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How did the universe form? What is it made of, and 
how do its constituents evolve? How old is it? And, 
will it continue to expand? These are questions cos-

mologists have long sought to answer by comparing data 
from myriad astronomical objects to theories of the universe’s 
formation and evolution. But, until recently, cosmology was 
a data-starved science. For instance, before the 1990 launch 
of the Hubble Space Telescope, the Hubble constant—
a number representing the current expansion rate of the 
universe—could only be inferred to within a factor of two, 
and cosmologists had to make do performing simple statistical 
analyses. Since that time, technological advances have led to a 
flood of new data, ushering in the era of precision cosmology. 
(The Sloan Digital Sky Survey alone has collected basic data 
for more than 200 million objects.)

To help make sense of all this data, cosmologists have 
increasingly turned to statisticians, and a new interdisciplinary 
field has arisen: astrostatistics. Work in astrostatistics uses a 
wide range of statistical methods, but there are a few particular 
statistical issues that are prevalent. Here, we focus on two 
broad challenges: parameter estimation using complex models 
and data analysis using noisy, nonstandard data types.

                   

Parameter Estimation  
Using Type Ia Supernovae
A supernova is a violent explosion of a star whose brightness, 
for a short time, rivals that of the galaxy in which it occurs. 
There are several classes of supernovae (or SNe). Those 
dubbed Type Ia result from runaway thermonuclear reactions 
that unbind white dwarfs, Earth-sized remnants of stars such as 
our sun. In the 1990s, astronomers used observations of Type 
Ia SNe to infer the presence of dark energy, a still unknown 
source of negative pressure that acts to accelerate the expan-
sion of the universe, rather than slowing the expansion, as does 
normal baryonic matter (e.g., protons and neutrons). 

There are many interesting analyses we can carry out with 
Type Ia SNe data. For instance, we can construct procedures 
to test different models of the evolution of dark energy prop-
erties as a function of time. Or, we may adopt a model for dark 
energy and see how SNe data, in concert with that model, 
constrain basic cosmological parameters. We demonstrate 
the latter analysis here.

One may be surprised to learn that theories regarding 
the formation and evolution of the universe are sufficiently 
developed that some of the biggest questions in cosmology 
are, in fact, parameter estimation problems. For instance, 
a current standard theory, the so-called L (lambda) Cold 
Dark Matter, or LCDM, theory can adequately describe 
the universe with as few as six parameters. It is often the 
case that parameters in statistical models are abstract and 
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lack intrinsic significance, such as the slope and intercept 
parameters (b

0
 and b

1
) in simple linear regression (as it is 

usually the estimate of the line that is of interest). But this is 
not the case with cosmological model parameters; the goal is 
to precisely estimate each of these fundamental constants.

Different types of cosmological data help constrain dif-
ferent sets of cosmological parameters. We can use the data 
of Type Ia SNe in particular to make inferences about two of 
them: Wm and H

0
. The former (pronounced “omega m”) is the 

fraction of the critical energy density (i.e., the amount neces-
sary to make the universe spatially flat) contributed by bary-
onic matter and dark matter whose presence is inferred by its 
influence upon baryons, but whose make-up is still unknown. 
The latter (“h naught”) is the aforementioned Hubble constant 
(and not an indication of a null hypothesis), the current value 
of the Hubble parameter H(t) that describes the rate at which 
the universe expands as a function of time.

What truly makes Type Ia SNe special from a data analysis 
standpoint is that theory holds them to be standard candles: 
Two SNe at the same distance from us will appear equally 
bright, so that distance and brightness are monotonically 
related. To estimate the distance to a supernova, astronomers 
use its redshift, z, which is a directly observable quantity 
representing the relative amount by which the universe has 
expanded since the explosion occurred (which can be up to 
billions of years ago).

Redshifts are measured by examining the distance 
between peaks and troughs in light waves, which expand 
as the universe does. We observe photons emitted from a 
supernova with wavelength l

emit
 to have a longer wave-

length l
obs

 = (1+z) l
emit

. This motivates the term “redshift”: 

visible light emitted from SNe of progressively higher 
redshift appears progressively redder to us, as red light is at 
the long-wavelength end of the spectrum of visible light.

Another measure of astronomical distance is the distance 
modulus, m, a logarithmic measure of the difference between 
a supernova’s observed brightness and its intrinsic luminosity, 
which uses the fact that objects farther away will appear fainter. 
In Figure 1, we show measurements of z and m for a sample of 
Type Ia SNe. Measurement errors in z are small (&1%) and 
are not shown, while estimates of measurement error in m are 
given by the vertical bars. Note the deviation from linearity 
in the trend in z versus m is due to the accelerated expansion 
of the universe, which is attributed to dark energy.

Assuming a particular cosmological model, the observ-
ables m and z are linked via a function of the cosmological 
parameters (Wm, H0

):
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Other theoretical assumptions about the structure of 
the universe would suggest the use of other functions. The 
particular function in equation (1) represents a spatially flat 
universe, where the actual energy density of the universe 
exactly equals the critical density, separating open universes 
that expand forever from closed universes that first expand, 
then contract back to a point. It also contains a contribution 
from dark energy in the form of a so-called cosmological 
constant (i.e., the dark energy has a particular form that does 
not evolve with time); its fractional contribution to the critical 
energy density is Ω

L 
≡ 1-Ωm.

Figure 1. Distance modulus (m) versus redshift (z) for Type Ia super-
novae. Wm is the fraction of critical energy density contributed by 
baryonic matter and dark matter, while H0 is the Hubble constant. 
Curves represent theoretical predictions for three parameter 
values.

Figure 2. Ninety-five percent joint confidence region for Wm and H0 
using SNe data. The larger region is based on performing a χ2 test at 
each possible parameter combination. The smaller region is created 
using a procedure that attempts to optimize the precision of the 
estimate. Values of (Wm H0) outside the white area are considered 
implausible based on other observations.
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The cosmological constant was first used by Albert Einstein 
to make the universe spatially flat and unchanging within the 
context of his theory of general relativity. Later, after Hubble 
demonstrated the universe was expanding, Einstein disowned 
the constant, referring to it as his “biggest blunder.”

According to the model, the observed pairs (zi,Yi) are real-
izations of Yi = m(zi  Ωm,H0

) + s
i
ei, where the ei are independent 

and identically distributed standard normal. The standard 
deviations si are estimated from properties of the observing 
instrument, but are generally taken as known. Thus, there is 
a simple way of constructing a joint confidence region for 
Ωm and H

0
 by performing a χ2 test for each possible pair (Ωm, 

H
0
): using the fact that
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has the χ2 distribution with 182 degrees of freedom when the 
parameters are correctly specified. Figure 2 shows the 95% 
confidence region that results from this procedure.

Cosmologists are fond of χ2-type statistics because of 
their intuitive appeal, but the resulting confidence regions 
are needlessly large (imprecise). Ongoing work focuses 
on tightening the bounds on parameters by improving the 
statistical procedures. 

Figure 2 also depicts a confidence region created using a 
Monte Carlo–based technique developed by Chad Schafer 
and Philip Stark that approximates optimally precise confi-
dence regions. These parameters also appear in stochastic 
models describing other cosmological data sets, and joint 

analyses of these data sets will lead to yet more precise esti-
mates of the unknown parameters.

Mining Spectra for Cosmological Information
Another fundamental challenge in astrostatistics is the extrac-
tion of useful information from a large amount of complex 
data. One example of such data are spectra, measures of 
photon emission as a function of time, energy, wavelength, 
etc. They may consist of thousands of measurements, such 
as the examples of galaxy and quasar data collected by the 
Sloan Digital Sky Survey (SDSS) that we show in Figures 3 
and 4, respectively. 

Typical galaxies (e.g., the Milky Way) are agglomerations of 
billions of stars; whereas, quasars are galaxies going through an 
evolutionary phase in which a supermassive black hole at the 
center is actively gobbling up gas and emitting so much light 
that it effectively drowns out the rest of the galaxy. To probe the 
physical conditions of galaxies and quasars, we might analyze the 
global, (nearly) smooth continuum emission and/or the narrow 
and broad spikes that rise above the continuum (emission lines) 
or dip below the continuum (absorption lines). Working with 
entire spectra can be computationally tedious, and working with 
large groups of spectra even more so. SDSS has so far measured 
spectra for approximately 800,000 galaxies and 100,000 quasars. 
It may be that we can construct relatively simple statistics that 
convey nearly as much information as each spectrum, itself. For 
instance, to perform galaxy classification, astronomers have 
conventionally used measurements of ratios of photon emission 
over particular (small) ranges of wavelengths.

Figure 3. Flux versus wavelength for a typical Sloan Digital Sky Survey 
(SDSS) galaxy spectrum

Figure 4. Flux versus wavelength for a typical Sloan Digital Sky Survey 
(SDSS) quasar spectrum
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We have begun work on the challenge of finding a low-
dimensional representation of spectra that retains most of the 
useful information they encode. The first idea most would 
think of is to perform a principal components analysis (PCA) 
of the spectra. The basic idea is that, ideally, each spectrum 
could be written as the weighted combination of m basis 
functions, where m is much smaller than p, the length of each 
spectrum. A spectrum is then represented by the projections 
onto these m basis vectors; the union of the projections of 
several spectra form a lower-dimensional embedding of the 
data often referred to as a principal component (PC) map. 
PCA was applied to a family of 1,200 SDSS spectra, with 600 
from galaxies and 600 from quasars.

PCA, however, can do a poor job for astronomical data. 
There are two main reasons for this. First, the method is 
only able to pick out global features in the spectra. It ignores 
that emission line features spanning a small range of wave-
lengths can be crucial in, for example, determining whether 
a spectrum belongs to a galaxy or a quasar. Second, the 
method is linear. If the data points (the spectra) lie on a linear 
hyperplane, the method works well, but if the variations in 
the spectra are more complex, one would be better off with 
nonlinear dimension reduction methods.

The first issue—local features—has been addressed by 
astrostatisticians to some extent. Techniques such as wave-
lets are useful to describe inhomogeneous features in spec-
tra, and these methods are gaining popularity. The second 
issue—nonlinearity—has largely been ignored in the field of 
astronomy, however. 

In “Exploiting Low-Dimensional Structure in Astronomi-
cal Spectra,” a paper submitted to The Astrophysical Journal, 
the authors applied a nonlinear approach for dimensionality 
reduction, embedding the observed spectra within a diffu-
sion map. The basic idea is captured in Figure 5. Ideally, we 
would like to find a distance metric that measures the distance 
between points A and B along the spiral direction, and then 

construct a coordinate system that captures the underlying 
geometry of the data. Diffusion distances and diffusion maps 
do exactly this by a clever definition of connectivity and the 
use of Markov chains. 

Imagine a random walk starting at point A that is only 
allowed to take steps to immediately adjacent points. Start 
a similar walk from point B. For a fixed scale t, the points 
A and B are said to be close if the conditional distributions 
after t steps in the random walk are similar. The diffusion 
distance between these two points is defined as the difference 
between these two conditional distributions. The distance 
will be small if A and B are connected by many short paths 
through the data.

This construction of a distance measure is also robust to 
noise and outliers because it simultaneously accounts for all 
paths between the data points. The path from A to B depicted 
in Figure 5 is representative of the diffusion distance between A 
and B and is a better description of the dissimilarity between A 
and B than, for example, the Euclidean distance from A to B.

In applying this technique for dimensionality reduction, 
the data set attribute we wish to preserve is the diffusion 
distance between all points.  For the example in Figure 5, a dif-
fusion map onto one dimension (m=1) approximately recovers 
the arc length parameter of the spiral. A one-dimensional PC 
map, on the other hand, simply projects all the data onto a 
straight line through the origin. Therefore, the diffusion map 
technique for dimensionality reduction will be better suited 
to the analysis of astronomical data, which is often complex, 
nonlinear, and noisy.

Figure 6 shows the three-dimensional diffusion map con-
structed from 2,796 SDSS galaxy spectra. Each of these 
spectra is of length 3500 (i.e., each lies in a 3500-dimensional 
space) and possesses the sort of noisy, irregular structure seen 
in Figure 3. Despite the high dimension and noisy data, the 
presence of a low-dimensional, nonlinear structure is clear. 
More significantly, this structure can be related to important 

Figure 5. An example of a one-dimensional manifold embedded in 
two dimensions. The path from A to B is representative of the dif-
fusion distance between A and B, and is a better representation of 
dissimilarity between them than the Euclidean distance.

Figure 6. Embedding of a sample of 2,796 SDSS galaxy spectra using 
the first three diffusion map coordinates, with color representing 
galaxy redshifts.
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properties of the galaxies. The colors of the points in the 
map give the redshifts of the galaxies. It is evident that using 
these coordinates, one could predict redshift. Results of this 
type hold great promise for future exploration of these com-
plicated, high-dimensional data sets.

The Future
The SDSS has provided the astronomical community with a 
flood of data, but this flood is minuscule compared to that which 
will be created by the Large Synoptic Survey Telescope, or 
LSST. Scheduled to begin observations in 2015, it will repeat-
edly observe half the sky from its perch on Cerro Pachon in 
Chile, producing wide-field (3o diameter) snapshots. (SDSS, 
in contrast, has scanned approximately 20% of the sky with-
out repeated observations.) Repetition will allow LSST to not 
only probe the nature of dark energy and create unprecedented 
maps of both the solar system and Milky Way, but also to track 
how astronomical objects change with time.

Just how much data will LSST collect? Recent projections 
indicate it will gather 30 terabytes (30 x 10004 bytes) of data 
per evening of viewing, which is roughly equal to the amount 
of data collected by SDSS over its entire lifetime. The total 
amount of LSST data is expected to exceed 10 petabytes 
(10 x 10005 bytes), and will include observations of 5 billion 
galaxies and 10 billion stars.

Needless to say, analyses of these data pose interesting 
challenges that will require the help of statisticians. Two of 
these challenges are obvious. The first is how to efficiently 
process the data in a way so as to not discard their important 
features. The second is how to test ever more sophisticated 
theories whose development will be motivated by LSST’s 
high-resolution data.

But, there is a third challenge—not necessarily obvious to 
astronomers—that is likely to arise. As stated, the LSST data 
will increase the already growing pressure on theoreticians 
to refine their models. But, could astronomers be getting too 
much of a good thing? Introductory statistics courses often 
stress the notion of “practical versus statistical significance” 
when testing a null hypothesis. We are well aware that with 
enough data, any hypothesis can be rejected at any reason-
able significance level. This will likely occur with the massive 
influx of cosmological data. The theories, which inevitably 
contained some level of approximation, will appear to fit the 
data poorly when subjected to formal statistical testing.

Thus, we envision a growing need for formal model-testing 
and model-selection tools. We also see an increasing interest 
in nonparametric and semiparametric approaches, which are 
useful for finding relationships in the data when we lack a 
physically motivated, fully parametric model or when such 
a model is complex and a computationally simpler approach 
may have similar inferential power. For example, there is no 
physically motivated model encapsulating how dark energy 
properties evolve with time. In a paper submitted to Annals 
of Applied Statistics, “Inference for the Dark Energy Equation 
of State Using Type Ia Supernova Data,” the authors assess 
different nonparametric models of dark energy, fitting them 
to the Type Ia SNe data described in Figure 1. Importantly, 
they show how functional properties such as concavity and 
monotonicity can help sharpen statistical inference. Cur-
rently, the number of SNe is insufficient to rule out all but 

the most extreme dark energy models. These authors show 
how a factor of 10 increase in the number of SNe, something 
readily achievable with LSST, will allow us to determine the 
veracity of many hypotheses, including whether a dark energy 
model based on Einstein’s cosmological constant model is 
consistent with the data.

This is typical of the outstanding challenges facing stat-
isticians working on inference problems in cosmology and 
astronomy. Novel methods of data analysis that fully use 
available computing resources are needed if key questions 
are to be answered using the soon-to-arrive massive amount 
of data. 

Further Reading

The Center for Astrostatistics, http://astrostatistics.psu.edu
Freedman, W. (1992) “The Expansion Rate and Size of the 

Universe.” Scientific American, 267:54.
Genovese, C. R.; Freeman, P.; Wasserman, L.; Nichol, R.C.; 

and Miller, C. (2008) “Inference for the Dark Energy Equa-
tion of State Using Type Ia Supernova Data.” Submitted to 
Annals of Applied Statistics, http://arxiv.org/abs/0805.4136.

The International Computational Astrostatistics (InCA) Group,  
www.incagroup.org

The Large Synoptic Survey Telescope (LSST), www.lsst.org
Richards, J.; Freeman, P.; Lee, A.; and Schafer, C. (2008) 

“Exploiting Low-Dimensional Structure in Astronomi-
cal Spectra.” Carnegie Mellon University Department 
of Statistics Technical Report #863. Submitted to The 
Astrophysical Journal, http://arxiv.org/abs/0807.2900.

Schafer, C. and Stark, P. (2007) “Constructing Confidence 
Regions of Optimal Expected Size.” Carnegie Mellon 
University Department of Statistics Technical Report 
#836. Submitted to the Journal of the American Statistical 
Association.

The Sloan Digital Sky Survey (SDSS), www.sdss.org

Large Synoptic Survey Telescope (LSST), from its perch on Cerro Pachon, 
Chie can create unprecedented maps of both the solar system and Milky Way.
Design of LSST Telescope

Courtesy of LSST Corporation


