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21.1 Stochastic Block Model

Suppose A = [Aij ] ∈ Rn×n is the adjacency matrix of a random graph. In this lecture we only consider
undirected graph with no self-edges, so A is symmetric. A common way to model A is to assume that Aij
are independent Bernoulli variables for i < j, i.e.,

Aij ∼ Bernoulli(pij), Aji = Aij , pij ∈ (0, 1), i < j, Aii = 0.

When pij = p for all i < j, this degenerates to the well-known Erdös-Rényi model, which could be too simple
to be practical. A practical generalization is the Stochastic Block Model (SBM). SBM assumes that there is
a symmetric matrix B ∈ Rk×k, for k � n, and a map C : {1, · · · , n} → {1, · · · , k}, such that

pij = BC(i),C(j).

By definition, there are k(k+1)/2 parameters to estimate in SBM. In SBM, n nodes are grouped in k groups,
with group labels given by map C, and we call these groups communities.

Example 21.1. Suppose B = (p − q)Ik + q1k1
>
k , with p ∈ (0, 1), q ∈ (0, p) and 1k = [1, · · · , 1]> ∈ Rk.

When k = 3, this gives

B =

 p q q
q p q
q q p


In words, pij = p if C(i) = C(j), and q otherwise.

Usually we denote P = E[A], so

P = [pij ]i,j=1,··· ,n.

Define a matrix Θ ∈ Rn×k by

Θi,j =

{
1, C(i) = j (i.e., node i is in community j),

0, otherwise.

Then matrix P = E[A] can be expressed as

P = ΘBΘ> − diag(ΘBΘ>). (21.1)
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Remark

• One should notice that each row of Θ has only 1 non-zero entries, and the number of non-zero entries
in column j of Θ is the number of nodes in community j.

• We do not know Θ based on the observation A, because we do not know the underlying map C giving
community labels, and our goal is to estimate the map C, or the partition of nodes into communities.
Estimation of C or Θ is called community detection.

• We assume that we know k when doing community detection, though it’s not the case in practice. In
practice people will use some methods to choose k.

Example 21.2. Suppose n = 2m, k = 2, and communities are {1, · · · ,m}, {m+ 1, · · · , 2m}. For 0 < q <
p < 1, assume that

B =

[
p q
q p

]
.

Then

ΘBΘ> =



p · · · p q · · · q
...

. . .
...

...
. . .

...
p · · · p q · · · q
q · · · q p · · · p
...

. . .
...

...
. . .

...
q · · · q p · · · p


So rank(ΘBΘ>) = 2, with top-2 eigenvalues and eigenvectors

λ1 =

(
p+ q

2

)
· n, U1 =

1√
n

[1, · · · , 1] ∈ Rn

and

λ2 =

(
p− q

2

)
· n, U2 =

1√
n

[1, · · · , 1,−1, · · · ,−1] ∈ Rn.

From now on let’s consider community detection under the setting of Example 21.2. Think of A as

A = P + E.

Since diagonal entries of P are zero, we have

‖P‖ ∼
(
p+ q

2

)n
.

Also, ‖E‖ ∼
√
n with high probability. To estimate Θ, we introduce the following algorithm of spectral

clustering.

Spectral clustering algorithm

1 Compute the second eigenvector U2 of A.

2 Cluster nodes based on the sign of the entries of U2.
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By Davis-Khan theorem, we can show that this algorithm works well. The eigengap in Davis-Khan theorem
is

δ = min{λ2, λ1 − λ2} = min{q, p− q
2
} × n , µn.

Then, by Davis-Khan theorem,

min
ε∈{1,−1}

‖εU2(A)− U2(P )‖ ≤ 23/2‖E‖
µn

.

Since ‖E‖ .
√
n, we know that with high probability,

min
ε∈{1,−1}

‖εU2(A)− U2(P )‖ . C

µ
√
n
,

which is equivalent to

min
ε∈{1,−1}

‖ε
√
nU2(A)−

√
nU2(P )‖ . C

µ

with high probability. Since
√
nU2(P ) ∈ {1,−1}n, if sign(εU2(A)i) 6= sign(εU2(P )i), where U2(A)i is the

i-th entry of A, then

n (εU2(A)i − εU2(P )i)
2 ≥ 1.

Therefore,

#{i ∈ {1, · · · , n} : sign(εU2(A)i) 6= sign(εU2(P )i)} ≤
C2

µ2
.

Thus, if C2

µ2 · 1n → 0 as n → ∞, then the spectral clustering algorithm is correct over all nodes except for a
vanishing fraction. In conclusion, the condition we need is

C2

µ2
· 1

n
→ 0⇔ min{q, p− q

2
} � 1√

n
.

Remark

• It’s reasonable that successful community detection requires p−q
2 � 1√

n
, since a larger p−q

2 implies a

larger signal-to-noise ratio.

• However, the condition q � 1√
n

seems strange, since q = 0 will lead to two dis-connected communities,

and make it trivial to do community detection. The reason why q cannot vanish is that the method,
spectral clustering on the second eigenvector, is too restricted. But this is not a big problem in practice,
because usually people only use community detection method on a connected graph, otherwise it would
be more reasonable to take different components as different (groups of) communities.

• In the case q = 0, if we consider clustering two eigenvectors together, we can still use spectral clustering
to do community detection well. In fact,

λ1 = λ2 = pm, λ3 = · · · = λn = 0, U1 = [1,0]′, U2 = [0,1]′,

where 1 = [1, · · · , 1] and 0 = [0, · · · , 0]. Therefore, the rows of U = [U1, U2] only take values of (0, 1)
and (1, 0). Similar to what we do above, we can prove that rows of U(A) = [U1(A), U2(A)] concentrate
around two centroids when p is not too small. There are many general discussions of spectral clustering,
for example, [LR2015].
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21.2 Uniform Law of Large Numbers

Suppose {X1, · · · , Xn}
i.i.d.∼ P are real-valued random variables. Let FX(x) = P(X1 ≤ x) denote the

cumulative distribution function. We can estimate FX(x) by

F̂n(x) =
1

n

n∑
i=1

1Xi ≤ x ∼
1

n
Binomial(n, FX(x)).

Using, e.g., Hoeffding’s inequality, one can show that for any fixed x ∈ R,

F̂n(x)
P→ FX(x).

The next question would be, what if we want to construct an estimator F̂n(x), such that

sup
x∈R
|F̂n(x)− FX(x)| P→ 0?

To answer this question and more general ones, we first introduce a more general framework. Let P be a
probability distribution over some space (X ,B), and F be a collection of real-valued functions on X . Suppose

{X1, · · · , Xn}
i.i.d.∼ P . Based on this sample we can construct Pn, called empirical measure, as a random

probability measure on (X ,B), by

Pn : A ∈ X 7→ Pn(A) =
1

n

n∑
i=1

1Xi∈A.

Then for any f ∈ F , let

Pf = EX∼P [f(X)] =

∫
X
f(x)dP (x),

Pnf = EX∼Pn [f(X)] =

∫
X
f(x)dPn(x),

We are interested in the behaviour of

‖P − Pn‖F = sup
f∈F
|Pf − Pnf |

= sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

(f(Xi)− E[f(Xi)])

∣∣∣∣∣ .
As an example, can we prove or disprove that supx∈R |F̂n(x) − FX(x)| P→ 0? The class of results like

‖P − Pn‖F
P→ 0 are called uniform law of large numbers, and we will discuss it in details next time.
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