In this lecture we introduce the Chen-Stein method on Poisson approximation of a sequence of weakly correlated random variables.

11.1 Motivation

\section*{Scan statistics} Consider a matrix $y \in \mathbb{R}^{H \times W}$ with HW random variables y_{ij}. We want to perform a hypothesis testing, with the null hypothesis H_0 being y_{ij} i.i.d. distributed according to some known distribution F. Typically F can be taken as a zero-mean Gaussian distribution $\mathcal{N}(0, 1)$. One particular test statistic is

$$\max_{i,j} \{T_{ij}\}_{i,j=1}^{H-h+1, W-w+1},$$

where T_{ij} can be either the average or the maximum of y_{ij} in a small scanning window of height h and width w. Under the null hypothesis, for a fixed scanning window T_{ij}, the distribution of its average or its maximum can be easily worked out. However, the distribution of the maximum of all scan statistics T_{ij} (or even its confidence interval) is difficulty to compute, because T_{ij} are not independent from each other. Nevertheless, the correlation between the scan statistics are weak, and hence we expect them to behave close to independently distributed random variables.

\section*{Max correlation} Consider a matrix $X \in \mathbb{R}^{n \times p}$, where each columns of X, X_i, are i.i.d. distributed according to a multivariate Gaussian distribution $\mathcal{N}(\mu, \Sigma)$ for some known parameters μ and Σ. We are interested in the following quantity

$$M = \max_{i_1 \neq i_2} \text{corr}(X_{i_1}, X_{i_2}),$$

where $\text{corr}(x, y)$ is the empirical correlation between two vectors x and y, which is defined as

$$\text{corr}(x, y) = \frac{\sum_i x_i y_i}{\|x\|_2 \|y\|_2}.$$

Again, $\text{corr}(X_{i_1}, X_{i_2})$ are not independent from $\text{corr}(X_{i_1'}, X_{i_2'})$ as long as $\{i_1, i_2\} \cap \{i_1', i_2'\} \neq \emptyset$. However, we expect the mutual correlation is weak.

11.2 The Chen-Stein Poisson Approximation

We have the following classic result, which states that the sum of a sequence of weakly correlated random variables behave close to a Poisson random variable.
Theorem 11.1 ([AGG89]) Let \(\{X_\alpha\}_{\alpha \in I} \) be a sequence of (correlated) Bernoulli random variables indexed by \(\alpha \), where the index set \(I \) is countable. Suppose \(X_\alpha \sim \text{Bernoulli}(p_\alpha) \), \(W = \sum_\alpha X_\alpha \) and \(\mathbb{E}[W] = \sum_\alpha p_\alpha = \lambda \).

For each \(\alpha \in I \), fix its neighborhood \(B_\alpha \subseteq I \) and define
\[
\begin{align*}
 b_1 &= \sum_{\alpha \in I} \sum_{\beta \in B_\alpha} p_\alpha p_\beta, \\
 b_2 &= \sum_{\alpha \in I} \sum_{\beta \not\in B_\alpha \setminus \{\alpha\}} p_\alpha p_\beta, \\
 b_3 &= \sum_{\alpha \in I} \mathbb{E} \left[\mathbb{E}[X_\alpha - p_\alpha | X_\beta : \beta \not\in B_\alpha] \right],
\end{align*}
\]

where \(p_{\alpha \beta} = \text{Pr}[X_\alpha = 1 \land X_\beta = 1] \). Note that if \(X_\alpha \) is independent of \(X_\beta \) for all \(\beta \) in the complement of \(B_\alpha \) then \(b_3 = 0 \). Suppose \(Z \sim \text{Poisson}(\lambda) \). We then have
\[
\|W - Z\|_{TV} \leq 2 \left((b_1 + b_2) \frac{1 - e^{-\lambda}}{\lambda} + b_3 \min \left(1, \frac{1}{\sqrt{\lambda}} \right) \right) \leq 2(b_1 + b_2 + b_3),
\]

where \(\|p - q\|_{TV} = \int |p(x) - q(x)| dx \) is the total variation between two probability distributions.

As a simple corollary, the following proposition characterizes the probability of \(W = 0 \) (i.e., no bad event happens), which is very useful in many applications.

Corollary 11.2 Assuming the same notations in Theorem 11.1. We then have
\[
\left| \text{Pr}(W = 0) - e^{-\lambda} \right| \leq (b_1 + b_2 + b_3) \cdot \frac{1 - e^{-\lambda}}{\lambda} \leq (b_1 + b_2 + b_3) \min \left(1, \frac{1}{\sqrt{\lambda}} \right).
\]

11.3 Application: the birthday problem

Consider \(N \) people, each with birthday sampled uniformly at random from \(\{1, \cdots, 365\} \). We are interested in (approximately) computing the probability that no two people share the same birthday. Let \(\{X_{ij}\}_{1 \leq i < j \leq N} \) be random variables with \(X_{ij} = 1 \) if person \(i \) and person \(j \) has the same birthday and \(X_{ij} = 0 \) otherwise. Define \(W = \sum_{i < j} X_{ij} \). The event that no two people share the same birthday is equivalent to the event that \(W = 0 \).

For notational convenience define \(I = \{(i, j) : 1 \leq i < j \leq N\} \) and \(\lambda = \mathbb{E}[W] = \binom{N}{2} \frac{1}{d} \), where \(d = 365 \) is the number of days in a year. For \(\alpha = (i, j) \), define its neighborhood \(B_\alpha \) as
\[
B_\alpha = B_{ij} = \{(k, \ell) : \{k, \ell\} \cap \{i, j\} \neq \emptyset\}.
\]

Clearly, \(X_\alpha \) is independent of \(X_\beta \) for all \(\beta \notin B_\alpha \) and hence \(b_3 = 0 \). For the other two quantities \(b_1 \) and \(b_2 \), we have
\[
\begin{align*}
 b_1 &= |I| \cdot |B_\alpha| \cdot \frac{1}{d^2}, \\
 b_2 &= |I| \cdot (|B_\alpha| - 1) \cdot \frac{1}{d^2},
\end{align*}
\]
where in the last equation we used the fact that X_α and X_β are pairwise independent for all $\alpha \neq \beta$ and hence $p_{\alpha\beta} = p_\alpha p_\beta = 1/d^2$. Consequently, applying Corollary 11.2 and noting that $|I| = \binom{N}{2}$ and $|B_\alpha| = 2(N-2)+1$, we have

$$\left| \Pr(W = 0) - \exp \left(-\binom{N}{2} \frac{1}{d^2} \right) \right| \leq \frac{1}{N} \binom{N}{2} \frac{1}{d^2} (4N - 7) = \frac{4N - 7}{d}.$$

References