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Discovering Genetic Ancestry Using Spectral Graph Theory
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As one approach to uncovering the genetic underpinnings of complex disease, individuals are measured at a large number of
genetic variants (usually SNPs) across the genome and these SNP genotypes are assessed for association with disease status.
We propose a new statistical method called Spectral-GEM for the analysis of genome-wide association studies; the goal of
Spectral-GEM is to quantify the ancestry of the sample from such genotypic data. Ignoring structure due to differential
ancestry can lead to an excess of spurious findings and reduce power. Ancestry is commonly estimated using the
eigenvectors derived from principal component analysis (PCA). To develop an alternative to PCA we draw on connections
between multidimensional scaling and spectral graph theory. Our approach, based on a spectral embedding derived from the
normalized Laplacian of a graph, can produce more meaningful delineation of ancestry than by using PCA. Often the results
from Spectral-GEM are straightforward to interpret and therefore useful in association analysis. We illustrate the new
algorithm with an analysis of the POPRES data [Nelson et al., 2008]. Genet. Epidemiol. 2009. r 2009 Wiley-Liss, Inc.
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INTRODUCTION

Human population structure and ancestry are of interest
when investigating fundamental questions in evolution
and practical questions such as studies to detect associa-
tion of disease status with genotypes from specific loci in
the genome. If association studies rely on the unrealistic
assumption of population homogeneity, then spurious
associations can arise in the presence of population
heterogeneity and differential prevalence of disease by
ancestry.

Genetic ancestry can be estimated based on allele counts
derived from individuals measured at a large number of
SNPs. A dimension reduction tool known as principal
component analysis (PCA [Cavalli-Sforza et al., 1994;
Patterson et al., 2006; Price et al., 2006]), or principal
component maps (PC maps), summarize the genetic
similarity between subjects at a large numbers of SNPs
using continuous axes of genetic variation. These axes are
inferred from the dominant eigenvectors of a data-based
similarity matrix and define a ‘‘spectral’’ embedding, also
known as an eigenmap, of the original data. Typically a
small number of ancestry dimensions are sufficient to
describe the key variation. For instance, in Europe,
eigenvectors displayed in two dimensions often reflect
the geographical distribution of populations [Heath et al.,
2008; Novembre et al., 2008]. The number of dimensions
required to capture the key features in the data vary,
depending on the nature of the structure. If the sample
consists of k distinct subpopulations, typically k�1 axes
will be required to differentiate these subpopulations. If a

population has a gradient or cline, then an axis is required
for this feature.

Heterogeneous samples collected from numerous con-
tinents present an additional challenge in the successful
construction of an eigenmap. For instance, analysis of the
four core HapMap samples [International-HapMap-
Consortium, 2005] using the classical PC map produced
by the software smartpca [Patterson et al., 2006] does not
reveal substructure within the Asian sample; however, an
eigenmap constructed using only the Asian samples
discovers an additional substructure [Patterson et al.,
2006]. Another feature of PCA is its sensitivity to outliers
[Luca et al., 2008]. Due to outliers, numerous dimensions
of ancestry appear to model a statistically significant
amount of variation in the data, but in actuality they
function to separate a single observation from the bulk of
the data. This feature can be viewed as a drawback of the
PCA method.

For population-based genetic association studies, such
as case-control studies, the confounding effect of genetic
ancestry can be controlled for by regressing out the
eigenvectors [Price et al., 2006], matching individuals with
similar genetic ancestry [Luca et al., 2008; Rosenbaum,
1995], or clustering groups of individuals with similar
ancestry and using the Cochran-Mantel-Haenszel test. In
each situation, spurious associations are controlled better
if the ancestry is successfully modeled, but power is
reduced if extra dimensions of ancestry are included.

To overcome some of the challenges encountered in
constructing a successful eigenmap of the genetic ancestry,
we propose a spectral graph approach. These methods are
more flexible than PCA and allow for the different ways of
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modeling structure and similarities in data. Our alter-
native approach utilizes a spectral embedding derived
from the so-called normalized Laplacian of a graph. We
proceed by making the connection between PCA, multi-
dimensional scaling (MDS) and spectral graph theory. We
conclude with a presentation of the new algorithm, which
is illustrated via an analysis of the POPRES data [Nelson
et al., 2008].

METHODS

LOW-DIMENSIONAL EMBEDDING BY EIGEN-
ANALYSIS

Record the minor allele count Yij for the ith subject and
the jth SNP in a matrix Y, for i 5 1,. . .,N and j 5 1,. . .,L.
Center and scale the allele counts by subtracting the column
mean and dividing by the standard deviation of each entry
to update Y. The elements of the ith row of Y represent the
genetic information for subject i, yi ¼ ðyi1; . . . ; yiLÞ. The
similarity between individuals i and j is computed using
the inner product hij ¼ L�1hyi; yji. The corresponding inner
product matrix H ¼ L�1YYt associated with standard PCA
is positive semi-definite. Traditionally, in PC maps, the
ancestry vectors are estimated by embedding the data in a
low-dimensional space using the eigenvectors of the matrix
H, the kernel of the PC map. To find the embedding
compute the eigenvectors (u1,u2,. . .,uN) and eigenvalues
(l1Zl2Z� � �ZlN) of H. Typically the large eigenvalues
correspond to eigenvectors that reveal important dimen-
sions of ancestry.

Since we are using the low-dimensional embeddings for
clustering it is important to know what the distances in the
embedding space represent. An analysis shows that the
kernel H induces a natural Euclidean distance m(i,j)
between individuals:

mði; jÞ2 ¼ L�1kyi � yjk
2 ¼ hii þ hjj � 2hij; i; j ¼ 1; . . . ;N:

ð1Þ

If the objective is to preserve these distances, using only
d dimensions, classical MDS theory says to use the N� d-
dimensional matrix with row i

ðl1=2
1 u1ðiÞ; . . . ; l

1=2
d udðiÞÞ ð2Þ

representing the ith individual. Let bmði; jÞ be the Euclidean
distance between individuals i and j in this low-dimen-
sional configuration. To measure the discrepancy between
the Euclidean distances in the full and low-dimensional
space, let d ¼

P
i;j ðmði; jÞ

2
� bmði; jÞ2Þ. This quantity is mini-

mized over all d-dimensional configurations by the top d
eigenvectors of H, weighted by the square root of the
eigenvalues (Equation 2) [Mardia et al., 1979]. Thus PC
mapping is a type of classical MDS. It provides the optimal
embedding if the goal is to preserve the pairwise distances
m(i,j) with H ¼ L�1YYt as closely as possible.

MDS was originally developed to visualize high-dimen-
sional data. The downside of using PCA for a quantitative
analysis is that the associated metric is highly sensitive to
outliers, which diminishes its ability to capture the major
dimensions of ancestry. Our goal in this paper is to develop
a spectral embedding scheme that is less sensitive to
outliers and that is better, in many settings, at clustering
observations similar in ancestry. We note that the choice of
eigenmap is not unique: Any positive semi-definite matrix

H defines a low-dimensional embedding and associated
distance metric according to Equations 1 and 2. Hence, we
will use the general framework of MDS and PC maps but
introduce a different kernel for improved performance.
Below we give some motivation for the modified kernel
and describe its main properties from the point of view of
spectral graph theory and spectral clustering.

SPECTRAL CLUSTERING

In recent years, spectral clustering [von Luxburg, 2007]
has become one of the most widely used clustering
algorithms. It is more flexible than traditional clustering
algorithms such as the k-means algorithm and can be
solved efficiently using standard linear algebra. Spectral
clustering has not been, heretofore, fully explored in the
context of a large number of independent genotypes, such
as is typically obtained in genome-wide association studies.
The eigendecomposition of H can be viewed from the point
of view of spectral clustering. In this framework the
decomposition of YYt in PCA corresponds to an un-
normalized clustering scheme. Such schemes tend to return
embeddings where the principle axes separate outliers
from the bulk of the data. On the other hand, an embedding
based on a normalized matrix (the graph Laplacian)
identifies directions with more balanced clusters.

To introduce the topic, we require the language of graph
theory. For a group of n subjects, define a graph G where
f1; 2; . . . ; ng is the vertex set (composed of subjects in the
study). The graph G can be associated with a weight
matrix W, that reflects the strength of the connections
between pairs of subjects: the higher the value of the entry
wij, the stronger the connection between the pair (i,j).
Edges that are not connected have weight 0. The weight
matrix W is symmetric with non-negative entries.

Laplacian eigenmaps [Belkin and Niyogi, 2002] decom-
pose a function of the weight matrix known as the graph
Laplacian to obtain a new representation of the data.
Inspired by MDS, we consider a rescaled variation of
standard eigenmaps. The Laplacian matrix S of a weighted
graph G is defined by

Sði; jÞ ¼
�wij if i 6¼ j;
di � wii if i ¼ j;

�

where di ¼
P

j wij is the so-called degree of vertex i. In
matrix form,

S ¼ D�W ;

where D 5 diag(d1,. . .,dn) is a diagonal matrix. The normal-
ized graph Laplacian is a matrix defined as

L ¼ D�1=2SD�1=2:

Entries in the kernel matrix, hij, measure the similarity, or
correlation, between subjects, making it a good candidate
for a weight matrix: the larger the entry for a pair (i,j), the
stronger the connection between the subjects within the
pair. For a weight matrix, 0 indicates an unconnected pair.
Negative values in H correspond to negative correlations,
hence motivating the choice of 0 for these pairs. We define
the weights as

wij ¼

ffiffiffiffiffi
hij

p
if hij � 0;

0 otherwise:

�

2 Lee et al.

Genet. Epidemiol.



In other words, a simple transformation of the PCA
kernel. Directly thresholding H at 0 guarantees non-
negative weights but creates a skewed distribution of
weights. To address this problem, we have added a
square-root transformation for more symmetric weight
distributions.

Let ni and ui be the eigenvalues and eigenvectors of L.
We index these fi ¼ 0; 1; . . . ;N � 1g in reference to the first
‘‘trivial’’ eigenvector u0 associated with eigenvalue n0 ¼ 0.
We replace H with I �L, where I is the identity matrix,
and map the the ith subject into a lower dimensional space
according to Equation 2, where ui and li ¼ maxf0; 1� nig,
respectively, are the eigenvectors and truncated eigenva-
lues of I �L. In Results, we show that estimating the
ancestry from the eigenvectors of L (which are the same as
the eigenvectors of I �L) leads to more meaningful
clusters than ancestry estimated directly from YYt. Some
intuition as to why this is the case can be gained by relating
eigenmaps to spectral clustering and ‘‘graph cuts.’’ In
graph-theoretic language, the goal of clustering is to find a
partition of the graph so that the connections between
different groups have low weight and the connections
within a group have high weight. For two disjoint sets A
and B of a graph, the cut across the groups is defined as
cutðA;BÞ ¼

P
i2A;j2B wij. Finding the partition with the

minimum cut is a well-studied problem; however, the
minimum cut criterion favors separating individual ver-
tices or ‘‘outliers’’ from the rest of the graph [Shi and Malik,
1997]. The normalized cut approach by Shi and Malik
circumvents this problem by incorporating the volume or
weight of the edges of a set into a normalized cost
function NcutðA;BÞ ¼ cutðA;BÞ=volðAÞ þ cutðA;BÞ=volðBÞ,
where vol(A) ¼

P
i2A di and vol(B) ¼

P
i2B di. This cost

function is large when the set A or B is small. Our Spectral-
GEM algorithm (below) exploits the fact that the eigenvec-
tors of the graph Laplacian provide an approximate
solution to the Ncut minimization problem. Smartpca
[Patterson et al., 2006] and standard GEM [Luca et al.,
2008], on the other hand, are biased toward embeddings
that favor small, but tight, clusters in the data. For further
exposition on this topic an excellent review is available
[von Luxburg, 2007].

NUMBER OF DIMENSIONS

When using the eigenmap based on YYt a formal test for
the number of significant dimensions can be based on the
theoretical results concerning the Tracy-Widom distribu-
tion of eigenvalues of a covariance matrix [Johnstone, 2001;
Patterson et al., 2006]. Tracy-Widom theory does not
extend to the eigenvalues of the graph Laplacian. Instead
we introduce a different approach, known as the eigengap
heuristic, based on the difference in magnitude between
successive eigenvalues.

The graph Laplacian has several properties that make it
useful for cluster analysis. Both its eigenvalues and
eigenvectors reflect the connectivity of the data. Consider,
for example, the normalized graph Laplacian where the
sample consists of d distinct clusters. Sort the eigenvalues
0 ¼ n0 � n1 � � � � � nN�1 of L in ascending order. The
matrix L has several key properties [Chung, 1992]: (i) The
number d of eigenvalues equal to 0 is the number of
connected components S1; . . . ; Sd of the graph. (ii) The first
positive eigenvalue nd reflects the cohesiveness of the

individual components; the larger the eigenvalue nd

the more cohesive the clusters. (iii) The eigenspace of 0
(i.e., the vectors corresponding to eigenvalues equal to 0)
is spanned by the rescaled indicator vectors D1=21Sk

,
where 1Sk

¼ 1 if i 2 Sk, and 1Sk
¼ 0 otherwise. It follows

from (iii) that for the ideal case where we have d
completely separate populations (and the node degrees
are similar), individuals from the same population
map into the same point in an embedding defined by
the d first eigenvectors of L. For example, if d 5 3, the
N� d embedding matrix for N 5 6 individuals could
have the form

U ¼ ½D1=21S1
;D1=21S2

;D1=21S3
�

¼

d
1=2
1 0 0

d
1=2
2 0 0

d
1=2
3 0 0

0 d
1=2
4 0

0 d
1=2
5 0

0 0 d
1=2
6

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
�

1 0 0

1 0 0

1 0 0

0 1 0

0 1 0

0 0 1

0
BBBBBBBBB@

1
CCCCCCCCCA
:

In a more realistic situation the between-cluster simila-
rity will not be exactly 0 and all components of the graph
will be connected. Hence only the trivial eigenvalue (n0)
will be zero corresponding to the null eigenvector
u0 ¼ ðd

1=2
1 ; . . . ; d1=2

6 Þ
t. Nevertheless, if the clusters are fairly

distinct, we can still use the eigenvalues of the graph
Laplacian to determine the number of significant dimen-
sions. Heuristically, choose the number of eigenvectors
d11 such that the eigengaps di ¼ jni � ni�1j are small for
ird but the eigengap ddþ1 is large. One can justify such an
approach with an argument from perturbation analysis
[Stewart, 1990]. The idea is that the matrix L for the
genetic data is a perturbed version of the ideal matrix for d
disconnected clusters. If the perturbation is not too large
and the ‘‘non-null’’ eigengap dd is large, the first d
eigenvectors will be close to the ideal indicator vectors
and a spectral clustering algorithm will separate the
individual clusters well. The question then becomes:
How do we decide whether an eigengap is significant
(non-null)?

In this work, we propose a practical scheme for
estimating the number of significant eigenvectors for
genetic ancestry that is based on the eigengap heuristic
and hypothesis testing. By simulation, we generate
homogeneous data without population structure and
study the distribution of eigengaps for the normalized
graph Laplacian. Because there is only one population, the
first eigengap d1 is large. We are interested in the first null
eigengap, specifically the difference d2 5 |n2�n1| between
the first and second eigenvalues. If the data are homo-
geneous, this difference is relatively small. Based on our
simulation results, we approximate the upper bound for
the null eigengap with the 99th quantile of the sampling
distribution as a function of N and L. We choose the
number of dimensions d in the eigenvector representation
according to

d ¼ maxfi; di4� 0:00016þ 2:7=N þ 2:3=Lg � 1:

The eigengap heuristic applies regardless of the true
number of dimensions needed to describe the structure in
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the data because it relies on a comparison of the first null
eigengap with the simulated null eigengap.

ALGORITHM FOR SPECTRAL-GEM

* Center and scale the allele counts and compute YYt.
This is a computationally intensive calculation.

* Compute W from YYt.
* Find the eigenvector decomposition of D�1=2WD�1=2.
* Compute the eigengaps di ¼ jni � ni�1j.
* Determine the number of significant dimensions d in

the eigenvector representation

d ¼ maxfi : di4� 0:00016þ 2:7=N þ 2:3=Lg � 1:

* Let U 5 [u0,. . .,ud] be the matrix having as columns the
first d11 eigenvectors.

* Using the NJW algorithm [Ng et al., 2001] normalize the
rows in U to have squared length one. Call the resulting
matrix V.

* Compute the distance between subjects i and j usingPd
‘¼0 ðvi‘ � vj‘Þ

2.
* Obtain homogeneous clusters of individuals using

k-means clustering via Ward’s algorithm [Luca et al.,
2008].

* For regression analysis include u0,. . .,ud as regressors to
remove the effect of confounding due to ancestry.

* For analysis of matched case-control data, perform the
following additional steps:
	 Rescale the data as described in the GEM

algorithm and determine if any subjects are
unmatchable.

	 Remove unmatchable subjects prior to analysis.
	 Recompute the eigenvectors, and match cases and

controls based on the Euclidean distance using the
(d11)-dimensional NJW representation.

	 Perform conditional logistic regression.

RESULTS

DATA ANALYSIS OF POPRES

To assess the performance of spectral embeddings we
use the POPRES database [Nelson et al., 2008]. This
resource includes a large sample of individuals of
European ancestry, and smaller samples of African
Americans, E. Asians, Mexicans, and Asian Indians.
Demographic records include the individual’s country of
origin and that of his/her parents and grandparents.

Of the 4,079 samples with labeled ethnicity and
genotypes that passed the POPRES quality control (their
QC2 procedure) we removed 38 close relatives and 280
samples with greater than 5% missing genotypes. The
remaining data included 346 African Americans, 49
E. Asians, 329 Asian-Indians, 82 Mexicans, and 2,955
Europeans. Of the 457,297 SNPs passing POPRES QC2, we
removed those with missingness greater than 5%, with
minor allele frequency less than 0.01, or with Hardy
Weinberg P-value less than 0.005 (the latter two calcula-
tions were performed using sample of European ancestry
only). From the remaining 326,129 SNPS, we reduced the
list to 48,529 SNPs separated by at least 10 Kb which had
missingness less than 1%. From these we chose 21,743 tag
SNPs using H-clust, set to pick tag SNPs with squared
correlation less than 0.04 [Rinaldo et al., 2008].

For the sample of European ancestry we assigned the
country of origin by the following strategy. For an
individual, ideally the country of origin is recorded for
six immediate ancestors. If at least five out of six of these
list the same country, then it was assigned as the country
of origin. If no ancestry information was recorded then we
used the self-reported country of origin. Otherwise the
individual’s country of origin was not assigned.

We construct three scenarios from POPRES to
illustrate the differences between PCA as implemented
in the smartpca software [Patterson et al., 2006] and
Spectral-GEM. For smartpca, by default any observation
that exceeds 6 standard deviations in any of the top 10

Fig. 1. Principal components from PCA for Scenario 1. Subjects are self-identified as UK (black), Italian (red), and non-European

(blue).
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eigenvectors is removed prior to the estimation of the
ancestry vectors.

Scenario 1. In our simulations and data analyses using
PCA [Luca et al., 2008] we found that outliers can interfere
with discovery of the major axes of ancestry and greatly
increase the number of dimensions of ancestry discovered.
To illustrate the effect of outliers we created a subsample
from POPRES including 580 Europeans (all self-identified
Italian and British subjects), 1 African American, 1 E.
Asian, 1 Indian, and 1 Mexican. Smartpca removes the
four outliers prior to analysis and discovers two signifi-
cant dimensions of ancestry. If the outliers are retained,
five dimensions are significant. The first two eigenvectors
separate the Italian and British samples and highlight

normal variability within these samples. Ancestry
vectors 3–5 isolate outliers from the majority of the
data, but otherwise convey little information concerning
ancestry (Fig. 1). This example highlights our previous
results [Luca, 2008], which show that outlier removal
is an essential stage in PCA analysis to determine
ancestry.

With Spectral-GEM, leaving the outliers in the data
has no impact. The method identified two significant
dimensions that are nearly identical to those identified by
PCA (Fig. 2). In our cluster analysis we identified four
homogeneous clusters: 1 British cluster, 2 Italian clusters,
and 1 small cluster that includes the outliers and six
unusual subjects from the self-identified British and
Italian samples.

Scenario 2. The ancestral composition of samples for
genome-wide association can be highly variable. Often,
however, the majority of the data come from one continent,
but a sizable fraction of the sample derives from other
continents. To mimic this scenario we created a subsample
from POPRES including 832 Europeans (all self-identified
British, Italian, Spanish, and Portuguese subjects), 100
African Americans and 100 Asian-Indians. Using
smartpca, seven dimensions of ancestry are significant.
The first two eigenvectors separate the continental
samples. The third and fourth eigenvectors separate the
Europeans roughly into three domains (Fig. 3). The three
European populations cluster, but they are not completely
delineated. The other continental groups generate
considerable noise near the center of the plot. The
remaining three significant dimensions reveal little
structure of interest.

Using Spectral-GEM four dimensions are significant
(Fig. 4). The first two dimensions separate the continental
clusters, similar to PCA. In the third and fourth dimen-
sions, the European clusters separate more distinctly than
they did for PCA. For these higher dimensions, the
samples from other continents plot near to the origin,
creating a cleaner picture of ancestry. Six homogeneous
clusters are discovered, three European clusters, an
African American cluster, and two Indian clusters.

Fig. 2. Principal components from the Spectral-GEM analysis of

data from Scenario 1. Subjects are self-identified as UK (black),
Italian (red), and non-European (blue).

Fig. 3. Principal components 3–6 for data from Scenario 2. PC 1 and PC 2 are quite similar to the eigenvectors shown in Fig. 4. Subjects

are self-identified as UK (black), Italian (red), Iberian Peninsula (green), African American (blue), and Indian (orange).
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Scenario 3. In this example we analyze the full POPRES
sample. Smartpca’s six standard deviation outlier rule
removes 141 outliers, including all of the E. Asian and
Mexican samples. If these ‘‘outliers’’ were retained, PCA
finds 12 significant dimensions: the first four dimensions
separate the five continental populations (African, European,
Latin American, E. Asian, and S. Asian). Other ancestry
vectors are difficult to interpret. Moreover, based on this
embedding, Ward’s clustering algorithm failed to converge;
thus no sensible clustering by ancestry could be obtained.

Spectral-GEM produces clearer results. No outliers are
removed prior to analysis. The number of significant

dimensions of ancestry is eight. The first four dimensions
separate the major continental samples; the remaining
dimensions separate the European sample into smaller
homogeneous clusters.

Applying the clustering algorithm based on this eight
dimensional embedding we discover 16 clusters and 3
outliers. Four of these clusters group the African
American, E. Asian, Indian, and Mexican samples. These
clusters conform with near perfect accuracy to self-
identified ancestry; greater than 99% of the subjects in a
cluster self-identified as that ancestry, and only a handful
of subjects who self-identified as one of those four
ancestries fall outside of the appropriate cluster.

The remaining 12 clusters separate the individuals
of European ancestry. For ease of interpretation, we
removed the samples obtained from Australia, Canada,
and the US, and focus our validation on 2,302 European
samples, which can be more successfully categorized
by ancestry based on geographic origin. These individuals
could be classified to one of the 34 European countries
represented in the database (Table I). Sample sizes
varied greatly across countries. Switzerland is represented
by 1,014 individuals. Some countries are represented
by only one subject. Seven countries had samples of
size 60 or more. Countries with smaller samples
were combined to create composite country groupings
based on region; see Table I for definition of country
groupings.

By using Ward’s clustering algorithm based on the
spectral embedding, all but 81 of the European sample
were clustered into one of eight relatively large European
clusters (labeled A–HH, Table I). Figure 5 illustrates
the distribution of country groupings within each cluster
(i.e., the conditional probability of country grouping
given cluster). Clusters tend to consist of individuals
sampled from a common ancestry, or likewise, people
of common ancestry tend to be clustered together.
Labeling the resulting clusters in Figure 5 by the primary
source of their membership highlights the results:
(A) Swiss, (B) British Isles, (C) Iberian Peninsula,
(D) Italian A, (E) Central, (F) Italian B, (G) North East,
and (H) South East. The remaining four small clusters
show a diversity of membership and are simply labeled I,
J, K, and L. Cluster L has only seven members who could
be classified by country of origin and is not considered
further.

A dendrogram shows that the clusters are related to
varying degrees (Fig. 6). For instance, it appears that the
Italian A and B clusters represent Southern and Northern
Italy, respectively. Clusters I and J are similar to the Central
cluster, whereas Cluster K represents a more Southern
ancestry. It is likely that one or more of the smaller clusters
consists of Ashkenazi Jews.

Deeper examination of Table I reveals some interesting
patterns. As in other studies of European populations
[Heath et al., 2008], we found that large, centrally located
countries such as France and Germany appear in several
clusters indicating their complex history. Multilingual
countries such as Switzerland and Belgium split into
clusters which might correlate with distinct lingual groups
[Novembre et al., 2008]. With the exception of Bosnia,
Russia, Poland, and Romania, nearly all of the Central
Europeans fell into cluster E. From South East Europe,
although a handful fell in cluster E, the majority fell
into cluster H. Finally several subjects from Cyprus,

P
C

 1

PC 2

P
C

 3

PC 4

Fig. 4. Principal components from the spectral graph approach

for Scenario 2. Subjects are self-identified as UK (black), Italian

(red), Iberian Peninsula (green), African American (blue), and

Indian (orange).
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Greece, and Turkey appear in cluster D with the Southern
Italians.

DISCUSSION

Large, genetically heterogeneous data sets are routinely
analyzed for genome-wide association studies. These
samples exhibit complex structure that can lead to
spurious associations if differential ancestry is not
modeled. Numerous approaches for handling this issue
are now available in the literature [Epstein et al., 2007;
Pritchard et al., 2000; Purcell et al., 2007; Zhang et al.,
2003]. Due to computational challenges encountered in
genome-wide association studies much interest has
focused on estimating ancestry using computationally

efficient methods such as PCA. These methods are based
on an eigenvector decomposition of a matrix that reflects
genetic similarity between pairs of individuals.

While often successful in describing the structure in
data, PCA has some notable weaknesses, as illustrated in
our exploration of POPRES [Nelson et al., 2008]. Part of the
challenge faced by PCA from POPRES is the dispropor-
tionate representation of individuals of European ancestry
combined with individuals from multiple continents. To
obtain results more in keeping with knowledge about
population demographics, Nelson et al. [2008] supplement
POPRES with 207 unrelated subjects from the four core
HapMap samples. In addition, to overcome problems due
to the dominant number of samples of European descent,
they remove 889 and 175 individuals from the Swiss and
the UK samples, respectively. Because PCA is sensitive to

TABLE I. Counts of Subjects from Each Country Classified to Each Cluster

Cluster label

Country Subset Count A B C D E F G H I J K L

Switzerland CHE 1,014 871 36 3 2 32 39 1 0 9 14 5 2
England GBR 26 0 22 0 0 1 0 0 0 1 0 2 0
Scotland GBR 5 0 5 0 0 0 0 0 0 0 0 0 0
UnitedKingdom GBR 344 20 300 0 3 8 0 3 0 1 1 5 1
Italy ITA 205 8 0 1 124 1 60 0 4 1 2 4 0
Spain ESP 128 3 0 122 0 1 1 0 0 0 0 1 0
Portugal PRT 124 1 0 119 0 0 2 0 0 0 0 0 0
France FRA 108 39 34 15 0 5 6 0 0 3 2 3 1
Ireland IRL 61 0 61 0 0 0 0 0 0 0 0 0 0
Belgium NWE 45 21 19 0 0 3 0 0 0 1 1 0 0
Denmark NWE 1 0 1 0 0 0 0 0 0 0 0 0 0
Finland NWE 1 0 0 0 0 0 0 1 0 0 0 0 0
Germany NWE 71 16 22 0 0 22 1 3 0 3 0 2 2
Latvia NWE 1 0 0 0 0 0 0 1 0 0 0 0 0
Luxembourg NWE 1 0 0 0 0 1 0 0 0 0 0 0 0
Netherlands NWE 19 3 15 0 0 1 0 0 0 0 0 0 0
Norway NWE 2 0 2 0 0 0 0 0 0 0 0 0 0
Poland NWE 21 0 1 0 0 3 0 16 0 1 0 0 0
Sweden NWE 10 0 7 0 0 2 0 0 0 0 1 0 0
Austria ECE 13 3 1 0 0 6 0 0 0 2 0 0 1
Croatia ECE 8 0 0 0 0 5 0 2 1 0 0 0 0
Czech ECE 10 1 0 0 0 6 0 3 0 0 0 0 0
Hungary ECE 18 0 0 0 0 10 0 4 1 2 1 0 0
Romania ECE 13 0 0 0 0 5 0 2 4 1 1 0 0
Russia ECE 7 1 0 0 0 0 0 6 0 0 0 0 0
Serbia ECE 3 0 0 0 0 0 0 1 0 2 0 0 0
Slovenia ECE 2 0 0 0 0 2 0 0 0 0 0 0 0
Ukraine ECE 1 1 0 0 0 0 0 0 0 0 0 0 0
Albania SEE 2 0 0 0 1 0 0 0 1 0 0 0 0
Bosnia SEE 7 0 0 0 0 3 0 4 0 0 0 0 0
Cyprus SEE 4 0 0 0 4 0 0 0 0 0 0 0 0
Greece SEE 5 0 0 0 2 0 0 0 3 0 0 0 0
Kosovo SEE 1 0 0 0 0 0 0 0 1 0 0 0 0
Macedonia SEE 3 0 0 0 0 0 1 0 2 0 0 0 0
Turkey SEE 6 0 0 0 2 0 0 0 3 0 0 0 0
Yugoslavia SEE 17 0 0 0 1 6 0 2 6 0 2 0 0

Total 2,302 988 526 260 139 123 110 49 26 27 25 22 7

Labels in column two create country groupings where necessary due to small counts of subjects in many individual countries. Country
groupings NWE, ECE, and SEE include countries from north west, east central, and south east Europe, respectively. Eight clusters (A–H) were
given descriptive cluster labels based on the majority country or country grouping membership: (A) Swiss, (B) British Isles, (C) Iberian
Peninsula, (D) Italian A, (E) Central, (F) Italian B, (G) North East, and (H) South East. The remaining four clusters are labeled as I, J, K, and L.
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outliers, it performs a careful search for outliers, exploring
various subsets of the data iteratively. After making these
adjustments they obtain an excellent description of the
ancestry of those individuals in the remaining sample.
From this analysis we see that with careful handling, PCA
successfully reveals ancestry. Likewise, when analysis is
restricted to individuals of European ancestry, PCA again
works very well [Novembre et al., 2008]. Less nuanced
application of the approach leads to much less useful
insights as we showed above.

In many settings the proposed spectral graph approach,
Spectral-GEM, is more robust and flexible than PCA. It
determines eigenvectors that separate the data into mean-
ingful clusters. In contrast, smartpca sometimes finds a

large number of significant dimensions. For instance in a
study of nearly 6,000 individuals of European ancestry
smartpca identified 110 significant dimensions with two
dominant axes [Heath et al., 2008]. Spectral-GEM’s
embedding is not notably affected by outliers (e.g.,
Scenario 1 of Results). It can detect fine ancestral structure
even in very heterogeneous data (Scenarios 2 and 3 of
Results). Finally in a large sample of complicated ancestry,
such as Scenario 3, it can successfully delineate the
relatively discrete and relatively continuous ancestral
components. Axes of ancestry can be used to control for
structure following any of the standard epidemiological
approaches: regressing out the effects of ancestry [Price
et al., 2006]; matching cases and controls of similar
ancestry [Luca et al., 2008]; or analyzing the homogeneous
clusters using the Cochran-Mantel-Haenszel test. For most
situations these approaches are likely to lead to similar
results. Successfully finding the hidden structure using a
small number of eigenvectors is the key to controlling for
the effects of ancestry. Spectral-GEM should be a useful
addition to the tools used to analyze genome-wide
association data and other data sets in which ancestry is
of interest.

Successful implementation of Spectral-GEM benefits
from careful choice of the SNP panel. A thoughtful choice
of SNPs leads to more robust discoveries of eigenvectors
that are more interpretable. In the analysis of POPRES
described in Results we use less than 5% of the available
SNPs, but we believe we are retaining essentially all of the
available information about ancestry. In the process of
chosing the SNPs for ancestry analysis we suggest a
number of edits. First, we remove any SNPs with
missingness rate greater than 0.2%. This edit removes
artificial correlations between individuals due to imputed
missing values. Second, we reduce the panel to include
only tag SNPs. Including SNPs in LD leads to discoveries
of axes that describe local LD structure rather than true
axes of ancestry. For instance using all of the SNPs, we
found d 5 16, a representation that includes eight more
dimensions than reported in our analysis. Through
experience we have found that applying an initial screen
that selects a grid of SNPs separated by 10 Kb approxi-
mates a tag SNP selection fairly well. Next we apply a

Fig. 5. Country membership by cluster for Scenario 3. Cluster

labels and country groupings are defined in Table I. Cluster
labels were derived from the majority country or country

grouping membership.

Fig. 6. Dendrogram for European clusters from Scenario 3.
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formal tag SNP selection process to remove any remaining
SNPs with r240.04. Using the tag SNPs reported in our
analysis we found d 5 8, a result that is quite robust to
slight variations in the SNP selection. For instance, using
various choices of tag SNPs ranging in number from
15,000 to 80,000 yielded similar results. But using 10,000
SNPs we find only d 5 5 dimensions. This suggests that
there is an inflection point in the information content of the
SNP panel.

The distribution of the eigengap statistic used to
determine the number of significant axes of ancestry is
well approximated by a function of the sample size,
provided the number of tag SNPs is relatively large
(L410,000). For a genome-wide association study we
expect to have at least this number available. For smaller
numbers of SNPs the distribution also depends on L.
Consequently the cutoff value provided herein for the test
does not apply. For smaller numbers of SNPs it is
necessary to simulate the distribution of the eigengap
statistic. Further study will be required to obtain an
asymptotic theory such as applied to eigenvalues of YY0

[Patterson et al., 2006].
The choice of weight matrix W is also open for further

investigation. We selected a simple kernel derived from
the traditional kernel employed in PCA analysis; however
any matrix that measures the non-negative genetic
similarity between pairs of individuals is a candidate. A
natural choice with roots in both genetics [Purcell et al.,
2007] and spectral graph theory is based on IBS sharing.
For individuals i and j, let sij be the fraction of alleles
shared by the pair identical by state across the panel of
SNPs. Define the corresponding weight as
wij ¼ expf�ð1� sijÞ=eg. In this formulation e is a tuning
parameter. Preliminary investigation suggests this kernel
has good properties, but further study is required to
develop a data-dependent choice of the tuning parameter.
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