates, but they are not large enough to be seen in Figure 6. See Section 8.1 for more
5Each element was assigned a random variable aik ∼ Uniform(−5, 5). They were then sampled propor-

tional to (1 + exp(−aik))−1.
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details. The coverage of the confidence intervals of RHS and PSHGR are mostly similar,

with the RHS 95% confidence intervals for the β coefficients from the estimated model in

Equation 20 are between 77% to 95%, and for the variance components they are between

49% and 94%. The coverage of the PSHGR 95% confidence intervals for the β coefficients

from the estimated model in Equation 17 are between 78% to 92%, and for the variance

components they are between 59% and 98%. Note that the coverage of the σ2
2k estimates

for PSHGR (approximately 85/100) is much higher than the estimates of the coverage

for RHS (approximately 45/95). The RHS coverages appear more accurate given the bias

in the estimates. This may indicate a problem with the variance estimator for PSHGR.

To verify this, the coverage of the confidence intervals for the expected parameter value

should be obtained. RHS was able to produce sandwich estimator variances for between

92% and 100% of the simulation runs, while PSHGR was able to produce design based

estimator variances for 100% of the simulation runs. In addition, for the estimated model

in Equation 18, a simulation run did not converge for the RHS weighted scaled 2 estimates.

The number of confidence intervals for PSHGR covering the true value fo σ2
2k under the

estimated model in Equation 17 are larger than the corresponding RHS intervals.
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Figure 6: Results for Misspecification of Random Variables, Simulation Set 7
Generated Model - Equation 16
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The second estimated model contains model misspecification. The variance from the

dropped random slope is split between the estimated variance of the random intercept and

the estimated variance of the random error, as expected from the description in Section

8.1. The estimates of β are not affected by the model misspecification. The addition of

the weights does not help compensate for this model misspecification.

These simulations does not contain any informative sampling, so there is no informative

sampling bias.

All the weighting schemes perform equivalently for the β estimates, except the weighted

estimates of β0 and β1 with the unscaled weights have slightly larger variances. The weight-

ing of the variance components follows the trend that the weighted unscaled estimates are

biased, the weighted scaled 1 overcompensates for the bias, and the weighted scaled 2

estimates are between the weighted scaled 1 and the weighted unscaled estimates. An

exception to this is the estimate of σ2
ε for the estimated model in Equation 18. Here we see

that the weighted unscaled estimates are biased, and that the weighted scaled 1 estimates

are more biased than the weighted scaled 1, with the weighted scaled two still between

the weighted scaled 1 and the unweighted estimates. The unweighted estimates a smaller

0.975, 0.025 quantile spread than the weighted estimates in all these simulations. When the

spreads of the weighted estimates vary, then the weighted unscaled spread is the largest,

followed by the weighted scaled 2 estimates spread and the weighted scaled 1 estimates

spread. The exception is in the estimated model in Equation 18 for the estimates of β2

and σ2
ε , where the scaled 1 estimates simulation spread is larger than the weighted scaled

2 spread.
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5.7 Misspecification of Random Variables - Informative Sampling - Sim-

ulation Set 8

A summary of this simulation set is in the “Mis Ran 8” column of 6. The generating model

is a random slope model, with the random slope on a cluster level covariate,

yik = 1− 2x1k + (2 + U2k)x2ik + εik U2k ∼ N(0, 0.8), εik ∼ N(0, 0.5), (19)

where x1k ∼ N(3, 9) and x2ik ∼ N(1, 25). There are 300 population clusters, with a

random uniform number of population units per population cluster between 50 and 100.

The sample contains 35 clusters and 20 units per clusters. The sampling of clusters was

proportional to the magnitude of the random effect U2k. Sampling of individuals within

clusters is proportional to an independently generated random variable assigned to each

element6. There are two estimated equations in this simulation set. One matches the

generated model, and one removes the random slope U2k and adds a random intercept U0k,

yik = β0 + U1kx1k + (β2 + U2k)x2ik + εik, U2k ∼ N(0, σ2
2k), εik ∼ N(0, σ2

ε ) (20)

yik = β0 + β1x1k + β2x2ik + U0k + εik, U0k ∼ N(0, σ2
0k), εik ∼ N(0, σ2

ε ). (21)

The sampling scheme is informative sampling for both estimated models.

5.7.1 Summary

The results from this simulation set are in Figure 7. A detailed description of the results

is in Section 8.1.

In this simulation, the estimation using the PSHGR method matched well the estima-

tion using the RHS method. There are no differences to highlight.

The coverage of the confidence intervals of RHS and PSHGR are mostly similar, with
6Each element was assigned a random variable aik ∼ Uniform(−5, 5). They were then sampled propor-

tional to (1 + exp(−aik))−1.
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the RHS 95% confidence intervals for the β coefficients from the estimated model in Equa-

tion 20 are between 84% to 94%, and for the variance components they are between 28%

and 89%. The coverage of the PSHGR 95% confidence intervals for the β coefficients from

the estimated model in Equation 20 are between 82% to 95%, and for the variance com-

ponents they are between 51% and 93%. The number of confidence intervals for PSHGR

covering the true parameter appears lager than the RHS intervals, especially for the σ2
2k

parameter from the estimated model in Equation 20. This may indicate a problem with

the variance estimator for PSHGR. To verify this, the coverage of the confidence intervals

for the expected parameter value should be obtained. RHS was able to produce sandwich

estimator variances for between 95% and 100% of the simulation runs, while PSHGR was

able to produce design based estimator variances for 100% of the simulation runs. In ad-

dition, for the estimated model in Equation 21, there was one simulation for each of the

the weighted scaled 2, unweighted and weighted scaled 1 estimates that did not converge

for RHS after incrementing the number of quadrature points from 15 to 31.
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Figure 7: Results for Misspecification of Random Variables, Simulation Set 8
Generated Model - Equation 19
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The second estimated model contains model misspecification. The variance from the

dropped random slop is split between the estimated variance of the random intercept and

the estimated variance fo the random error, as is expected from the description in Section

8.1. The estimates of β were not affected by the model misspecification. The addition of

the weights does not help compensate for this model misspecification.

Both estimated models contain informative sampling, the effects of which can be seen in

the unweighted estimates of the β2ik, σ2
2k and σ2

0k parameters. In the first estimated model,

the unweighted estimate of β2ik is larger than the weighted estimates, and the unweighted

estimate of σ2
2k is smaller than the weighted estimates due to oversampling larger values

of U2k. In the estimated model from Equation 21, the effect of the informative sampling

on the β2ik is the same as in Equation 20. In addition, the unweighted estimate of σ2
0k is

biased low, which can be seen when comparing it to the unweighted estimate of σ2
0k from

Equation 18 that does not contain the informative sampling.

All of the weighted estimates performed similarly for the β coefficients, however the

variance for the weighted unscaled estimates is larger. The pattern in the variance compo-

nents still holds, the weighted unscaled estimates are biased, the weighted scaled 1 estimates

overcompensates for the bias and the weighted scaled 2 estimates are between the weighted

unscaled and weighted scaled 1 estimates. The exception to this are the estimates of σ2
ε

for the estimated model in Equation 21, where the scaled 1 estimates provide more bias

in the same direction as the weighted unscaled estimates. The weighted scaled 2 estimates

are still between the unweighted and the weighted scaled 1 estimates. The unweighted

estimates a smaller 0.975, 0.025 quantile spread than the weighted estimates in all these

simulations. When the spreads of the weighted estimates vary, then the weighted unscaled

spread is the largest, followed by the weighted scaled 2 estimates spread and the weighted

scaled 1 estimates spread.
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5.8 Misspecification of Stratification Layers - Stratified / Clustered Sam-

pling - Simulation Set 9

A summary of this simulation set is in the “Mis Strat 9” column of Table 7. Let there

be two strata where Ih==1(Ih==2) is an indicator variable that the element is in the first

(second) stratum, respectively. Within each stratum, there is a layer of clustering. The

generating model is a clustered/stratified model,

yihk = −3 + 8Ih==1 + U01kIh==1 + U02kIh==2 + εihk (22)

U01k ∼ N(0, 1), U02k ∼ N(0, 5), εihk ∼ N(0, 0.5),Cov(U01k, U02k) = 0.

This model allows the variance of the clusters in the first stratum to be different from the

variance of the clusters in the second stratum. Within each of the two strata, there are 30

population clusters, with a random uniform number of population elements per population

cluster between 50 and 100 units. The sample includes 5 clusters from each stratum, and

20 units from each cluster. Sampling of clusters within a stratum is proportional to an

independently generated random variable assigned to each cluster7. Sampling of elements

within a cluster is proportional to an independently generated random variable assigned

to each element8.

There are two estimated models in this simulation set. One matches the generated
7Each cluster was assigned a random variable ak ∼ Uniform(−5, 5). They were then sampled propor-

tional to (1 + exp(−ak))−1.
8Each element was assigned a random variable aik ∼ Uniform(−5, 5). They were then sampled propor-

tional to (1 + exp(−aik))−1.
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model, and one removes the layer of stratification to estimate a cluster only scheme,

yihk = β0 + β1Ih==1 + U01kIh==1 + U02kIh==2 + εihk, (23)

U01k ∼ N(0, σ2
01), U02k ∼ N(0, σ2

02), εihk ∼ N(0, σ2
ε ),Cov(U01k, U02k) = σ2

01k.02k,

yihk = β0 + U0k + εihk

U0k ∼ N(0, σ2
0k), εihk ∼ N(0, σ2

ε ). (24)

The sampling scheme is at random for both estimated models

These results are presented with the results of an additional simulation. This simulation

used the same generating model, but uses informative sampling for the clusters. The

generating model is

yihk = −3 + 8Ih==1 + U01kIh==1 + U02kIh==2 + εihk (25)

U01k ∼ N(0, 1), U02k ∼ N(0, 5), εihk ∼ N(0, 0.5),Cov(U01k, U02k) = 0,

and there was one estimating equation,

yihk = β0 + U0k + εihk (26)

U0k ∼ N(0, σ2
0k), εihk ∼ N(0, σ2

ε ).

Sampling of clusters within a stratum is proportional to the magnitude of the random

effect, U01k or U02k, assigned to each cluster. Sampling of elements within a cluster is

proportional to an independently generated random variable assigned to each element9.

All the other components of the sampling scheme are the same as described after Equation

24.

The sampling scheme is informative sampling.
9Each element was assigned a random variable aik ∼ Uniform(−5, 5). They were then sampled propor-

tional to (1 + exp(−aik))−1.
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5.8.1 Results Summary

The results from this simulation set are in Figure 8. A detailed description of the results

is in Section 8.1.

In this simulation, the estimation using the PSHGR method mostly matched the es-

timation using the RHS method. The differences that are visible in Figure 8 include all

the estimates of σ2
01k.02k when the estimated model is in Equation 23. This difference is

due to the very small point estimates (and no variance) in the PSHGR estimates. In the

same estimated model, the PSHGR weighted scaled 1 estimates of σ2
02k have a much larger

0.975 empirical quantile than RHS. In addition, the PSHGR weighted unscaled estimates

of σ2
0k from the estimated model in Equation 24 has a larger 0.025 and 0.975 empirical

quantile than RHS. These and other differences not large enough to be seen in Figure 8

are in Section 8.1.
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Figure 8: Results for Misspecification of Stratification Layers, Simulation Set 9
Generated Model - Equation 22
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The coverage of the confidence intervals of RHS and PSHGR are similar (except for the

σ2
01k.02 intervals) with the RHS 95% confidence intervals for the β coefficients from the

estimated model in Equation 23 are between 74% to 81%, and for the variance components

they are between 52% and 93%. The coverage of the PSHGR 95% confidence intervals for

the β coefficients from the estimated model in Equation 20 are between 74% to 87%, and

for the variance components they are between 52% and 85%. The confidence intervals for

PSHGR do not capture the σ2
01k.02k well because many of the estimated variances of the

point estimates were negative. RHS was able to produce sandwich estimator variances for

between 86% and 100% of the simulation runs, while PSHGR was able to produce design

based estimator variances for 100% of the simulation runs.

The second and third estimated models contain model misspecification as the strati-

fied/clustered model was reduced to a clustered model. As expected, the estimated inter-

cept became the average of the two strata intercepts (as the sample size had 50% from each

stratum) and the estimate of the random intercept includes the variance of the means of

the strata and the two random effects. The estimate of the random error did not change.

For more description see Section 8.1. The third model also includes model misspecification

and informative sampling. The addition of the weights does not help compensate for the

model misspecification.

The third estimated model contains informative sampling. The unweighted estimate

of β0 exhibits bias from the informative sampling. This bias is reduced by the weighted

estimates, but not eliminated. We also see the bias in the unweighted estimation of σ2
0k.

Note that the unweighted estimate from the estimated model in Equation 24 is larger than

the weighted unscaled estimate from the same estimated model. However, the unweighted

estimate of σ2
0k from the esimtaed model in Equation 26 is smaller than the weighted

unscaled estimate from the same simulation . We also see that all the means of the

estimates of σ2
0k from the estimated model in Equation 24 are larger than the true value,

whereas for the same parameter in the estimated model from Equation 26 the means of

54



the esimates are smaller than the true value. This shows again that the weighted estimates

help compensate for the model misspecification, but do not eliminate it.

All the weighted estimates perform similarly for the β coefficients. The weighted es-

timates are all quite similar for the estimates of the variance components of the random

slopes. They are closer together than the previous simulations estimates of the random er-

ror. The estimates of the variance components are exhibiting the same behavior as before,

with the weighted unscaled as biased, the weighted scaled 1 overcompensating for the bias

and the weighted scaled 2 between the weighted scaled 1 and the weighted unscaled esti-

mates. The unweighted estimates a smaller 0.975, 0.025 quantile spread than the weighted

estimates in all these simulations. When the spreads of the weighted estimates vary, then

the weighted unscaled spread is the largest, followed by the weighted scaled 2 estimates

spread and the weighted scaled 1 estimates spread.
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5.9 Misspecification of the Stratification Layering - Clustered/Stratified

Sampling - Simulation Set 10

A summary of this simulation set is in the “Mis Strat 10” column of Table 7. The sam-

pling structure first samples clusters and within each cluster there are two strata. Let

Ih==1(Ih==2) be an indicator variable that the element is in the first (second) stratum,

respectively. The generating model is a random intercept model that takes into account

the clustering and stratification,

yikh = −3 + 8Ih==1 + U0k + εikh (27)

U0k ∼ N(0, 5), εikh ∼ N(0, 0.5),

where the effect of being in a given stratum is the same regardless of cluster membership.

There are 30 population clusters, each containing two strata. Each stratum contains a

random uniform number of population elements per population cluster between 25 and 50.

The sample includes 5 clusters. Within each of the 5 clusters, there are two strata, and

10 elements are sampled from each stratum. Sampling of clusters is proportional to an

independently generated random variable assigned to each cluster10. Sampling of elements

within a cluster is proportional to an independently generated random variable assigned

to each element11.

There are two estimated models in this simulation set. One matches the generated

model, and one removes the layer of stratification to estimate a cluster only scheme,

yikh = β0 + β1Ih==1 + U0k + εikh, U0k ∼ N(0, σ2
0k), εikh ∼ N(0, σ2

ε ) (28)

yihk = β0 + U0k + εihk, U0k ∼ N(0, σ2
0k), εihk ∼ N(0, σ2

ε ). (29)
10Each cluster was assigned a random variable ak ∼ Uniform(−5, 5). They were then sampled propor-

tional to (1 + exp(−ak))−1.
11Each element was assigned a random variable aik ∼ Uniform(−5, 5). They were then sampled propor-

tional to (1 + exp(−aik))−1.
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Similar to the previous simulation set, these results are presented with the result of

an additional simulation. This simulation used the same generating model, however the

sampling scheme includes informative sampling for the clusters. The generating model is

yikh = −3 + 8Ih==1 + U0k + εikh (30)

U0k ∼ N(0, 5), εikh ∼ N(0, 0.5)

and there was one estimating model,

yihk = β0 + U0k + εihk (31)

U0k ∼ N(0, σ2
0k), εihk ∼ N(0, σ2

ε ).

Sampling of clusters is proportional ot the magnitude of the random effect, U0k. Sampling

of elements within a cluster is proportional to an independently generated random variable

assigned to each element12. The case in which the estimating model matched the generating

model was not run due to space considerations.

The sampling scheme is missing completely at random for the estimating models in

Equations 28 and 29, and it is informative for the estimating model in Equation 31.

5.9.1 Summary

The results from this simulation set are in Figure 9. A detailed description of the results

is in Section 8.1.

In this simulation set, the estimation using the PSHGR method mostly matched the

estimation using the RHS method. There are some differences between the PSHGR and

RHS estimates that are large enough to be seen in Figure 9. The PSHGR weighted scaled

1 estimate of σ2
ε from the estimating model in Equation 29 has a much lower 0.025 quantile

12Each element was assigned a random variable aik ∼ Uniform(−5, 5). They were then sampled propor-
tional to (1 + exp(−aik))−1.

57



and mean than the corresponding RHS estimate. The PSHGR unweighted estimate of σ2
0k

has a lower 0.025 quantile than the corresponding RHS estimate. The PSHGR weighted

scaled 2 estimate of σ2
0k has a lower 0.975 quantile and mean than the corresponding RHS

estimate. Finally, the PSHGR scaled 1 estimate of σ2
ε has a lower 0.025 quantile and mean

than the corresponding RHS estimate.

The coverage of the confidence intervals of RHS and PSHGR are similar, with the RHS

95% confidence intervals of the β coefficients for the estimated model in Equation 28 is

between 70% and 95%, and for the variance components the coverage is between 50% and

84%. The coverage of the PSHGR 95% confidence intervals of the β coefficients for the

estimated model in Equation 28 is between 75% and 90%, and for the variance components

the coverage is between 50% and 80%.
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Figure 9: Results for Misspecification of Stratification Layers, Simulation Set 10
Generated Model - Equation 27
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The second and third estimated models contains model misspecification. When the

stratification layer was removed, it had the same effect as losing a fixed effects variable

that varied according to cluster – the intercept estimate and the variance of the random

error both changed. See Section 8.1 for more details. The addition of the weights does not

help compensate for this model misspecification.

The third estimated model contained informative sampling, the effects of which can be

seen in the unweighted estimates of the β0, and σ2
0k parameters. The all of the estimates

(and especially the unweighted estimate) of σ2
0k are smaller in the estimated model from

Equation 31 than the corresponding estimates from the estimated model in Equation 29

The use of the weights helped to compensate for the informative sampling bias, but did

not completely remove the bias.

All of the weighted estimates performed similarly for the β coefficients, however the

variance for the weighted unscaled estimate is larger for the estimate of the stratification

indicator. In addition, there are instabilities in the PSHGR estimation of σ2
ε when using

the scaled 1 weights. The pattern in the weighted estimates of the variance components is

that the weighted scaled 1 has more bias in the same direction than the weighted unscaled

estimate (except for the estimates of σ2
ε when the estimated model is from Equation 28).

The usual pattern is that the weighted scaled 1 estimates compensate (or overcompensate)

for the weighted unscaled bias. Also unusual is the larger variance for the unweighted

estimates of σ2
0k in both the RHS and PSHGR estimates from the estimated model in

Equation 28. The unweighted estimates a smaller 0.975, 0.025 quantile spread than the

weighted estimates in all these simulations. When the spreads of the weighted estimates

vary, then the weighted unscaled spread is the largest, followed by the weighted scaled 2

estimates spread and the weighted scaled 1 estimates spread.
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5.10 Misspecification of Stratification Layers - Stratified/Clustered/Stratified

Sampling - Simulation Set 11

A summary of this simulation set is in the “Mis Strat 11” column of Table 7. The sampling

structure is a three stage stratify/cluster/stratify scheme where each layer of stratification

has two strata. Let Ih1==1(Ih1==2) be an indicator that the element is in the first (second)

top level strata, respectively. Let Ih2==1(Ih2==2) be an indicator that the element is in the

first (second) lower level strata, respectively. The generating model is a random intercept

model that takes into account the clustering and stratification,

yih1kh2 = 7− 8Ih1==2 − 10Ih2==2 + U01kIh1==1 + U02kIh1==2 + εih1kh2 (32)

U01k ∼ N(0, 1), U02k ∼ N(0, 5), εih1kh2 ∼ N(0, 0.5).

This generating model has separate means for the two top level strata where the effect

of being in top level strata 1 is 5 and the effect of top level strata 2 is -3. The clusters

within top level strata h1 == 1 have a different random intercept variance than the clusters

within top level strata h1 == 2. Within each stratum / cluster, the effect of being in the

bottom level second strata is the same regardless of cluster. The effect of being in lower

level stratum 1 is 2 and the effect of being in lower level stratum 2 is -8. Thus the mean

of a unit in the first top layer strata and the first lower level strata is 7 , the mean for the

first top layer strata and the second lower level strata is -3, the mean for the second top

level stratum and the first lower level stratum is -1, and the mean for the second top level

stratum and the second lower level stratum is -11.

Each of the two upper level stratum contains 300 population clusters. Each cluster

contains two lower level strata. Each lower level strata contains a random uniform number

of population elements between 50 and 100. Within each top level strata, five clusters

are sampled proportional to an independently generated random variable. Within each

sampled cluster, 20 elements are sampled from each of the two strata. There are 400
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elements in the sample.

There are four estimated models in this simulation set. The first estimating model

matches the generating model. The second and third estimating models drop one (either

the top or the bottom) layer of stratification. Finally the fourth estimating model drops

both layers of stratification and has a cluster only model. The four estimated models are

yijkl = β0 + β1 ∗ (Iik ∈ s1= 2) + β2 ∗ (Iijkl ∈ s2=2) + U0k1 ∗ (Iijkl ∈ s1=1) (33)

+ U0k2 ∗ (Iijkl ∈ s1=2) + εik

U0k1 ∼ N(0, σ2
0k1), U0k2 ∼ N(0, σ2

0k2), ε ∼ N(0, σ2
ε ),

yik = β0 + β1 ∗ (Iijkl ∈ S2=2) + U0k + εik (34)

U0k ∼ N(0, σ2
0k), ε ∼ N(0, σ2

ε ),

yijkl = β0 + β1 ∗ (Iik ∈ s1= 2) + U0k1 ∗ (Iijkl ∈ s1=1)

+ U0k2 ∗ (Iijkl ∈ s1=2) + εik (35)

U0k1 ∼ N(0, σ2
0k1), U0k2 ∼ N(0, σ2

0k2), ε ∼ N(0, σ2
ε ),

yik = β0 + U0k + εik (36)

U0k ∼ N(0, σ2
0k), ε ∼ N(0, σ2

ε ).

This sampling scheme is sampling completely at random for all of the estimating models.

5.10.1 Summary

The results from this simulation set are in Figure 10. A detailed description of the results

is in Section 8.1.

In this simulation, the estimation using the PSHGR method mostly matches the esti-

mation using the RHS method. However, there are many differences between the PSHGR

and RHs estimates large enough to be seen in Figure 10. First consider the estimating

model in Equation 33. The PSGHR weighted scaled 1 estimates of σ2
01k have a smaller

mean and a smaller 0.975 quantile than the corresponding RHS estimates. The estimates
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of σ2
02k and σ2

01k.02k have obvious differences. For the estimating model in Equation 34, the

PSHGR unweighted estimate of σ2
0k has a larger 0.025 and 0.975 quantiles and mean than

the corresponding RHS estimate. The mean of the PSHGR weighted unscaled estimates

of σ2
0k has a larger mean than the corresponding RHS estimates. The mean of the PSHGR

weighted scaled 2 estimates of σ2
0k is larger than the associated RHS estimates. There are

many differences from the estimated model from Equation 35. The mean of the PSHGR

weighted unscaled estimates of β0 is smaller than the corresponding RHS estimate. The

PSHGR weighted scaled 1 0.025 quantile for β0 is smaller than the corresponding RHS

estimate. The PSHGR mean and 0.025 quantile for the weighted unscaled estimates of β1

are larger than the corresponding RHS estimates. The PSHGR mean and 0.975 quantiles

of the weighted scaled 1 estimates of β1 are larger than the corresponding RHS estimates.
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Figure 10: Results for Misspecification of Stratification Layers, Simulation Set 11
Generated Model - Equation 32

64



There is a large outlier in the RHS weighted scaled 2 estimates of σ2
01k and σ2

02k resulting

in the mean of the esimates to be off of the scale of the graph. The RHS weighted unscaled

estimates of σ2
01k.02khave a much wider range and larger mean than the associated PSHGR

estimates. Finally, the PSHGR weighted scaled 1 estimates of σ2
ε have a lower 0.025

quantile and mean than the associated RHS estimates. For more details, see Section 8.1.

The coverage of the confidence intervals of RHS and PSHGR are similar, with the RHS

95% confidence intervals for the β coefficients from the estimated model in Equation 33

are between 74% to 93% and for the variance components (not including σ2
01k.02k) they are

between 56% and 91%. The coverage of the PSHGR 95% confidence intervals for the β

coefficients from the estimated model in Equation 33 are between 72% to 96% and for the

variance components (not including σ2
01k.02k) they are between 55% and 86%. RHS was

able to produce sandwich estimator variances for between 75% and 100% of the simulation

runs, while PSHGR was able to produce design-based estimator variances for between 57%

and 100%.

The second, third and fourth rows of Figure 10 contain model misspecification involving

dropping the top level, bottom level or both levels of stratification. The means of param-

eters are what is expected as described in Section 8.1. The misspecification is seen mostly

in the estimates of β0 and σ2
ε . The addition of the weights does not compensate for this

model misspecification.

There is no informative sampling in this simulation so there is no informative sampling

bias.

The patterns in the different weightings are hard to see in this simulation due to the out-

lying observations. For the β coefficients, it appears that the weighted unscaled estimates

has a larger variance, especially for the estimating model in Equation 34 and 35. For the

variance estimates, most appear to follow the pattern that the weighted unscaled estimates

are biased, the weighted scaled 1 (over) compensates for the bias and the weighted scaled

2 estimates are between the weighted unscaled and the weighted scaled 1 estimates. There
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are two parameters where the weighted scaled 1 apears to add bias in the same direction of

the weighted unscaled estimates, specifically the estimates of σ2
ε from the estimated models

in Equations 35 and 36. The unweighted estimates a smaller 0.975, 0.025 quantile spread

than the weighted estimates in all these simulations. When the spreads of the weighted

estimates vary, then the weighted unscaled spread is the largest, followed by the weighted

scaled 2 estimates spread and the weighted scaled 1 estimates spread.
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5.11 Misspecification of Clustering Layers – Simulation Set 12

A summary of this simulation set is in the “Mis Clust 12” column of Table 7. The sampling

structure first clusters on the top layer clusters (denoted k1), then selects lower level clusters

(denoted k2) within the top layer clusters. The generating model is a two-level random

slope model to fit the cluster/cluster design,

yik1k2 = 5 + U0k1 + U0k1k2 + εik1k2 (37)

U0k1 ∼ N(0, 5), U0k1k2 ∼ N(0, 1), εik1k2 ∼ N(0, 0.5).

There are 30 top level population clusters and within each top level population cluster

there are 10 bottom level population clusters with a random uniform number of popu-

lation units per cluster between 25 and 50. The sample contains 5 top level clusters, 5

bottom level clusters and 3 elements per bottom level cluster. The top level clusters are

sampled proportional to first independent random variable, the bottom level clusters are

sampled proportional to a second independent random variable, and the elements within

the bottom cluster are sampled proportional to a third independently generated random

variable. There are two estimating models in this simulations set, the first removes the

bottom layer of clustering,

yik1k2 = 5 + U0k1 + εik1k2 (38)

U0k1 ∼ N(0, σ2
0k1), εik1k2 ∼ N(0, σ2

ε ),

and the second removes the top layer of clustering,

yik1k2 = 5 + U0k1k2 + εik1k2 (39)

U0k1k2 ∼ N(0, σ2
0k1k2), εik1k2 ∼ N(0, σ2

ε ).
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Due to time constraints, none of the estimated models match the generating model. This

sampling scheme is sampling completely at random for both estimated models.

5.11.1 Summary

The results from this simulation set are in Figure 11. For a complete description of the

simulation results, see Section 8.1.

In this simulation, the estimation using the PSHGR method mostly matched the esti-

mation using the RHS method. THere are some differences between the PSHGR and RHS

estimates large enough to be seen in Figure 11. From the estimated model in Equation 38,

the PSHGR empirical confidence intervals for the weighted scaled 1 and weighted scaled 2

estimates of σ2
0k1 are longer than the corresponding RHS intervals. The 0.025 quantile of

the PSHGR weighted scaled 1 and weighted scaled 2 estimates of σ2
ε are smaller than the

corresponding RHS quantiles. For the estimated model in Equation 39, the 0.975 quantiles

for the weighted unscaled, weighted scaled 1 and weighted scaled 2 are larger for the RHS

intervals than for the corresponding PSHGR intervals.
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Figure 11: Results for Misspecification of Clustering Layers, Simulation Set 12
Generated Model - Equation 37
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For the PSHGR 0.025 quantile of the weighted unscaled estimate of σ2
ε is larger than the

corresponding RHS quantile. The mean of the PSHGR scaled 2 estimates of σ2
ε is larger

than the corresponding RHS mean. Finally, the 0.025 and 0.975 quantiles and the mean

of the PSHGR weighted scaled 2 estimates of σ2
ε are larger than the corresponding RHS

estimates. For more details, see Section 39.

The coverage of the confidence intervals of RHS and PSHGR is not analyzed in this

simulation as both estimated equations contain model misspecification.

The first and second rows both contain model misspecification, as the generating model

is a three level random intercept model and the two estimating models are two level random

intercept models. In these simulations, the variance from the cluster level that was dropped

was merged into the remaining cluster level or the random error term. For a description

of the expected results, see Section 8.1. The addition of the weights did not compensate

for the model misspecification.

There is no informative sampling in this simulation so there is no informative sampling

bias.

The means of all weighted estimates are similar for the β coefficient. The variance of

the unweighted estimates is smaller than for the weighted estimates. For the σ2
ε from the

estimated model in Equation 39, we see the pattern where the weighted unscaled estimates

are biased, the scaled 1 estimates (over) compensate for the bias and the scaled 2 estimates

are between the weighted unscaled and the weighted scaled 1 estimates. However, for the

estimates of the variance components from the estimated model in Equation 38, we see that

the scaled 1 weights are adding bias in the same direction as the weighted unscaled weights.

With the differences in estimates of σ2
0k2.0k2, the pattern is difficult to determine. The

unweighted estimates a smaller 0.975, 0.025 quantile spread than the weighted estimates in

all these simulations. When the spreads of the weighted estimates vary, then the weighted

unscaled spread is the largest, followed by the weighted scaled 2 estimates spread and the

weighted scaled 1 estimates spread.
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6 Mean Squared Error Comparisons of the Simulations

It is not clear how to compare the different methodologies (PSHGR vs. RHS) crossed by

the different weightings. A criterion such as AIC or BIC is desired, however it is not clear

if these are appropriate. AIC and BIC aid in model selection, however the insertion of the

sampling weights in different places doesn’t necessarily fall into model selection. To help

find a good metric, I propose two different calculations based on the mean squared error. I

evaluate the simulations based on their metrics and discuss the strengths and weaknesses.

I do not believe these are good metrics to evaluate the simulations, but they identify issues

that need to be considered when determining a metric.

Relative Square Root Mean Squared Error (RRMSE)

Let β̂1 be the estimate of β1 and let n be the number of simulation runs that produced

point estimates. Then RRMSE =
√∑n

i=1 n
−1β−2

1 (β̂1 − β1)2. This is the square root

of the mean squared error that is scaled by the magnitude of the parameter. This

metric balances the bias and the variance for each parameter.

RRMSE is a measure of the model misspecification and informative sampling. Often,

the model misspecification dominates the RRMSE. To help compensate for this, the

ARRMSE is also computed.

Adjusted Relative Square Root Mean Squared Error (ARRMSE)

Similar to the RRMSE, however instead of using the true value of the parameter we

use the anticipated value of the parameter value given the model misspecification.

For example, if β1A is the anticipated value of the parameter given the model mis-

specification, then ARRMSE =
√∑n

i=1 n
−1β−2

1A (β̂1 − β1A)2 where n is the number

of simulation runs out of 100 that produced point estimates. This ARRMSE re-

moves the model misspecification component from the RRMSE, and measures the

effects of informative sampling.
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For more information on the derivation of the anticipated parameter values, see the

description for the simulation in question in Section 8.1. The anticipated parameter

values are tabulated in Section 8.5.

The values of the RRMSE and ARRMSE for each estimate in the simulations are in

Section 8.5. To summarize this data, I added the RRMSE (ARRMSE) values of each

estimate for a given estimating model, methodology (PSHGR vs. RHS) and weighting

scheme. This has advantages and disadvantages. The advantage is that when a model is

estimated, the estimates of the parameters that are used must come from one estimating

set. For example, I can not choose an estimating model and the estimate the fixed effects

using, for example, PSHGR unweighted estimates and then estimate the random effects

using RHS weighted scaled 2 estimates. This merges all estimates from a given estimated

model together within one framework. The problem is that when the scales differ and when

there is model misspecification, the estimate of one parameter in the model can dominate

the mean squared error calculation. For that reason, the relative MSE is used (i.e. diving

by the true/anticipated value) and both RRMSE and ARRMSE are presented. However,

when the true (or anticipated value) is zero, then the RRMSE (or ARMSE) can not be

computed.

Table 8 contains a summary of the results of the 12 simulation sets. The first column

contains the name of the simulation set. The second column contains the equation number

of the estimated equation. TheRRMSE for all the parameters of a given type of weight and

method are then added together. In the subsequent columns, P and R in the given column

represent the PSHGR and RHS weighting scheme that produces the smallest RRMSE,

and PA and RA represent the smallest ARRMSE. Note that for estimated models in

Equations 12, 15, 18 and 21 a random intercept is included in the estimated model instead

of the random slope. Because the true parameter value of the random intercept variance

is zero, the RRMSE can not be computed however the ARRMSE is computed and

recorded. For the estimated models in Equations 23, 33 and 35, the true parameter value
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of σ2
01k.02k is zero. For these equations, the RRMSE and ARRMSE are computed without

a contribution from the estimates of σ2
01k.02k. More detailed summary tables are in Section

8.4

For a detailed description of the MSE results, see Section 8.4. The same weighting

method generally produced the lowest MSE for both the PSHGR and RHS methodologies.

When this is not the case (see table 8 for Equation numbers 4 and 31) it is due to differences

in the methods described in Section 8.1.

The unweighted estimates generally provided the lowest ARRMSE. The cases where

this is not true (see table 8 for Equation numbers 8 and 31) are due to informative sampling.

The AARMSE prefers the unweighted estimates due to their smaller variance. The bias

induced by the informative sampling in these simulations is not large enough to penalize

the unweighted estimates. The RRMSE is more sensitive to model misspecification and

appears to prefer the unweighted and weighted unscaled estimates. The preference for

the weighted unscaled estimates occurs because these estimates show the most bias in the

variance components. When the model is misspecified and the anticipated value of the

variance component gets large causing a very large bias when compared to the true value

of the parameter. That variance component dominates the sum of the RRMSE and it is

often the weighted unscaled estimates that are closest to the true value of the parameter.

Ffor example, see the estimate of σ2
ε in Figure 2 from the estimated model in Equation 5.

As described in Section 8.4, the level of informativeness is a big factor as to which type

of weighting scheme is preferred.
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Weighting Scheme with Lowest MSE
Eqn.
Num.

Unweighted Weighted
Unscaled

Weighted
Scaled 1

Weighted
Scaled 2

M
is

F
ix

1

3 P R
4 PA RA R P
5 PA RA P R

M
is

F
ix

4

7 P R
8 P R PA RA
9 P R PA RA

M
is

R
an

5

11 P R
12 PA RA

M
is

R
an

6

14 P R
15 PA RA

M
is

R
an

7

17 P R
18 PA RA

M
is

R
an

8

20 P R
21 PA RA

M
is

St
ra

t
9

23 P R
24 PA RA
26 PA RA

M
is

St
ra

t
10

28 P R
29 PA RA
31 RA PA

M
is

St
ra

t
11

33 P R
34 PA RA
35 PA RA P R
36 PA RA

M
is

C
lu

st
12

38 PA RA P R
39 PA RA P R

Table 8: Mean Squared Errors for each Simulation Set
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7 Simulation Result Summary

This chapter provides new contributions or supports existing claims on each of five goals.

This is accomplished through 12 sets of simulations that compare estimation methods

(PSHGR or RHS) and scaling of weights (unweighted, weighted unscaled, weighted scaled

1 and weighted scaled 2) on correctly and incorrectly specified models, both with and

without informative sampling.

The first goal is to compare the results from the different methods of inserting weights

into LME models. This chapter compares the method of Rabe-Hesketh and Skrondal

(2006) , which is the same as Asparouhov (2006), to the method of Pfeffermann et al.

(1998). These simulations found that the RHS and PSHGR methods provide remarkably

similar results. When the results are not similar, it is mostly due to sensitivities of the

numerical quadrature to the number of quadrature points in the gllamm() function that

implements the RHS method. Neither RHS nor PSHGR provided this direct comparison

in their papers.

The second goal is to compare the sandwich estimator (used by RHS) and the design-

based estimator (used by PSHGR) when obtaining the variances of the point estimates.

When there is no model misspecification, the confidence intervals based on the sandwich

estimator have similar coverage levels as the confidence intervals based on the design-based

estimates. However, when there is model misspecification, the design-based confidence

intervals have coverage that is unexpectedly large, implying that the variance estimates

are too large. Neither RHS nor PSHGR provided a comparison in their papers and neither

of them looks at the performance of the variance estimators in the presence of model

misspecification.

The third goal of this chapter is to investigate the assertion that adding sampling

weights can compensate for model misspecification in LME models. The simulations in

this chapter indicate that the weights can help for model misspecification only when the

model misspecification induces informative sampling. Bias related to a misspecified model
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that does not relate to the sampling design is unaffected by the sampling weights. Previous

simulation studies did not study model misspecification.

The fourth goal of this chapter is to investigate the assertion that adding sampling

weights can compensate for informative sampling in LME models. The simulations in

this chapter support those conclusions. The inverse probability sampling weights can help

compensate for bias induced by informative sampling, though they do not eliminate the

bias. This supports the conclusions in the previous simulation papers.

The final goal of this chapter is to investigate the different scalings of the weights

used in RHS, PSHGR, and ASP. These simulations found that the unweighted estimates

have the smallest variance. However, when there is informative sampling, the unweighted

estimates are biased. The weighted unscaled estimate corrects the bias in the fixed effects,

but produces more bias in the random effects. The weighted scaled 1 estimates remove

the bias in the fixed effects, and correct (or overcorrect) for the weighted unscaled bias in

the random effects. The weighted scaled 2 estimates remove the bias in the fixed effects

and have a bias between the weighted unscaled and weighted scaled 1 estimates in the

random effects. There are times when the scaled 1 estimates have more bias in the same

direction as the weighted unscaled estimates. The conditions upon which this occurs need

to be further investigated. RHS, PSHGR and ASP tentatively recommended the weighted

scaled 2 estimates. These simulations provide a good characterization of the relationship

between the scaled estimates and demonstrate that the variance of the scaled 1 estimates

is sometimes lower than the scaled 2 estimates.

Comparison of the weighting schemes over the different estimated models is difficult.

To gain insight into the comparison, I computed the RRMSE and ARRMSE metrics

and looked at their strengths and weaknesses. The RRMSE metric incorporates informa-

tive sampling, model misspecification and variance and generally prefers the unweighted

or weighted unscaled estimates. This is due to the low variance of the unweighted esti-

mates and the pattern of bias in the weighted unscaled estimates. The ARRMSE metric

76



incorporates informative sampling and variance, and generally prefers the unweighted or

weighted scaled 1 estimates. This is due to the low vairance of the unweighted estimates,

and the slightly higher variance, but lower bias of the weighted scaled 1 estimates. None

of the previous simulation papers attempted a metric across all estimates in a model.

This chapter contributes a new way to view the simulation results. RHS, ASP, KG and

PSHGR produced tables of numbers that are difficult to read and make quick comparisons.

The stacked line interval format of the displays in this chapter provides a quick visual way

to compare all methods together and across multiple simulations.

The results of this chapter can be generalized to more complex LME models. This

chapter addressed the effects of model misspecification and informative sampling on fixed

effects in two scenarios; 1) biases confined to one one level (by removal of either the x1k

or x2ik fixed variables in simulation sets 1 and 4, for example) and 2) biases spread across

levels (by the removal of the random slope on x2ik in simulation set s 7 and 8, for example).

These scenarios can be easily generalized into more complex models. As the random effect

structure increases and becomes more complex, I speculate that the bias in the random

effects will become worse. This is because the ML estimates of the random effects are

biased where the bias of one variance component depends on other variance components,

as seen in the case of the estimates of σ2
0k in simulation set 4 with the estimated model

in Equation 9. The use of the weights adds to the bias of the random effects. Once one

random effect estimate is biased, that bias may be propagated through to other variance

components.
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8 Appendix

8.1 Description of Simulation Results

8.1.1 Result Description for Misspecification of Fixed Variables - Simulation

Set 1

We want to flag if there are large differences between the PSHGR and RHS estimates for

a given iteration. To do this, the standard deviation of the parameter estimate over the

100 iterations is obtained separately for the PSHGR and the RHS estimates. The smaller

of these standard deviations is used as a threshold to flag “large” differences between

PSHGR and RHS estimates. For each iteration, the difference between the PSHGR and

the RHS estimates is compared to the threshold to identify estimates where the difference

is greater than one standard deviation. Unless otherwise mentioned, the difference between

the PSHGR and RHS estimates is less than the threshold.

Figure 12 contains a plot of the weighted scaled 1 estimates for β2, the unweighted and

weighted unscaled estimates of σ2
0k and the unweighted estimates of σ2

ε from the estimated

model in Equation 4. The solid black lines are the upper and lower thresholds. From the

figure, we see that there is one point that is outside the lines for the estimate of β2, 11

and 6 points outside the lines for the unweighted and weighted unscaled estimates of σ2
0k

respectively, and one point outside the line for the estimate of σ2
ε . The differences between

the weighted scaled 1 estimates for β2 are too small to be seen in Figure 2, however the

differences in unweighted and weighted unscaled estimates for σ2
0k can be seen as the means

do not match each other. The differences in the unweighted estimates of σ2
ε can also be seen

in Figure 2. It appears that the means may be different for the weighted scaled 2 estimate

of σ2
0k, however all the individual estimation differences are less than the threshold.

For the estimates from the estimating model in Equation 5, note that the PSHGR

and RHS estimates using the scaled 1 weights do not have 100 estimates. For PSHGR,

simulation runs 21 and 94 did not converge in 500 iterations. For RHS, simulation runs
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Figure 12: Comparison of PSHGR vs. RHS for Estimates from Equation 4

28 and 41 did not converge when the number of quadrature points were increased from

15 until 30. Figure 13 contains the unweighted estimates of σ2
0k and the weighted scaled

1 estimate of σ2
ε . For the estimates of σ2

0k, there are a number of PSHGR estimates that

range from 0 to 2 while the RHS estimates are all about 0.25. I believe that this is a

problem with the RHS estimation, however his pattern should be looked into further. For

the estimate of σ2
ε the PSHGR weighted scaled 1 estimate of σ2

ε for simulation run 90 is

345. I believe this is an instability with the PSHGR estimation and should be looked into

further. The differences in the PSHGR and RHS estimates of σ2
0k can not be seen in Figure

2, however the estimates of σ2
ε appear to have different means in the figure.

We next determine what we would expect the results to be for each of the estimating

models. The top row of Figure 2 contains the summary of the estimated model from
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Figure 13: Comparison of PSHGR vs. RHS for Estimates from Equation 5

Equation 3, where the estimated model matches the generating model. We know that

the unweighted estimates of β should be unbiased based on Section 6.2 of Searle et al.

(1992). All of the estimation methods have minimal bias and comparable quantiles for

the β parameters. It is well documented that the variance components are not necessarily

unbiased. Specifically, the σ2
0k parameter depends on the intra-class correlation. The intra-

class correlation in this data set was 0.2
0.2+0.5 = 0.29, and the simulation results show a slight

positive bias for the weighted estimate using unscaled weights. For weighted estimates

using scaled 1 and scaled 2 weights, the biases are negative and approximately the same

magnitude. The σ2
ε parameter estimates have the following trends: the weighted unscaled

estimates having larger negative bias, the weighted scaled 1 and weighted scaled 2 estimates

having smaller positive bias.
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In the middle panel, the estimated model from Equation 4 no longer contains the x1k

variable. The mean of the missing −2x1k term is -6, resulting in a new intercept estimate

of 1-6=-5. In addition, the variance of the missing −2x1k term is 36, resulting in a new σ2
0k

estimate of approximately 36+0.5=36.5. The bias in σ2
0k follows the same trend as first

row of the simulation results. The bias in σ2
ε is larger than from the model in Equation 3.

As expected, the weighting does not do anything to help in this model misspecification.

In the bottom panel, the estimated model from Equation 5 no longer contains the xik

variable. The mean of the missing 2x2ik term is 2, resulting in a new intercept estimate

of approximately 3. The variance of the missing 2x2ik term is 100, resulting in a new

σ2
ε estimate of approximately 100.5. The estimate of σ2

0k is more difficult to predict, as

the unweighted and weighted scaled 1 estimates of σ2
0k are occasionally negative. For the

unweighted estimates, based on the calculations in §3.5 of Searle et al. (1992), E(σ̂2
0k|σ̂2

0k ≥

0) is computed as the average of the 39 non-negative estimates, which is 0.79. We can

compute p = Pr(σ̂2
0k < 0) ≈ 0.61 by assuming that this is a balanced simulation with

the number of clusters as 35, the number of elements per cluster as 20, σ2
0k = 0.2 and

σ2
ε = 100.5. As a result E(σ̂2

0k) = (1 − p)E(σ̂2
0k|σ̂2

0k ≥ 0) ≈ 0.39 ∗ 0.79 = 0.31. Thus

our theoretic estimate σ2
0k is 0.31. Compare this to our actual results by allowing all of

the negative σ̂2
0k = 0. We get an estimate of σ2

0k over the 100 iterations of 0.31. Thus

the simulated result for σ̂2
0k matches the theoretical result. The scaled 1 case is computed

similarly, but with 67 of the 100 iterations producing negative estimates of σ2
0k. E(σ̂2

0k|σ̂2
0k ≥

0) is computed as the average of the 33 non-negative estimates, which is 1.63. We can

compute p = Pr(σ̂2
0k < 0) ≈ 0.67 by assuming that this is a balanced simulation with

the number of clusters as 35, the number of elements per cluster as 20, σ2
0k = 0.2 and

σ2
ε = 100.5. As a result E(σ̂2

0k) = (1 − p)E(σ̂2
0k|σ̂2

0k ≥ 0) ≈ 0.33 ∗ 1.63 = 0.54. Thus our

theoretical estimate of σ2
0k is 0.54. Compare this to our actual results by allowing all of the

negative σ̂2
0k = 0. We get an estimate of σ2

0k over the 100 iterations of 0.52. It is assumed

that the difference between 0.54 and 0.52 is due to the fact that this is not a balanced

81



simulation. The mean scaled 2 estimate for RHS is 7.6, which has a bias of 7.1. There is

an unexplained bias of 7.1-5.8=1.3, which I assume is attributed to the non-balanced nature

of this simulation. In the weighted unscaled case, assume that the number of population

elements per cluster is 75 (it is between 50 and 100), the number of sampled elements is

20 and σ2
ε = 100.5. Then the bias bounds are approximately -5 to 94. The bias from the

simulations is approximately 10, so the bias is within what is expected. Note that the ICC

is now fairly small (0.2/100.7=0.002). As expected, the weighted estimates did not appear

to compensate for the model misspecification.
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8.1.2 Result Description for Misspecification of Fixed Variables – Simulation

Set 4

We want to flag if there are large differences between the PSHGR and RHS estimates for a

given iteration. To do this, the standard deviation of the parameter estimate over the 100

iterations is obtained separately for the PSHGR and the RHS estimates. The smaller of

these standard deviations is used as a threshold to flag “large” differences between PSHGR

and RHS estimates. For each iteration, the difference between the PSHGR and the RHS

estimates is compared to the threshold to identify estimates where the difference is greater

than one standard deviation. Unless otherwise mentioned, the difference between the

PSHGR and RHS estimates is less than the threshold. In this set of simulations, there are

a number of datasets that were problematic for all weighting schemes and all parameters.

For example, when the estimating model is in Equation 7, the difference between the

PSHGR and RHS estimates is greater than the threshold for all estimates for the data

from simulation run 18. The plots to show these differences for each parameter and each

scaling are not shown to conserve space.

When the estimating model is from Equation 8, the only parameter that produces

differences between the PSHGR and RHS estimates that are greater than one threshold is

σ2
0k, as shown in Figure 14. For this parameter, for the unweighted estimates simulation

run 80 is larger than the threshold, for the weighted unscaled estimates simulation runs

15 and 79 are larger than the threshold and for the weighted scaled 2 estimates simulation

runs 36 and 63 are larger than the threshold.

When the estimating model is from Equation 9, the simulation runs 1, 84 and 96

produced differences between PSHGR and RHS larger than the threshold in many the

parameter estimates. The plots to show these differences for each parameter and each

scaling are not shown to conserve space. However, there were some notable differences in

PSHGR and RHS in the unweighted and weighted scaled 1 estimates of σ2
0k, as seen in

Figure 15. Similar to what was seen in Figure 13, the PSHGR estimates appear to vary
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Figure 14: Comparison of PSHGR vs. RHS for Estimates from Equation 8

between 0 and 1 (or 0 and 2) while the RHS estimates are 0.25. I believe that this is a

problem with the RHS estimation, however his pattern should be looked into further.

We next determine what we would expect the results to be for each of the estimating

models. The top row of Figure 3 contains the summary of the estimating model from

Equation 7. When the estimated model matches the generating model, all of the estimation

methods (PSHGR, RHS for all of unweighted, weighted unscaled, weighted scaled 1 and

weighted scaled 2) have minimal bias for the β parameters. The weighted estimates have

larger spreads than the unweighted estimates. In addition, the weighted unscaled estimates

appear to have a larger variance than the other weighted methods for the estimation of

β2. The simulation results show minimal bias for the unweighted and weighted scaled 2

estimates, a slight positive bias for the weighted unscaled estimate and a negative bias for
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Figure 15: Comparison of PSHGR vs. RHS for Estimates from Equation 9

the weighted scaled 1 estimates. It appears that the σ2
ε parameter follows the following

trend; the weighted unscaled estimates having larger negative bias, the weighted scaled 1

estimates have minimal bias and the weighted scaled 2 estimates are in between them. The

unweighted estimates are also unbiased.

The middle panel of Figure 3 contains the summary of the estimating model from Equa-

tion 8. The estimated model no longer contains x1k. This is a case of informative sampling

as the clusters are sampled according to the size of x1k. The mean of the missing −2x1k

term would be -6 if there were not informative sampling, which would change the estimate

of the intercept to be approximately 1-6=-5. However, because larger x1k are oversampled,

the expected value of −2x1k is more negative in the sample than in the population. This is

reflected in the unweighted estimates with an average intercept of approximately -8. The
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weighted estimates help to compensate for the informative sampling, as they all have an

intercept estimate of approximately -5. The estimates of β2 are unaffected by the model

misspecification and informative sampling. The variance of the missing −2x1k term would

be 36 if there were no informative sampling. With no informative sampling, we would

expect the estimate of σ2
0k to be approximately 0.2+36=36.2. However, because the larger

x1k are oversampled, the variance of x1k in the sample is less than the variance of x1k in

the population. This is reflected in the estimation of σ2
0k because the unweighted estimates

are smaller than the weighted estimates. Note that the mean of the weighted estimates is

approximately 29, which is still smaller than the mean of the weighted estimates from the

estimated model in Equation 5 without informative sampling, which was approximately

33. The estimates of σ2
ε are not affected by this model misspecification.

The bottom panel of Figure 3 contains the summary of the estimating model from

Equation 9. The estimated model no longer contains x2ik. This is a case of informative

sampling as the units are sampled according to the size of x2ik. The mean of the missing

2x2ik term would be 2 if there were not informative sampling, that would change the

estimate of the intercept to be approximately 1+2=3. However, because larger x2ik are

oversampled, the expected value of 2x2ik is larger in the sample than in the population. This

is reflected in the unweighted estimates with an average intercept of approximately 9. The

addition of the weights helps to compensate for the informative sampling, with intercept

estimates of between 3.5 and 4.0. Note that these are still larger than the estimates from

the estimation of the intercept from Equation 5 where there was no informative sampling.

The estimation of β1 is unaffected by the informative sampling and model misspecification.

The variance of the missing 2x2ik term would be 100 if there were no informative sampling.

This variance is added to the estimate of σ2
ε for an estimate of about 100+0.5 = 100.5

when there is no informative sampling. However, because the larger x2ik are oversampled,

the variance of x2ik in the sample is less than the variance of x2ik in the population. This

smaller variance is reflected in the unweighted estimates (especially when compared to the
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the results from the estimated model in Equation 5 where the unweighted estimates are

larger than the weighted unscaled estimates). The estimates of σ2
0k are larger than when

all covariates are in the model and this is due to the smaller intra-class correlation, similar

to the situation from the estimated model in Equation 5. However, the estimates of σ2
0k in

this simulation set are larger than the estimates from the estimated model in Equation 5.
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8.1.3 Results Description for Misspecification of Random Variables – Simu-

lation Set 5

We want to flag if there are large differences between the PSHGR and RHS estimates for

a given iteration. To do this, the standard deviation of the parameter estimate over the

100 iterations is obtained separately for the PSHGR and the RHS estimates. The smaller

of these standard deviations is used as a threshold to flag “large” differences between

PHSGR and RHS estimates. For each iteration, the difference between the PSHGR and

the RHS estimates is compared to the threshold to identify estimates where the difference

is greater than one standard deviation. Unless otherwise mentioned, the difference between

the PSHGR and RHS estimates is less than the threshold. There were no differences larger

than the threshold for the estimated model in Equation 11. Figure 8.1.3 contains the

simulation runs in which the estimates of PSHGR and RHS are larger than the threshold

for the estimated model in Equation 12. These occurred in simulation run 62 for the

weighted unscaled estimate of β0. For the estimates of σ2
0k, the differences were large in

the simulation run 76 for the unweighted estimates, simulation run 62 for the weighted

unscaled estimates and simulation run 54 for the weighted scaled 2 estimates.

We next determine what we would expect the results to be for each of the estimating

models. The top row of Figure 4 contains the summary of the estimating model from Equa-

tion 11. When the estimated model matches the generating model, all of the estimation

methods (PSHGR, RHS for all of unweighted, weighted unscaled, weighted scaled 1 and

weighted scaled 2) have minimal bias for the β coefficients. It appears that the spread of

the estimates using weighted unscaled weights is larger for the estimates of β2 than the es-

timates using the other weighted methods. The unweighted estimates had a smaller spread

than the weighted estimates. There is a small difference between the different weighting

schemes in the estimation of the σ2
1k parameter, but the differences are small compared to

the differences in the σ2
ε estimates. It appears that the σ2

ε parameter follows the following

trend; the weighted unscaled estimates having larger negative bias, the weighted scaled 1
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Figure 16: Comparison of PSHGR vs. RHS for Estimates from Equation 12

estimates having smaller positive bias and the weighted scaled 2 estimates being in between

them.

The second row of Figure 4 misspecifies the model by removing the random slope on

x1k, the cluster variable, and adds a random intercept. As expected, the estimation of

β0, β1 and β2 are not affected by the misspecification. The random intercept includes the

variation in the U1k × x1k variable. Recall that x1k was generated as a normal random

variable with mean 3 and variance 9 and U1k was generated independently of x1k as a

normal random variable with mean 0 and variance 1. A quick simulation of 1000 sets of

two simulated normal random variables set up similar to U1k and x1k provides variance of

18. The estimates in the figure are slightly lower (between 13.5 and 16) which follows the

trend of the intercept variance having a negative bias when the ICC is large.
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8.1.4 Results Description of Misspecification of Random Variables – Simula-

tion Set 6

We want to flag if there are large differences between the PSHGR and RHS estimates for

a given iteration. To do this, the standard deviation of the parameter estimate over the

100 iterations is obtained separately for the PSHGR and the RHS estimates. The smaller

of these standard deviations is used as a threshold to flag “large” differences between

PSHGR and RHS estimates. For each iteration, the difference between the PSHGR and

the RHS estimates is compared to the threshold to identify estimates where the difference is

greater than one standard deviation. Unless otherwise mentioned, the difference between

the PSHGR and RHS estimates is less than the threshold. For the estimating model

in Equation 14, simulation number 46 produced differences larger than the threshold in

the PSHGR and RHS methods in 9 different estimates spanning all parameters and all

weighting schemes. The plots to show these differences for each parameter and each scaling

are not shown to conserve space. In addition, the weighted unscaled estimates of σ2
1k also

varied more than one threshold for simulation runs 46 and 56, see Figure 17. Of these

differences, it was only the difference in the weighted unscaled estimate of σ2
1k that was

large enough to produce a difference in Figure 5. For the estimating model in Equation 15,

there are four simulation runs whose PSHGR and RHS estimates differ by more than one

threshold, as shown in Figure 18. These points correspond to simulation runs 55 and 94

for the weighted unscaled estimates of β0 and simulation runs 39 and 94 for the weighted

unscaled estimates of σ2
0k.

We next determine what we would expect the results to be for each of the estimating

models. The top row of Figure 5 contains the summary of estimating model in Equation 14.

As expected, when there is informative sampling of clusters based on the size of the random

effect U1k, the estimate of x1k increases and the estimate of σ2
1k decreases in the unweighted

case. All of the weighted cases help to compensate for this informative sampling and the

estimates are similar to those in Figure 4. It appears that the σ2
ε parameter follows the
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Figure 17: Comparison of PSHGR vs. RHS for Estimates from Equation 14

trend; the weighted unscaled estimates having larger negative bias, the weighted scaled 1

estimates having smaller positive bias and the weighted scaled 2 estimates being in between

them.

The second row of Figure 5 misspecifies the model by removing the random slope on

x1k, and adding a random intercept. As expected, the estimation of β0, β1, β2 and σ2
ε are

not affected by the misspecification and have estimates similar to the top row, though the

spread of β0 and β1 appear to be larger. The random intercept includes the variation in

the U1k × xk variable. Recall that x1k was generated as a normal random variable with

mean 3 and variance 9 and U1k was generated independently of x1k as a normal random

variable with mean 0 and variance 1. A quick simulation of 1000 sets of two simulated

normal random variables set up similar to U1k and x1k provides variance around 19. The

estimates in the figure are slightly lower which follows the trend of the intercept variance

having a negative bias. As can be seen by comparing this Figure to Figure 4, the estimate

of the unweighted σ2
01 is lower than the weighted estimates, which reflects the smaller

variance in the sampled U1k due to the informative sampling.
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Figure 18: Comparison of PSHGR vs. RHS for Estimates from Equation 15
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8.1.5 Results Description of Misspecification of Random Variables – Simula-

tion Set 7

We want to flag if there are large differences between the PSHGR and RHS estimates for

a given iteration. To do this, the standard deviation of the parameter estimate over the

100 iterations is obtained separately for the PSHGR and the RHS estimates. The smaller

of these standard deviations is used as a threshold to flag “large” differences between

PSHGR and RHS estimates. For each iteration, the difference between the PSHGR and

the RHS estimates is compared to the threshold to identify estimates where the difference

is greater than one standard deviation. Unless otherwise mentioned, the difference between

the PSHGR and RHS estimates is less than the threshold. For the estimating model in

Equation 17, simulation set 23 produced differences larger than the threshold in the PSHGR

and RHS methods in 12 different estimates spanning all parameters and all weighting

schemes. The plots to show these differences for each parameter and each scaling are not

shown to conserve space. For the estimating model in Equation 18, the scaled 1 estimates of

σ2
ε produced differences between PSHGR and RHS greater than the threshold in simulation

runs 46 and 56, as seen in Figure 19.

We next determine what we would expect the results to be for each of the estimating

models. The top row of Figure 6 contains the summary of estimating model from Equation

17. When the estimated model matches the generating model, all of the estimation methods

(PSHGR, RHS for all of unweighted, weighted unscaled, weighted scaled 1 and weighted

scaled 2) have minimal bias and comparable quantiles. The exception to this is that the

weighted unscaled estimates appear to have larger spread for the β0 and β1 parameters.

The estimates of the σ2
2k parameter appear to be quite similar, with the exception of the

unweighted estimates, that have slightly less bias. The σ2
ε parameter follows the trends; the

weighted unscaled estimates having larger negative bias, the weighted scaled 1 estimates

having smaller positive bias and the weighted scaled 2 estimates being in between them.

The second row of Figure 6 misspecifies the model by removing the random slope on
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Figure 19: Comparison of PSHGR vs. RHS for Estimates from Equation 18

x2ik, the unit variable, and adds a random intercept. As expected, the estimation of β0, β1

and β2 are not affected by the misspecification. The random intercept includes the variation

in the U2kx2ik variable. Recall that x2ik was generated as a normal random variable with

mean 1 and variance 25 and U2k was generated independently of x2ik as a normal random

variable with mean 0 and variance 0.8. We would expect a portion of the variance to go into

the estimate of σ2
ε and a portion to go into the σ2

0k. If you condition first on the values of U2k,

the random error variance for that cluster will increase by U2
2k ∗ Var(x2ik), approximately

0.82 ∗ 25 = 16. Alternatively, if we condition on x2ik then the random intercept variance

will increase by roughly x̄2
2ikVar(U2k), approximately 12 ∗ 0.8 = 0.8. That would provide a

random intercept variance of approximately 0.8+0.8=1.6, and a random error variance of

approximately 0.5+16=16.5. The simulation results are consistent with these results.
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8.1.6 Results Description of Misspecification of Random Variables – Simula-

tion Set 8

We want to flag if there are large differences between the PSHGR and RHS estimates for a

given iteration. To do this, the standard deviation of the parameter estimate over the 100

iterations is obtained separately for the PSHGR and the RHS estimates. The smaller of

these standard deviations is used as a threshold to flag “large” differences between PSHGR

and RHS estimates. For each iteration, the difference between the PSHGR and the RHS

estimates is compared to the threshold to identify estimates where the difference is greater

than one standard deviation. In this simulation set, there were no differences greater than

the threshold.

We next determine what we would expect the results to be for each of the estimating

models. The top row of Figure 7 contains the summary of estimating model from Equation

20. As expected, when there is informative sampling of units based on the size of the

random effect U2k, the estimate of x2ik increases and the estimate of σ2
2k decreases in the

unweighted case. All of the weighted cases help to compensate for this informative sampling

and the estimates are similar to those in Figure 6. The weighted σ2
2k estimates all have

similar point estimates and ranges. The σ2
ε parameter follows the trend; the weighted

unscaled estimates having larger negative bias, the weighted scaled 1 estimates having

smaller non-negative bias and the weighted scaled 2 estimates being in between them.

The second row of Figure 6 misspecifies the model by removing the random slope on

x2ik, the unit variable, and adds a random intercept. As expected, the estimation of

β0, β1 and β2 are not affected by the misspecification. The random intercept includes the

variation in the U2kx2ik variable. Recall that x2ik was generated as a normal random

variable with mean 1 and variance 25 and U2k was generated independently of x2ik as

a normal random variable with mean 0 and variance 0.8. We would expect a portion

of the variance to go into the estimate of σ2
ε and a portion to go into the σ2

0k. If you

condition first on the values of U2k, the random error variance for that cluster will increase
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by U2
2k ∗ Var(x2ik), approximately 0.82 ∗ 25 = 16. Alternatively, if we condition on x2ik

then the variance will be roughly x̄2
2ikVar(U2k), approximately 12 ∗ 0.8 = 0.8. That would

provide a random intercept variance of approximately .8+16=16.8, and a random error

variance of approximately 0.5+0.8=1.3. The simulation supports these conclusions.
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8.1.7 Results Description of Misspecification of Stratification Layers – Simu-

lation Set 9

We want to flag if there are large differences between the PSHGR and RHS estimates

for a given iteration. To do this, the standard deviation of the parameter estimate over

the 100 iterations is obtained separately for the PSHGR and the RHS estimates. The

smaller of these standard deviations is used as a threshold to flag “large” differences be-

tween PSHGR and RHS estimates. For each iteration, the difference between the PSHGR

and the RHS estimates is compared to the threshold to identify estimates where the dif-

ference is greater than one standard deviation. Unless otherwise mentioned, the difference

between the PSHGR and RHS estimates is less than the threshold. For the estimating

model in Equation 23, there were a number of simulation runs that produced estimates the

unweighted estimates of σ2
02k where the differences between PSHGR and RHS greater than

the threshold, as shown in Figure 20. These include simulation run 4 for the unweighted

estimates, simulation runs 16 and 81 for the weighted unscaled estimates and simulation

runs 19, 92 and 94 for the weighted scaled 1 estimates. The differences in the unweighted

and weighted unscaled estimates are too small to be seen in Figure 8. However, the dif-

ference in the weighted scaled 1 estimates is seen due to the extreme values of the RHS

estimates. In addition, the PSHGR and RHS estimates of the covariance term σ2
01k.02k were

quite different, as seen in Figure 21. Further investigation is needed to better understand

why the spread of the estimates are so different. The PSHGR covariance estimates are

all very close to zero (less than 10−16 in absolute value), whereas the RHS estimates vary

between approximately 3 and -3. However, the RHS weighted unscaled estimates have a

few large outliers. These differences between the RHS and PSHGR estimates are clear in

Figure 8. Note that the weighted scaled 1 estimates of σ2
01k.02k also follow a different pat-

tern than the other estimates because of the extreme values of the RHS estimates. For the

estimating model in Equation 24, the PSHGR and RHS weighted unscaled estimates of σ2
0k

for simulation run 16 are larger than the threshold, as are the estimates from simulation
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Figure 20: Comparison of PSHGR vs. RHS for Estimates from Equation 23

run 64 for the weighted unscaled estimates, as seen in Figure 22. These differences are not

large enough to be seen in Figure 8. For the estimating model in Equation 26, the PSHGR

and RHS weighted unscaled estimates of σ2
0k for simulation runs 16, 73 and 77 are larger

than the threshold, as are the estimates from simulation run 27 for the weighted scaled 2

estimates, as seen in Figure 23. These differences are not large enough to be seen in Figure

8.

We next determine what we would expect the results to be for each of the estimating

models. In Figure 8, the first row shows the summary from the estimating model in

Equation 23. There are two fixed effects in this regression and all estimation methods

perform well. Besides the differences in the estimates between PSHGR and RHS described

above, there is nothing else notable regarding the variance components. Finally, when the

generating model equals the estimating model, the estimates of σ2
ε follow the same trends

as the previous simulations.

The second row of Figure 8 shows a summary of the results from the estimating model in

Equation 24. This model is misspecified because the stratified/clustered design is estimated
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Figure 21: Comparison of PSHGR vs. RHS for Estimates of σ2
01k.02k from Equation 23

as a clustered design. Recall is no informative sampling. In this model, the two strata are

being estimated as one. Since the number of elements in each strata are roughly equal, I

would expect that the estimated intercept would be the average of the intercept of the two

strata, in this case (−3+5)/2 = 1, and the graph supports this. The estimate of σ2
ε is about

the true value of 0.5 as the variance within each cluster should remain unchanged. The

random intercept should pick up the variance associated with dropping the two strata. Note

that roughly 50 sampled elements in stratum 1 have an intercept of 5, and the roughly 50

sampled elements in stratum 2 have an intercept of -3. The variance of this will be roughly

1
100(

∑50
i=1(5 − 1)2 +

∑50
i=1(−3 − 1)2) = 16. The variance of 16 assumes that each strata

has a fixed effect intercept. Because there are random intercepts within each stratum, the

variance due to the random intercepts needs to be taken into account by increasing 16 by

Var(Us1 + Us2)/2) = 6/4 = 1.5 to 17.5. This is consistent with the figure.

The third row of Figure 8 contains a summary from the estimated model in Equation

26. The generating model is in Equation 25. This is the same as the other two simulations

in this simulation set, except that the sampling design informatively sampled clusters based
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Figure 22: Comparison of PSHGR vs. RHS for Estimates from Equation 24

on the size of their random effects. When comparing the estimates of β0, both the weighted

and the unweighted estimates from Equation 26 are larger than those in Equation 24. In

addition, the unweighted estimates from the estimated model in Equation 26 are larger

compared to the weighted estimates than those from the estimated model in Equation 24.

In addition, all of the estimates of σ2
0k are smaller than the estimates from the estimating

model in Equation 24. In addition the unweighted estimates of σ2
0k are smaller than the

weighted estimates, especially when compared to the estimates of σ2
0k from the estimated

model in Equation 24.
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Figure 23: Comparison of PSHGR vs. RHS for Estimates from Equation 26
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8.1.8 Results Description of Misspecification of Stratification Layers - Simu-

lation Set 10

We want to flag if there are large differences between the PSHGR and RHS estimates for

a given iteration. To do this, the standard deviation of the parameter estimate over the

100 iterations is obtained separately for the PSHGR and the RHS estimates. The smaller

of these standard deviations is used as a threshold to flag “large” differences between

PSHGR and RHS estimates. For each iteration, the difference between the PSHGR and

the RHS estimates is compared to the threshold to identify estimates where the difference

is greater than one standard deviation. Unless otherwise mentioned, the difference between

the PSHGR and RHS estimates is less than the threshold. For the estimating model in

Equation 28, there are simulation runs that produced differences between PSHGR and RHS

greater than the threshold. For the estimating model in Equation 29, there are differences

between PSHGR and RHS in the unweighted and weighted scaled 1 estimates of σ2
ε , as

shown in Figure 24. These differences are from simulation runs 5, 33, 65, 80 and 97 for the

unweighted estimates and simulation runs 16, 20, 30, 35, 44, 51, 53, 57, 58, 60, 63, 64 and

95. For the weighted scaled 1 estimates of σ2
ε , it is clear that most of the differences are

caused when PSHGR is estimating the parameter near 0, whereas RHS is estimating the

parameter between 14 and 21. I suspect this is a problem with the PSHGR computations.

For the estimating model in Equation 31, there are also differences between PSHGR and

RHS estimates. Figures 25 and 26 show the differences between PSHGR and RHS in the

β0, σ2
0k and σ2

ε parameters. Figure 25 shows that the there is a large difference between

the weighted unscaled estimates of β0 for simulation run 40, between the weighted scaled

2 estimates of σ2
0k for simulation run 57, between the weighted unscaled estimates of σ2

0k

for runs 40 and 26, and between the weighted unscaled estimates of σ2
ε for run 40. Figure

26 shows the difference between PSHGR and RHS in the weighted scaled 1 estimates of

σ2
ε . Similar to Figure 24, the PSHGR method has many estimates near 0, whereas the

same data produced estimates between 15 and 20 for RHS. The problematic simulation
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Figure 24: Comparison of PSHGR vs. RHS for Estimates from Equation 29

runs were 3, 11, 22, 37, 43, 52, 64, 69, 76, 80, 90, 92, and 97. Again, it is clear that most

of the differences are caused when PSHGR is estimating the parameter near 0, whereas

RHS is estimating the parameter between 14 and 21. I suspect this is a problem with the

PSHGR computations.

We next determine what we would expect the results to be for each of the estimat-

ing models. In Figure 9, the first row shows the estimates of the parameters when the

estimating model from Equation 28 matches the generating model. All of the weighting

methods estimate the β parameter well. The unweighted estimates have a smaller spread.

The spread for the weighted unscaled estimation for β1 appears to be wider than the other

weighted methods. The estimate of σ2
0k appears to be the similar across different weighting

methods, likely due to the higher intra-class correlation. The pattern of the estimates for

σ2
ε is the same as in previous simulations.

The second row of Figure 9 misspecifies the model by removing the stratification, so that

the stratified/clustered design is estimated as a clustered design, as detailed in Equation

29. In this second row, the clusters are sampled proportional to an independent random
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Figure 25: Comparison of PSHGR vs. RHS for Estimates from Equation 31

variable (non-informatively). Here, I would expect the variance of the random intercept

to remain the same, and the random error term variance, σ2
ε to absorb the variance from

not including the stratification in the model. Note that roughly half sampled elements in a

cluster are in stratum 1 with an intercept of 5, and the roughly half sampled elements in a

cluster are in stratum 2 with an intercept of -3. If nk is the number of elements in cluster k,

then the variance of the error term will be roughly 1
nk

(
∑nk/2

i=1 (5−1)2+
∑nk/2

i=1 (−3−1)2) = 16.

Adding this to the original random error of 0.5 gives an estimated value of σ2
ε of about

16.5, as seen in the figure. Because the intra-class correlation is smaller now due to the

increase in the random error variance, the estimates of σ2
0k are exhibiting the behavior of

the previous simulations with a low intra-class correlation.

The third row in Figure 9 sampled the clusters informatively, porportional to the size

of the random effect (U0k), as detailed in Equation 31. Because of this, the estimate of the

random intercept is larger in the unweighted case and the estimate of the variance of the

random intercept is smaller The smaller variance in the unweighted estimate can be seen

by comparing the unweighted estimate of the random intercept in the second row of Figure
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Figure 26: Comparison of PSHGR vs. RHS for Estimates from Equation 31 (cont)

9 with the unweighted estimate of the random intercept of the third row of the same figure.

These are corrected with the weighted estimates. The estimate of σ2
ε remains unchanged,

as expected.
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8.1.9 Results Description of Misspecification of Stratification Layers - Simu-

lation Set 11

We want to flag if there are large differences between the PSHGR and RHS estimates for

a given iteration. To do this, the standard deviation of the parameter estimate over the

100 iterations is obtained separately for the PSHGR and the RHS estimates. The smaller

of these standard deviations is used as a threshold to flag “large” differences between

PSHGR and RHS estimates. For each iteration, the difference between the PSHGR and

the RHS estimates is compared to the threshold to identify estimates where the difference

is greater than one standard deviation. Unless otherwise mentioned, the difference between

the PSHGR and RHS estimates is less than the threshold. Figures 27, 28 and 29 contain

graphs of the estimates from the simulation runs whose difference between the PSHGR and

RHS estimates is larger than the thresholds from the estimating model in Equation 33.

Note that simulation run 10 did not converge for the RHS weighted unscaled estimates.

From Figure 27, we see that PSHGR and RHS methods differed for simulation run 71

in the weighted scaled 1 estimates of β0, β1 and σ2
01k. The effect of the large difference

from run 71 can be seen in Figure 10 in the difference between the means of the RHS and

PSHGR scaled 1 estimates of β0 and σ2
01k. In addition, the PSHGR and RHS weighted

unscaled estimates of β1 differed by more than the threshold in simulation run 60.

Figure 28 contains the graphs of PSHGR vs. RHS estimates for the σ2
02k parameter.

All of the weighting methods contained simulation runs that produced large differences

between the PSHGR and RHS estimates. For the unweighted estimates, simulation runs

17 and 23 produced large differences. Note that in Figure 10, the mean of RHS unweighted

estimates of σ2
02k is larger than the spread of the 0.025 to 0.975 quantiles. This is due to

the large value from simulation run 17. For the weighted unscaled estimates, simulation

runs 11, 13, 26, 32, 36, 38, 51, 60, 65, 89, and 97 produced large differences. In Figure

10, these large differences are reflected as a much larger spread and mean for the RHS

weighted unscaled estimates than for the PSHGR weighted unscaled estimates. For the
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Figure 27: Comparison of PSHGR vs. RHS for Estimates from Equation 33

weighted scaled 1 estimates, simulation runs 2 and 25 produced large estimates. Finally, for

the weighted scaled 2 estimates, simulation runs 13, 45 and 63 produced large differences.

These differences are shown in Figure 10 in that the mean of the RHS estimate is not on

the graph. The large value(over 80,000) from simulation run 13 for RHS causes the RHS

mean to be larger than the scale printed in the figure.

Figure 29 contains the graphs of PSHGR vs. RHS estimates for the σ2
01k.02k parameter.

This trend is similar to the estimated covariance term from Equation 23 seen in Figure 21.

The PSHGR estimates are showing a small amount of variablility (note that the scales on

the x-axis are no larger than ±4× 10−17). The RHS scales are roughly ±3, except for the

weighted scaled 1 estimates where the RHS has some large estimates, around 50 and -170

and the weighted scaled 2 estimates about 250. In Figure 10 it is clear that the spread

of the PSHGR estimates is smaller than the RHS estimates. The larger estimates of the

RHS scaled 1 estimates is reflected in a larger spread in the figure. In addition, the large

value (about 250) of the RHS weighted scaled 2 estimate is causing the mean to be large

in Figure 10.
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Figure 28: Comparison of PSHGR vs. RHS for Estimates of σ2
02k from Equation 33

Figure 30 contains the graphs of PSHGR vs. RHS estimates for the σ2
0k parameter

from the estimating model in Equation 34. In general, these simulation show many dif-

ferences between PSHGR and RHS in this parameter, except there are no differences for

the weighted scaled 1 estimates. For the unweighted estimates, simulation runs 2, 3, 16,

21, 28, 35, 39, 53, 59, 67, 74, 75, and 87 produced estimates with differences larger than

the threshold. For the weighted unscaled estimates, simulation runs 8, 27, 48, 52, 53, 62,

76, 79, 82, 84, and 93 produced estimates with differences larger than the threshold. For

the weighted scaled 2 estimates, simulation runs 32, 68, 71, 78, and 89 produced estimates

with differences larger than the threshold. These differences can be seen in Figure 10 in the

comparison of the PSHGR and RHS unweighted, weighted unscaled and weighted scaled 2

estimates.
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Figure 29: Comparison of PSHGR vs. RHS for Estimates of σ2
01k.02k from Equation 33
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Figure 30: Comparison of PSHGR vs. RHS for Estimates from Equation 34
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There are many issues with the estimation from the estimated model in Equation 35.

The PSHGR method produces estimates in only 75 of the 100 simulation runs. This is

mostly due to not being able to invert matrices needed for the computation of V −1. This

needs to be further investigated. The simulation runs that contained computation problems

are 4, 6, 7, 19, 20, 23, 26, 30, 32, 34, 36, 41, 43, 45, 58, 63, 65, 68, 72, 74, 80, 81, 86,

90, and 94. In addition, there are a number of PSHGR runs that did not converge within

500 iterations for the weighted scaled 1 estimates, including runs 12, 14, 15, 21, 27, 31,

54, 55, 62, 67, 77, 83, 91, 93, 97, 98, 99, and 100. The RHS method did not converge

for simulation run 6 for the scaled 1 estimates and for simulation run 71 for the scaled 2

estimates. As can be seen in Figures 31 to 36, the estimation from this model produces

many differences between PSHGR and RHS.

Figure 31 contains the graphs of PSHGR vs. RHS estimates for the estimate of β0. The

weighted unscaled estimates produced differences between PSHGR and RHS larger than

the threshold for simulation run 75. The weighted scaled 1 estimates produce differences

between PSHGR and RHS larger than the threshold for simulation runs 28, 50, and 75.

The weighted scaled 2 estimates produced differences between PSHGR and RHS larger

than the threshold for simulation run 37. The differences between the weighted scaled 1

estimates of PSHGR and RHS can be seen in Figure 10 as the PSHGR 0.025 quantile and

mean are lower than the corresponding RHS values. The other differences are too small to

notice on the figure.

Figure 32 contains the graphs of PSHGR vs. RHS estimates for the estimate of β1. The

weighted unscaled estimates produced differences between PSHGR and RHS larger than

the threshold for simulation run 75. The weighted scaled 1 estimates produce differences

between PSHGR and RHS larger than the threshold for simulation runs 28 and 75. The

weighted scaled 2 estimates produced differences between PSHGR and RHS larger than

the threshold for simulation runs 37 and 62. The differences are reflected in Figure 10 by

PSHGR having a larger quantile than RHS for the scaled 1 estimate of β1 and PSHGR
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Figure 31: Comparison of PSHGR vs. RHS for Estimates of β0 from Equation 35

having a smaller 0.025 quantile than RHS for the weighted unscaled estimates of β1. The

other differences are too small to notice on the figure.

Figure 33 contains the graphs of PSHGR vs. RHS estimates for the estimate of σ2
01k.

The unweighted estimates produced differences between PSHGR and RHS larger than

the threshold for simulation run 2. The weighted unscaled estimates produce differences

between PSHGR and RHS larger than the threshold for simulation runs 2, 3, 10, 15, 16,

21, 22, 25, 39, 40, 50, 53, 79, 84, 85, and 97. The weighted scaled 2 estimates produced

differences between PSHGR and RHS larger than the threshold for simulation runs 3, 10,

13 and 47. The other differences are too small to notice on the figure.

Figure 34 contains the graphs of PSHGR vs. RHS estimates for the estimate of σ2
02k.

The unweighted estimates produced differences between PSHGR and RHS larger than

the threshold for simulation run 71. The weighted unscaled estimates produce differences

between PSHGR and RHS larger than the threshold for simulation runs 9, 28 and 57. The

weighted scaled 2 estimates produced differences between PSHGR and RHS larger than

the threshold for simulation runs 37 and 42. These differences are reflected in Figure 10
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Figure 32: Comparison of PSHGR vs. RHS for Estimates of β1 from Equation 35

because the RHS weighted scaled 2 mean is so large (due to the simulation run 37 having an

estimate of 2500) that it is not printed on the plot for σ2
01k. These differences are reflected

in Figure 10 by RHS having a larger 0.975 quantile for the weighted unscaled estimates

than PSHGR. Also, the RHS simulation runs 3, 10, 13 and 47 cause the RHS 0.975 quantile

to be larger than the PSHGR corresponding quantile for the weighted scaled 2 estimates.

The mean of the RHS weighted scaled 2 estimate of σ2
02k is printed off of the scale of the

graph on Figure 10. The other differences are too small to notice on the figure.

Figure 35 contains the graphs of PSHGR vs. RHS estimates for the estimate of σ2
01k.02k.

In this figure, we see the same trends as we did in Figures 21 and 29. The variation in

the PSHGR estimates is very small, with the largest variation being approximately 2−13.

The RHS estimates have more spread, with the weighted scaled 2 estimates containing two

large estimates around 3000 and 6000. This pattern should be looked into further. These

differences are reflected in Figure 10 by the small ranges for the PSHGR estimates and the

larger ranges for the RHS weighted unscaled and weighted scaled 2 estimates. In addition,

the mean of the RHS weighted scaled 2 estimates is so large (due to the estimates of 6000
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Figure 33: Comparison of PSHGR vs. RHS for Estimates of σ2
01k from Equation 35

and 3000) that it is not printed on the range of the graph. The other differences are too

small to notice on the figure.

Figure 36 contains the graphs of PSHGR vs. RHS estimates for the estimate of σ2
ε .

The unweighted estimates produced differences between PSHGR and RHS larger than the

threshold for simulation runs 2, 16, 35, 37, 59 and 71. The weighted unscaled estimates

produce differences between PSHGR and RHS larger than the threshold for simulation run

75. The weighted scaled 1 estimates produced differences between PSHGR and RHS larger

than the threshold for simulation runs 28, 37, 40, 50, 73, 75 and 76. The differences are

reflected in Figure 10 by small value of the 0.025 PSHGR quantile of the weighted scaled

1 estimates. The other differences are too small to notice on the figure.
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Figure 34: Comparison of PSHGR vs. RHS for Estimates of σ2
02k from Equation 35
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01k.02k from Equation 35

114



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

25.5 26.0 26.5

25
.5

26
.0

26
.5

27
.0

Unweighted Estimates 
 of Sigma^2_epsilon

PSHGR

R
H

S

2

16

35

37

59

71

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 5 10 20

18
20

22
24

26

Weighted Unscaled Estimates 
 of Sigma^2_epsilon

PSHGR

R
H

S

75

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 5 10 20

24
25

26
27

28

Weighted Scaled 1 Estimates 
 of Sigma^2_epsilon

PSHGR

R
H

S

28

37

40

50

73

75

76

Figure 36: Comparison of PSHGR vs. RHS for Estimates of σ2
ε from Equation 35
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Figure 37 contains the estimates of σ2
0k from the estimated model in Equation 36. The

weighted unscaled estimates produced differences between PSHGR and RHS larger than

the threshold for simulation runs 30 and 65. These differences are too small to notice on

the Figure 10.
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Figure 37: Comparison of PSHGR vs. RHS for Estimates of σ2
0k from Equation 36

We next determine what we would expect the results to be for each of the estimating

models. In Figure 10, the first row shows the estimates of the parameters when the esti-

mating model matches the generating model. Generally, the estimation does well with the

exception of the large estimates of RHS outlined above.

The second row of Figure 10 misspecifies the model by removing the top level of stratifi-

cation, so that the stratified/clustered/stratified design is estimated as a clustered/stratified

design. In this second row, the clusters are sampled proportional to an independent random

variable (non-informatively). In this model, the two top level strata are being estimated

as one. Since the number of elements in each strata are roughly equal, I would expect

that the estimated intercept would be the average of the intercept of the two strata, in

this case (−3 + 5)/2 = 1. However, now the reference point for the intercept is the lower
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level stratum 1, that has an intercept of two. Thus, the intercept is now 1+2=3, and the

graph supports this. The second level stratum level two coefficient has not changed. The

estimate of σ2
ε is about the true value of 0.5 as the variance within each cluster should

remain unchanged. The random intercept should pick up the variance associated with

dropping the two strata. Note that roughly 50 sampled elements in stratum 1 have an

intercept of 5, and the roughly 50 sampled elements in stratum 2 have an intercept of

-3. The variance of this will be roughly 1
100(

∑50
i=1(5 − 1)2 +

∑50
i=1(−3 − 1)2) = 16. In

addition, there is the variance from the random intercepts. Here, the random intercepts

are var((Us1 + Us2)/2) = 6/4 = 1.5. This would lead to the overall random intercept with

a variance of 16+1.5=17.5. This is consistent with the figure.

The third row of Figure 10 misspecifies the model by removing the second level of

stratification, so that the stratified/clustered/stratified design is estimated as a strati-

fied/clustered design. In this second row, the clusters are sampled proportional to an

independent random variable (non-informatively). The intercept now represents the top

level of stratification (averaged over the bottom level of stratification). The average of the

bottom level of stratification is (2−8)/2 = −3. Thus, the intercept should be 5−3 = 2, as

shown in the graph. Note that the variance components for the RHS weighted scaled 2 esti-

mation method have large spreads. This is due to two simulations creating large outliers for

these estimates. I would expect the variance of the random intercept to remain the same,

and the random error term variance , σ2
ε to absorb the variance from not including the

stratification in the model. Note that roughly half sampled elements in a cluster are in the

first lower level stratum with an intercept of 2, and the roughly half sampled elements in a

cluster are in the second lower level stratum with an intercept of -8. If nks is the number of

elements in cluster k where S2=1 (or S2=2, as the strata are roughly equally sized), then

the variance of the error term will be roughly 1
2∗nks (

∑nks
i=1(2 + 3)2 +

∑nk
i=1(−8 + 3)2) = 25.

Adding this to the original random error of 0.5 gives an estimated value of σ2
ε of about

25.5, as seen in the figure.
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The fourth row of Figure 10 misspecifies the model by removing the all levels of stratifi-

cation, so that the stratified/clustered/stratified design is estimated as a clustered design.

In this second row, the clusters are sampled proportional to an independent random vari-

able (non-informatively). The intercept now represents the average across all strata. We

know that s1=1 has an intercept of 5, s1=2 has an intercept of -3, S2=1 has an intercept

of 2 and S2=2 has an intercept of -8. Averaging these (as they all have roughly the same

number of people) provides a grand intercept of -1, as indicated by the figure. Removing

the lower level of stratification (the S2 level) will increase the estimate of σ2
ε . The increase

will be by 25, as indicated in the description in the above paragraph. Thus, the estimated

σ2
ε should be 25+0.5 = 25.5, which is supported by the figure. In addition, the variance

induced by removing the top level of stratification is put into the random intercept. As

described in the previous two paragraphs, the variance of the random intercept should be

about 16.5, as represented in the figure.
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8.1.10 Results Description of Misspecification of Clustering Layers - Simula-

tion Set 12

We want to flag if there are large differences between the PSHGR and RHS estimates for

a given iteration. To do this, the standard deviation of the parameter estimate over the

100 iterations is obtained separately for the PSHGR and the RHS estimates. The smaller

of these standard deviations is used as a threshold to flag “large” differences between

PSHGR and RHS estimates. For each iteration, the difference between the PSHGR and

the RHS estimates is compared to the threshold to identify estimates where the difference

is greater than one standard deviation. Unless otherwise mentioned, the difference between

the PSHGR and RHS estimates is less than the threshold. Figure 38 contains the esti-

mates where PSHGR and RHS are larger than the threshold from the estimating model in

Equation 38. For the weighted scaled 2 estimates of σ2
0k1

, PSHGR and RHS estimates have

large differences for the simulation runs 13, 18 and 91. For the weighted unscaled estimates

of σ2
ε , the simulation run 97 produced large differences between PSHGR and RHS. For the

weighted scaled 1 estimates of σ2
ε , the simulation runs 26, 27, 42, 53, 54, 55, 81, 93, and 97

produced large differences between PSHGR and RHS. For the weighted scaled 2 estimates

of σ2
ε , the simulation runs 2, 5, 8, 10, 13, 18, 25, 41, 42, 46, 48, 49, 50, 54, 55, 59, 61, 63,

65, 68, 69, 73, 76, 78, 82, 92, and 98 produced large differences between PSHGR and RHS.

Figure ?? contains the estimates of σ2
0k1k2

from the estimating model in Equation 39.

This figure shows that simulation run 68 caused large differences between the PSHGR and

RHS weighted unscaled, weighted scaled 1 and weighted scaled 2 estimates.

We next determine what we would expect the results to be for each of the estimating

models. In Figure 11, the first row shows the estimates of the parameters when the bottom

layer of clustering is removed. With this the variance of the U0k1k2 term is put into the

estimate of σ2
ε , that becomes 1.5. There is some negative bias in the estimate of σ2

0k1, due

to the large intra-class correlation (4/5.5 = 0.73).
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Figure 38: Comparison of PSHGR vs. RHS for Estimates from Equation 38

The second row shows the estimates of the parameters when the top layer of clustering

is removed. The variance of σ2
0k1

should be put into the estimate of σ2
0k1k2

to produce an

estimate of 6. There is negative bias again, likely due to the large intra-class correlation

(6/6.5=0.923).
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Figure 39: Comparison of PSHGR vs. RHS for Estimates from Equation 39
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8.2 Negative Variance Components

There are situations in which the variance components are estimated to be negative. For

example, in the case of a balanced random intercept model, say yik = β0 +βxkxk+βxijxij+

U0k + εik, the closed form estimate of the MLE of σ2
0k in the unweighted case is SSA

kSn1
− σ̂2

ε
n1

,

where kS is the number of sampled clusters and n1 is the number of elements sampled per

cluster. In this case SSA =
∑

k n1[(ȳ·k − x̄·kβ)− (ȳ··− x̄··β)]2, where the · in the subscript

defines the variable being averaged over. There are cases when σ̂2
e
n1

will be less than the term

with SSA, resulting in a negative estimate for σ2
0k. As is described in Searle et al. (1992)

§3.7, when this occurs, the MLE of σ2
0k becomes zero, and the estimate for σ2

ε is adjusted.

In this case, the E(σ̂2
0k) = (1 − p)E(σ̂2

0k|σ̂2
0k ≥ 0) where p is the probability that σ̂2

0k is

negative. The density for the conditional distribution is not tractible, making the expected

value difficult to obtain but can be estimated empirically in the simulations in this chapter.

From Searle et al. (1992), p can be computed as p = Pr(FK(N1−1)
K−1 > (1− 1/K)(1 +n

σ2
0k
σ2
ε

)),

where FK(N1−1)
K−1 is a random variable with an F distribution with K(N1 − 1) and K − 1

degrees of freedom.

This situation of negative estimated variance components occurs in some simulations,

and will be noted as necessary. The simulations in this chapter are not balanced, and so

the adjustment to the estimate of σ2
ε is not computed. However Searle et al. (1992) show

that the estimate of σ2
ε without the adjustment (which are computed in the simulations)

form an upper bound on the MLE.
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8.3 RHS Sensitivity to the Number of Quadrature Points

To further investigate the differences between RHS and PSHGR, some of the simulation

runs where the methods produce different estimates are examined. Specifically, various

points from Figure 24 were run for a range of iteration points for RHS in the gllamm()

function. The first point examined is in the first panel of Figure 24, an unweighted estimate

of σ2
0k from simulation run 2. The PSHGR and RHS results from a number of iteration

points ranging from 15 to 30 are in Table 9. The table shows that the β̂0, β̂2 and σ̂2
ε

are mostly unaffected by the iteration points . The estimates of σ̂2
0k are quite sensitive,

ranging from 9.32 to 17.83. Note from the log likelihood values, the maximum occurs at the

parameter estimates from PSHGR. There are a number of iteration points that provide

RHS estimates similar to the PSHGR estimates. Note that for 20 iteration points, the

method did not converge. When the simulations were run for simulation set 11, the first

converged simulation starting with 15 iteration points was chosen. Note that increasing

the number of iteration points does not produce a monotonic increase in the log likelihood,

as the lowest log likelihood occurred with 21 iteration points.
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Method (Number of Iteration Points) β̂0 β̂2 σ̂2
ε σ̂2

0k Log Likelihood
PSHGR 3.24 -10.02 0.53 17.85 -475.04

RHS (15) 3.24 -10.02 0.53 11.68 -475.56
RHS (16) 3.25 -10.02 0.53 17.81 -475.04
RHS (17) 3.24 -10.02 0.53 17.83 -475.04
RHS (18) 3.23 -10.04 0.53 15.09 -475.15
RHS (19) 3.24 -10.02 0.53 17.83 -475.04
RHS (20) NA NA NA NA NA
RHS (21) 3.24 -10.03 0.53 9.32 -476.39
RHS (22) 3.24 -10.02 0.52 15.06 -475.12
RHS (23) 3.24 -10.02 0.52 15.05 -475.12
RHS (24) 3.24 -10.02 0.53 17.85 -475.04
RHS (25) 3.24 -10.02 0.53 17.84 -475.04
RHS (26) 3.24 -10.02 0.53 17.85 -475.04
RHS (27) 3.25 -10.02 0.53 17.85 -475.04
RHS (28) 3.24 -10.02 0.53 17.84 -475.04
RHS (29) 3.24 -10.02 0.53 17.84 -475.04
RHS (30) 3.24 -10.02 0.53 17.85 -475.04

Table 9: Differences between RHS and PSHGR Estimated Parameters for Unweighted
Estimates from Simulation Run 2 from Simulation Set 11, Estimating Model from Equation
34

124



Method (Number of Iteration Points) β̂0 β̂2 σ̂2
ε σ̂2

0k Log Likelihood
PSHGR 2.62 -10.02 0.51 28.40 -470.85210

RHS (15) 2.28 -10.02 0.51 23.29 -470.98088
RHS (16) 2.61 -10.02 0.51 28.39 -470.85214
RHS (17) 2.71 -10.02 0.51 25.99 -470.87701
RHS (18) 2.61 -10.02 0.51 28.47 -470.85211
RHS (19) 2.65 -10.02 0.51 28.31 -470.85234
RHS (20) 2.62 -10.02 0.51 28.39 -470.85210
RHS (21) 2.62 -10.02 0.51 28.32 -470.85214
RHS (22) 2.60 -10.04 0.52 22.30 -471.06292
RHS (23) 2.83 -10.02 0.51 26.20 -470.87748
RHS (24) 2.62 -10.02 0.51 28.40 -470.85210
RHS (25) 2.61 -10.02 0.51 28.43 -470.85213
RHS (26) 2.62 -10.02 0.51 28.40 -470.85210
RHS (27) 2.61 -10.02 0.51 28.44 -470.85212
RHS (28) 2.61 -10.02 0.51 28.44 -470.85212
RHS (29) 2.59 -10.02 0.51 28.54 -470.85231
RHS (30) 2.62 -10.02 0.51 28.36 -470.85211

Table 10: Differences between RHS, and PSHGR Estimated Parameters for Unweighted
Estimates from Simulation Run 53 from Simulation Set 11, Estimating Model from Equa-
tion 34

The next point examined is in the first panel of Figure 24, an unweighted estimate of

σ2
0k from simulation run 53. The PSHGR and RHS results from a number of iteration

points ranging from 15 to 30 are in Table 10. The table shows that the β̂2 and σ2
ε are

mostly unaffected by the number of iteration points. The estimates of β̂0 do vary between

2.28 and 2.83. The σ̂2
0k are quite sensitive, ranging from 23.30 to 28.54. Note from the log

likelihood values, the maximum occurs at the parameter estimates from PSHGR. There are

a number of iteration points that provide RHS estimates similar to the PSHGR estimates.

When the simulations were run for simulation set 11, the first converged simulation starting

with 15 iteration points was chosen. Note that increasing the number of iteration points

does not produce a monotonic increase in the log likelihood, as the lowest log likelihood

occurred with 22 iteration points.
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Method (Number of Iteration Points) β̂0 β̂2 σ̂2
ε σ̂2

0k Log Likelihood
PSHGR 2.20 -10.13 0.52 31.67 NA

RHS (15) 1.89 -10.16 0.48 23.46 -1182.6300
RHS (16) 1.98 -10.17 0.49 23.53 -1182.2675
RHS (17) 2.24 -10.17 0.49 31.57 -1181.9494
RHS (18) 2.22 -10.17 0.48 31.68 -1181.9491
RHS (19) NA NA NA NA NA
RHS (20) 2.31 -10.17 0.49 30.59 -1181.9550
RHS (21) 2.17 -10.17 0.49 31.00 -1181.9514
RHS (22) 2.07 -10.17 0.49 23.00 -1182.3078
RHS (23) 2.23 -10.17 0.49 26.95 -1182.0403
RHS (24) 2.32 -10.17 0.49 31.42 -1181.9517
RHS (25) 2.18 -10.16 0.50 20.44 -1182.7365
RHS (26) 2.22 -10.17 0.49 31.73 -1181.9491
RHS (27) 2.30 -10.17 0.49 30.78 -1181.9535
RHS (28) 2.14 -10.17 0.49 31.38 -1181.9504
RHS (29) NA NA NA NA NA
RHS (30) 2.22 -10.17 0.49 31.73 -1181.9491

Table 11: Differences between RHS, and PSHGR Estimated Parameters for Weighted
Unscaled Estimates from Simulation Run 53 from Simulation Set 11, Estimating Model
from Equation 34

The next point examined is in the second panel of Figure 24, an weighted unscaled

estimate of σ2
0k from simulation run 53. The PSHGR and RHS results from a number of

iteration points ranging from 15 to 30 are in Table 11. The table shows that the β̂2 and

σ2
ε are mostly unaffected by the number of iteration points. The estimates of β̂0 do vary

between 1.89 and 2.32. The σ̂2
0k are quite sensitive, ranging from 20.44 to 31.73. Note that

there are no log likelihood values for PSHGR as there is no weighted likelihood. However,

from the log likelihood values, the maximum occurs for PSHGR at iteration points 18,

26 and 30. Those corresponding estimates are close to the PSHGR estimates. When the

simulations were run for simulation set 11, the first converged simulation starting with 15

iteration points was chosen. Note that increasing the number of iteration points does not

produce a monotonic increase in the log likelihood, as the lowest log likelihood occurred

with 25 iteration points.
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8.4 Description of the MSE Results

For the misspecification of fixed effects simulation set 1, the estimating model in Equation

3 both PSHGR and RHS prefered the weighted unscaled. This is surprising, because the

estimating is the correct model with no informative sampling. The unweighted estimates

do not have a smaller variance than the weighted estimates in this simulation. Also the

differences between the RRMSE’s are very small, see Section 8.5. For example, the largest

PSHGR RRMSE is 0.0785 and the smallest is 0.0733. For the estimated model in Equation

4 the PSHGR and RHS estimates have different weighting schemes representing the lowest

RRMSE. The RHS methodology has the lowest RRMSE for the weighted unscaled

estimates. As seen in Figures 2 and 12, there are some differences between the RHS

and PSHGR weighted unscaled estimates of σ2
0k. This is causing the mean of the RHS

method to be lower than the mean of the PSHGR method, resulting different weighting

schemes producing the lowest RRMSE. When the estimating model is from Equation

5, the estimation of the σ2
ε is dominating the RRMSE calculation. Because the weighted

unscaled estimates are the smallest (i.e. closest to the true value of 0.5), both methodologies

produce the smallest RRMSE for the wieghted unscaled estimates. The ARRMSE of

PSHGR and RHS for estimated models in Equations 4 and 5 both prefer the unweighted

estimates because of the smaller variances.

For the misspecification of fixed effects simulation set 4, for all the estimated models

the PSHGR and RHS methods have the lowest RRMSE with the unweighted estimates.

Note the smaller variance from the unweighted estimators and that the weighting schemes

are better at compensating for the informative sampling in the β0, σ2
0k and σ2

ε parameters.

Likely, the reason why the unweighted estimates produce the smallest RRMSE is because

in the σ2
0k and σ2

ε estimates, the model misspecification in Equations 8 and 9 increase the

bias and the unweighted estimates are the smallest. When the model misspecification is

taken into account with the ARRMSE, the estimated model in Equation 8 has smallest

ARRMSE with the weighted scaled 1 estimates. However for ARRMSE in from the
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estimated model in Equation 9, the compensation for the bias using the weighted estimates

does not overcome the smaller variance of the unweighted estimates.

For the misspecification of the random effects simulation set 5, both estimated models

from Equations 11 and 12 prefer the unweighted estimates. There is no informative sam-

pling in this simulation set and the unweighted estimates have small variances. For the

estimated model in Equation 12, only the ARRMSE is computed, as the true value of the

σ2
0k parameter is zero.

For the misspecification of the random effects simulation set 6, the estimated model

in Equation 14 produces the smallest RRMSE with the weighted scaled 2 estimates.

In this case, the unweighted estimates are not chosen because of both bias due to the

informative sampling in the β1 and σ2
1k parameters. When determining which weighting

scheme produces the lowest RRMSE, the σ2
1k parameter dominates, and the weighted

unscaled 2 estimates produce the lowest RRMSE.

For the misspecification of the random effects simulation set 7, the unweighted estimates

produce the smallest RRMSE (or ARRMSE) all the estimated models. This is because

of the smaller variance of the unweighted estimates, the lack of informative sampling, and

the small variance of σ2
2k.

For the misspecification of the random effects simulation set 8, the estimating model

in Equation 20 produced the smallest RRMSE for PSHGR and RHS with the weighted

scaled 1 estimates. The informative sampling produces bias in the unweighted estimates of

β2 and σ2
2k. All the weighted schemes performed well with similar RRMSE. The RRMSE

for the PSHGR weighted estimates ranged from 0.2556 to 0.2204. The estimating model in

Equation 21 produced the smallest ARRMSE for PSHGR and RHS with the unweighted

estimates. The largest contributers to the ARRMSE are the estimates of σ2
0k, and the

unweighted estimates have the smallest values. The small variance on the β0 and β1

unweighted estimates also contribute to the smaller ARRMSE.

For the misspecification of the stratification layering simulation set 9, the RRMSE
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(and RAsqMSE) is lowest for the unweighted estimates for all of the estimating models.

For the estimating model in Equation 23, the true value of σ2
01k.01k is zero, and the estimates

from this term were not included in the MSE calculations. The terms with the largest bias

are the σ2
ε estimates, of which the unweighted and weighted scaled 1 estimates produce

the smallest RRMSE. The weighted scaled 1 estimates will for RHS produce a large

RRMSE for the σ2
02k estimates (as explained about Figure 20). The unweighted estimates

have slightly smaller variances, causing them to have the smallest RRMSEs. For the

estimating models in Equations 24 and 26, the uweighted estimates produce the smallest

ARRMSEs due to the smaller variances and the smaller bias on the σ2
ε estimates.

For the misspecification of the stratification layering simulation set 10, the estimating

model in Equation 28 the smallest RRMSE is with the unwieghted estimates due to the

low bias and variance of the estimates. For the estimating models in Equation 29 and 31

the RRMSE is the smallest with the weighted unscaled estimates. This is because the

model misspecification produces large positive bias on the σ2
ε parameter and the weighted

unscaled estimates have the smallest value. For the estimated model in Equation 29 the

unweighted estimates produced the smallest ARRMSE due to the smaller variances. For

the estimated model in Equation 31, PSHGR and RHS produced different results. Notice

that the PSHGR weighted scaled 1 estimates of σ2
ε have a low 0.025 quantile, as seen in

Figure 9, 24 and 26. The weighted scaled 1 estimates produced the lowest ARRMSE for

the RHS method and the weighted scaled 2 estimates produced the lowest ARRMSE for

the PSHGR method.

For the misspecification of the clustering layers, simulation set 11, the estimated model

in Equation 33 contains no model misspecification. As expected, the RRMSE for PSHGR

is lowest for the unweighted estimates due to the minimal bias and smaller variance. How-

ever, the RRMSE for RHS is lowest for the the weighted scaled 1 estimates. This is due to

the very large bias in the unweighted estimate of σ2
02k. The RHS weighted scaled 1 estimate

of σ2
0k is better behaved and generally has a smaller variance than the weighted scaled 2
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estimates. For the estimated model in Equation 34, the ARRMSE for both PSHGR and

RHS favor the unweighted estimates due to the lower variance and the lack of informative

sampling bias. For the estimating model in Equation 35, the RRMSE favors the weighted

unscaled estimates, as the RRMSE is dominated by the σ2
ε term and the weighted un-

scaled estimates are closest to the true value. When adjusting it for the anticipated values,

the ARRMSE for both RHS and PSHGR favor the unweighted estimates due ot the low

variance and the lack of model misspecification bias. Finally, for the estimated model in

Equation 36, the ARRMSE favors the unweighted estimates due to the smaller variance

and the lack of informative sampling bias.

For the misspecification of the clustering layering simulation set 12, both estimat-

ing models contain model misspecification. For the estimated model in Equation 38, the

RRMSE is dominated by the bias in the σ2
ε estimates and the weighted unscaled estimates

have the lowest mean. For the RAsqMSE, the unweighted estimates produce the lowest

numbers because of the low variance and minimal bias. For the estimated model in Equa-

tion 39, the RRMSE is domiated by the bias in the σ1
0k1k2 estimates. The weighted scaled

1 estimates have the lowest RRMSE for the σ2
0k10k2 parameter, so they also produce the

lowest RRMSE for the estimated model.

Tables 12 and 13 contain the numeric values of the RRMSE and ARRMSE for each

simulation.
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Weighting Scheme with Lowest MSE
Eqn.
Num.

Unweighted Weighted Unscaled Weighted Scaled 1 Weighted Scaled 2

RRMSE RRMSE RRMSE RRMSE
P R P R P R P R

M
is

F
ix

1

3 7.8594e-2 7.8587e-2 7.3379e-2 7.3410e-2 7.77096e-2 7.7317e-2 7.7096e-2 7.7317e-2
4 3.2644e+4 2.8374e+4 3.1237e+4 2.7002e+4 3.1143e+4 3.2019e+4 3.1218e+4 2.9339e+4
5 4.0222e+4 3.9975e+4 3.1438e+4 3.1609e+4 4.5315e+4 3.9533e+4 3.5561e+4 3.5635e+4

M
is

F
ix

4

7 1.1561e-1 1.1791e-1 2.0433e-1 2.0578e-1 2.0171e-1 2.0479e-1 1.8831e-1 1.9138e-1
8 1.4261e+4 1.3857e+4 2.5140e+4 2.3402e+4 2.5084e+4 2.5006e+4 2.5119e+4 2.3461e+4
9 1.6398e+4 1.6261e+4 2.6131e+4 2.6022e+4 1.8482e+4 1.8546e+4 2.3537e+4 2.3488e+4

M
is

R
an

5

11 9.4797e-2 9.4884e-2 2.4933e-1 2.5020e-1 2.3252e-1 2.3242e-1 2.2132e-1 2.1994e-1
12 — — — — — — — —

M
is

R
an

6

14 2.5834e-1 2.5846e-1 2.3064e-1 2.3085e-1 2.1135e-1 2.1013e-1 2.0382e-1 2.0223e-1
15 — — — — — — — —

M
is

R
an

7

17 9.5798e-2 9.7300e-2 2.2984e-1 2.3196e-1 2.0004e-1 2.0086e-1 2.0581e-1 2.0591e-1
18 — — — — — — — —

M
is

R
an

8

20 3.1733e-1 3.1731e-1 2.5557e-1 2.5613e-1 2.2042e-1 2.2037e-1 2.2716e-1 2.2711e-1
21 — — — — — — — —

M
is

St
ra

t
9

23 6.8850e-1 6.8652e-1 9.1607e-1 9.5862e-1 8.8713e-1 3.8200e+5 8.9394e-1 8.8134e-1
24 — — — — — — — —
26 — — — — — — — —

M
is

St
ra

t
10

28 5.7122e-1 5.6701e-1 7.3152e-1 7.3170e-1 6.9078e-1 6.901e-1 7.0105e-1 6.9815e-1
29 — — — — — — — —
31 — — — — — — — —

M
is

St
ra

t
11

33 7.3889e-1 1.1001e+4 8.4443e-1 4.5244e+4 8.2915e-1 1.7074 8.2344e-1 3.4923e+6
34 — — — — — — — —
35 2.6340e+3 2.6309e+3 2.0145e+3 2.0547e+3 2.4009e+3 2.5901e+3 2.2253e+3 2.0565e+10
36 — — — — — — — —

M
is

C
lu

st
12

38 3.6977 3.6990 2.4296 2.4310 3.7148 3.6647 2.8694 2.9982
39 1.7618e+1 1.7670e+1 1.4982e+1 1.4745e+1 1.5355e+1 1.5391e+1 1.5167e+1 1.4876+1

Table 12: Relative Root Mean Square Error (RRMSE) for each Simulation Set
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Weighting Scheme with Lowest MSE
Eqn.
Num.

Unweighted Weighted Unscaled Weighted Scaled 1 Weighted Scaled 2

ARRMSE ARRMSE ARRMSE ARRMSE
P R P R P R P R

M
is

F
ix

1

3 . . . . . . . . . . . . . . . . . . . . . . . .
4 8.4129e-2 1.0717e-1 2.7580e-1 2.8260e-1 2.4200e-1 2.4138e-1 2.5024e-1 2.5996e-1
5 1.6410e+1 1.4602e+1 3.5597e+3 3.7144e+3 1.9264e+2 5.7353e+1 2.0935e+3 2.1438e+3

M
is

F
ix

4

7 . . . . . . . . . . . . . . . . . . . . . . . .
8 6.7070e-1 6.7879e-1 3.7168e-1 3.8074e-1 3.5823e-1 3.5876e-1 3.6103e-1 3.6468e-1
9 8.1960e+1 7.8062e-1 4.6589e+3 4.6490e+3 4.6319e+2 4.6718e+2 3.2840e+3 3.4033e+3

M
is

R
an

5

11 . . . . . . . . . . . . . . . . . . . . . . . .
12 5.8642e-1 5.9620e-1 1.3494 1.3550 1.3171 1.3100 1.3242 1.3283

M
is

R
an

6

14 . . . . . . . . . . . . . . . . . . . . . . . .
15 7.6845e-1 7.6157e-1 1.4761 1.3475 1.4331 1.4335 1.4456 1.4437

M
is

R
an

7

17 . . . . . . . . . . . . . . . . . . . . . . . .
18 6.8822e-1 7.1810e-1 2.1469 2.1804 1.4199 1.4362 1.7865 1.8101

M
is

R
an

8

20 . . . . . . . . . . . . . . . . . . . . . . . .
21 7.5426e-1 7.6435e-1 1.0430 1.0620 9.5318e-1 9.6936e-1 8.9989e-1 9.2430e-1

M
is

St
ra

t
9

23 . . . . . . . . . . . . . . . . . . . . . . . .
24 4.1869e-1 4.1724e-1 2.7596 2.8129 2.7142 2.7195 2.7312 2.7314
26 1.6187 1.6190 1.7263 1.7411 1.6772 1.6801 1.6952 1.7001

M
is

St
ra

t
10

28 . . . . . . . . . . . . . . . . . . . . . . . .
29 1.3675 1.3722 2.6450 2.6218 2.7750 2.5768 2.5962 2.6028
31 3.1449 3.1353 2.7032 2.7108 2.8265 2.6567 2.6964 2.7327

M
is

St
ra

t
11

33 . . . . . . . . . . . . . . . . . . . . . . . .
34 1.1087 1.0060 1.2856 1.1450 1.2356 1.2328 1.2602 1.1857
35 1.2517 1.4311 7.1681 1.3923e+1 2.6557 2.1000 5.7717 2.0565e+10
36 1.6316 1.6278 4.3153 4.3419 4.3551 4.3528 4.3217 4.3244

M
is

C
lu

st
12

38 3.8637e-1 3.8616e-1 5.2995e-1 5.1567e-1 4.7571e-1 4.4115e-1 4.5929e-1 4.5142e-1
39 3.6999 3.7008 2.4401 2.4438 3.7290 3.6796 2.8812 3.0110

Table 13: Anticipated Relative Root Mean Square Error (ARRMSE) for each Simulation Set
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8.5 Tables of True and Anticipated Parameter Values

For the computation of the ARRMSE values, the anticipated parameter values are needed.

The derivation of these values is in Section 8.1. They are also included in Tables 14 and

15 for reference.
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True (Anticipated) Parameter Values
Eqn.
Num.

β0 β1 β2 σ2
0k σ2

ε σ2
1k σ2

2k

M
is

F
ix

1

3 1 -2 2 0.2 0.5
4 1(-5) -2 (NA) 2 (2) 0.2 (36.2) 0.5 (0.5)
5 1(3) -2 (-2) 2 (NA) 0.2 (0.2) 0.5 (100.5)

M
is

F
ix

4

7 1 -2 2 0.2 0.5
8 1(-5) -2 (NA) 2 (2) 0.2 (36.2) 0.5 (0.5)
9 1(3) -2 (-2) 2 (NA) 0.2 (0.2) 0.5 (100.5)

M
is

R
an

5

11 1 -2 2 0.5 1
12 1(1) -2 (-2) 2 (2) 0 (18) 0.5 (0.5) 1(NA)

M
is

R
an

6

14 1 -2 2 0.5 1
15 1(1) -2 (-2) 2 (2) 0 (18) 0.5 (0.5) 1(NA)

M
is

R
an

7

17 1 -2 2 0.5 0.8
18 1(1) -2 (-2) 2 (2) 0 (1.6) 0.5 (16.5) 0.8(NA)

M
is

R
an

8

20 1 -2 2 0.5 0.8
21 1(1) -2 (-2) 2 (2) 0 (1.6) 0.5 (16.5) 0.8(NA)

Table 14: True and Anticipated Parameter Values for Simulation Sets 1-8.

True (Anticipated) Parameter Values
Eqn.
Num.

β0 β1 σ2
01k σ2

02k σ2
01k.02k

13 σ2
ε σ2

0k or
σ2

0k1

σ2
0k1k2

or
β2

M
is

St
ra

t
9

23 -3 8 1 5 0 0.5
24 -3(1) 8 (NA) 1 (NA) 1 (NA) 0(NA) 0.5 (0.5) 0 (16)
26 -3(1) 8 (NA) 1 (NA) 1 (NA) 0 (NA) 0.5 (0.5) 0 (16)

M
is

St
ra

t
10

28 -3 8 0.5 5
29 -3 (1) 8 (NA) 0.5 (16.5) 5 (5)
31 -3 (1) 8 (NA) 0.5 (16.5) 5 (5)

M
is

St
ra

t
11

33 7 -8 1 5 0 0.5 -10
34 7 (3) -8 (NA) 1 (NA) 5 (NA) 0 (NA) 0.5 (NA) 0 (0) -10 (-10)
35 7 (2) -8 (-8) 1 (1) 5 (5) 0 (0) 0.5 (NA) -10 (NA)
36 7 (-1) -8 (NA) 1 (NA) 5 (NA) 0 (NA) 0.5 (25.5) 0 (16.5) -10 (NA)

M
is

C
lu

st
12

38 5 (5) 0.5 (1.5) 5 (5) 1 (NA)
39 5 (5) 0.5 (0.5) 5 (NA) 1 (6)

Table 15: True and Anticipated Parameter Values for Simulation Sets 9-12.
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8.6 Computer Code

The simulations for PSHGR method were run using c-code I developed. This code may be

found at http://stat.cmu.edu under the Recent PhD Theses link. The c-code uses

the VMR library, downloaded from http://www.stat.cmu.edu/~hseltman/. It is in the

Computer Programming, C/C++ section. The code uses blas functions, downloadable

from http://www.netlib.org. The compilation instructions are commented in the begin-

ning of the code. Along with the code are sample input files and the corresponding output

file.

The simulations for the RHS method were run in stata using the gllamm() routine.

The gllamm() routine can be found at http://www.gllamm.org.
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