8.1 Euclidean norm of sub-Gaussian random vectors

Definition 8.1 (Sub-Gaussian random vectors) A random vector $X \in \mathbb{R}^d$ is a sub-Gaussian random vector with parameter σ^2 if

$$v^T X \in SG(\sigma^2), \forall v \in S^{d-1}$$

where $S^{d-1} = \{ x \in \mathbb{R}^d : ||x|| = 1 \}$ is the $d-1$ unit sphere. We write $X \in SG_d(\sigma^2)$.

Lemma 8.2 $X \in \mathbb{R}^d$ is a sub-Gaussian random vector with parameter $||\Sigma||_{op}$ if $X \sim \mathcal{N}(0, \Sigma)$

Proof: For any $v \in S^{d-1}$, $v^T \Sigma v \leq ||\Sigma||_{op}$. Take MGF: $E[e^{\lambda^T X}] = e^{\lambda^T \Sigma \lambda/2} \leq e^{\lambda^T ||\Sigma||_{op}/2}$

Notice that sub-Gaussian vector does not need to be a vector of independent Gaussians (but the vice is true).

We now prove the theorem from last time:

Theorem 8.3 Let $X \in SG_d(\sigma^2), ||X|| = \sqrt{\sum_{i=1}^{d} X_i^2}$, then:

$$E[||X||] \leq 4\sigma\sqrt{d}$$

Moreover, with probability at least $1 - \delta$ for $\delta \in (0, 1)$:

$$||X|| \leq 4\sigma\sqrt{d} + 2\sigma \sqrt{\log(\frac{1}{\delta})}$$

Proof: Let $N_\frac{1}{2}$ be a $\frac{1}{2}$-minimal cover of B_d in Euclidian norm, that is:

$$\forall \theta \in B_d, \exists z = z(\theta) \in N_\frac{1}{2} \text{ s.t. } ||\theta - z|| \leq \frac{1}{2}$$

Equivalently, $\forall \theta \in B_d$, we can write $\theta = z + w$ where $z = z(\theta) \in N_\frac{1}{2}$ and $||w|| \leq \frac{1}{2}$. Also, by the volumetric rate bounds,

$$|N_\frac{1}{2}| \leq (1 + \frac{2}{1/2})^d = 5^d$$

8-1
Hence,
\[
\max_{v \in B_d} v^T X \leq \max_{z \in N_{\frac{1}{2}}} z^T X + \max_{w \in B_d} w^T X = \max_{z \in N_{\frac{1}{2}}} z^T X + \frac{1}{2} \max_{w \in B_d} w^T X
\]
Hence \(\max_{v \in B_d} v^T X \leq 2 \max_{z \in N_{\frac{1}{2}}} z^T X \).

In general, some argument will lead to the following bound:
\[
\|X\| \leq \frac{1}{1 - \epsilon} \max_{z \in N_{\frac{1}{2}}} z^T X \text{ for } \epsilon \in (0, 1)
\]

Therefore,
\[
\mathbb{E}\|X\| \leq 2\mathbb{E}\max_{z \in N_{\frac{1}{2}}} z^T X \leq 2\sigma \sqrt{2\log|N_{\frac{1}{2}}|} \leq 2\sigma \sqrt{2d\log 5} \leq 4\sigma \sqrt{d}
\]

The second inequality is due to the maximal inequality for sub-Gaussian random variables we have proved in class.

To prove the high probability bound, for \(t > 0 \):
\[
\mathbb{P}(\|X\| \geq t) \leq \mathbb{P}(\max_{z \in N_{\frac{1}{2}}} z^T X \geq \frac{t}{2}) \leq |N_{\frac{1}{2}}| \exp\{-\frac{t^2}{8\sigma^2}\} \leq 5^d \exp\{-\frac{t^2}{8\sigma^2}\}
\]

The desired bound is obtained by setting the right hand side equal to \(\sigma \in (0, 1) \) and solve for \(t \)

Note: we have already seen from HW1 that under some regularity condition [Y10]:
\[
\|\hat{\Sigma}_n - \Sigma\|_\infty \leq C \sqrt{\frac{t + \log \delta}{n}}
\]
with probability at least \(1 - e^{-t} \), where \(\hat{\Sigma}_n \) is the empirical covariance matrix.

8.2 Matrix norm

Definition 8.4 (Operator Norm) Let \(A \in \mathbb{R}^{m \times n} \), \(\text{rank}(A) = r \leq \min\{m, n\} \). The singular value decomposition (SVD) of \(A \) is \(A = UDV^T \) where

1. \(D = \mathrm{diag}(\sigma_1, \cdots, \sigma_r) \). \(\sigma_1 \geq \cdots \geq \sigma_r > 0 \) are the singular values of \(A \).
2. \(U \in \mathbb{R}^{m \times r} \) whose columns are orthonormal and are called singular vectors
3. \(V \in \mathbb{R}^{n \times r} \) whose columns are orthonormal and are called singular vectors

Then \(AA^T u_j = \sigma_j^2 u_j \), \(A^T A v_j = \sigma_j^2 v_j \) where \(u_j, v_j \) are the \(j \)-th column of \(U \) and \(V \) respectively. The operator norm of \(A \) is:
\[
\|A\|_{op} = \max_i \sigma_i = \max_{x \in \mathbb{R}^n \setminus \{0\}} \frac{\|Ax\|}{\|x\|} = \max_{x \in S^{n-1}} x^T Ay
\]

Remarks:
- When $A \in S^n$ (symmetric), $\|A\|_{op} = \max_{x \in S^{n-1}} |x^T Ax|$.

- We say $A \in S^n_+$ (positive semi-definite (PSD)) if and only if $\forall x \in \mathbb{R}^n, x^T Ax \geq 0$. As an example, any covariance matrix Σ is PSD because $V[a^T x] = a^T \geq 0, \forall a \in \mathbb{R}^n$

- If $A \in S^n_+$, $\sigma_i = \lambda_i$ where λ_i‘s are the eigenvalues of A, $\|A\|_{op} = \max_i \lambda_i = \max_{x \in S^{n-1}} x^T Ax$

The following two types of norms are also common in practice.

Definition 8.5 (Frobenius Norm)

$$\|A\|_F = \sqrt{\sum_{i,j=1}^{n,m} A_{ij}^2}$$

Definition 8.6 (p-Schatten Norm)

$$\|A\|_p = \left(\sum_{i=1}^{n,m} \sigma_i^p (A) \right)^{1/p}$$

where $\sigma_i(A)$‘s are the singular values of A. When $p = 1$, $\|A\|_p$ is the nuclear norm. When $p = \infty$, $\|A\|_{op}$ is the spectral norm.

The following two inequality are often useful in practice:

Lemma 8.7

$$\|Ax\| \leq \|A\|_{op} \|x\| \forall x$$

Lemma 8.8 (Weyl’s Inequality) Assume $A, B \in \mathbb{R}^{m \times n}$ have singular values $\sigma_i(A), \sigma_j(B)$ for $i = 1, \cdots, n \wedge m; j = 1, \cdots, n \wedge m$, then:

$$\max_i |\sigma_i(A) - \sigma_i(B)| \leq \|A - B\|_{op}$$

Corollary $\|A - B\|_{op} \to 0 \Rightarrow |x^T (A - B)y| \to 0$ uniformly for every $x \in S^{m-1}, y \in S^{n-1}$.

8.3 Covariance matrix estimation in the operator norm

Theorem 8.9 Let X_1, \cdots, X_n be iid samples from a distribution with mean 0 and covariance matrix Σ. Assume $X_i \in SG_d(\sigma^2)$ and are centered. Let $\Sigma_n = \frac{1}{n} \sum_{i=1}^{n} X_i X_i^T$. Then there exists a universal constant $C > 0$ such that

$$\mathbb{P}(\frac{\|\Sigma_n - \Sigma\|_{op}}{\sigma^2} \geq C \max \left\{ \sqrt{\frac{d + \log(\frac{2}{\delta})}{n}}, \frac{d + \log(\frac{2}{\delta})}{n} \right\}) \leq \delta, \delta \in (0, 1)$$

Remark: Theorem 8.9 indicates that $\Sigma_n \xrightarrow{p} \Sigma$ with respect to the operator norm requires $\frac{\delta}{n} \to 0$

Proof ideas: Use discretization and sub exponential concentration bound. Recall that $X \in SG(\sigma^2) \Rightarrow X^2 - \mathbb{E}[X^2] \in SE(16^2 \sigma^4, 16^2 \sigma^2)$.

Lemma 8.10 Let $A := \Sigma_n - \Sigma \in S^n$ and N_ϵ be the ϵ-net of S^{d-1} for $\epsilon \in (0, \frac{1}{2})$, then:

$$\|A\|_{op} = \max_{x \in S^{n-1}} |x^T Ax| \leq \frac{1}{1 - 2\epsilon} \max_{y \in N_\epsilon} |y^T Ay|$$
References
