36-710 Advanced Statistical Theory

Lecture 21: Nov 12

Lecturer: Alessandro Rinaldo

Scribes: Wanshan Li

Fall 2018

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

21.1 Stochastic Block Model

Suppose $A = [A_{ij}] \in \mathbb{R}^{n \times n}$ is the adjacency matrix of a random graph. In this lecture we only consider undirected graph with no self-edges, so A is symmetric. A common way to model A is to assume that A_{ij} are independent Bernoulli variables for i < j, i.e.,

$$A_{ij} \sim \text{Bernoulli}(p_{ij}), A_{ji} = A_{ij}, \ p_{ij} \in (0,1), \ i < j, \ A_{ii} = 0.$$

When $p_{ij} = p$ for all i < j, this degenerates to the well-known Erdös-Rényi model, which could be too simple to be practical. A practical generalization is the Stochastic Block Model (SBM). SBM assumes that there is a symmetric matrix $B \in \mathbb{R}^{k \times k}$, for $k \ll n$, and a map $C : \{1, \dots, n\} \to \{1, \dots, k\}$, such that

$$p_{ij} = B_{C(i),C(j)}.$$

By definition, there are k(k+1)/2 parameters to estimate in SBM. In SBM, *n* nodes are grouped in *k* groups, with group labels given by map *C*, and we call these groups *communities*.

Example 21.1. Suppose $B = (p-q)I_k + q\mathbf{1}_k\mathbf{1}_k^{\top}$, with $p \in (0,1)$, $q \in (0,p)$ and $\mathbf{1}_k = [1, \dots, 1]^{\top} \in \mathbb{R}^k$. When k = 3, this gives

B =	[p	q	q
B =	q	p	q
	q	q	p

In words, $p_{ij} = p$ if C(i) = C(j), and q otherwise.

Usually we denote $P = \mathbb{E}[A]$, so

$$P = [p_{ij}]_{i,j=1,\cdots,n}$$

Define a matrix $\Theta \in \mathbb{R}^{n \times k}$ by

$$\Theta_{i,j} = \begin{cases} 1, \ C(i) = j \text{ (i.e., node } i \text{ is in community } j), \\ 0, \text{ otherwise.} \end{cases}$$

Then matrix $P = \mathbb{E}[A]$ can be expressed as

$$P = \Theta B \Theta^{\top} - \operatorname{diag}(\Theta B \Theta^{\top}). \tag{21.1}$$

Remark

- One should notice that each row of Θ has only 1 non-zero entries, and the number of non-zero entries in column j of Θ is the number of nodes in community j.
- We do not know Θ based on the observation A, because we do not know the underlying map C giving community labels, and our goal is to estimate the map C, or the partition of nodes into communities. Estimation of C or Θ is called *community detection*.
- We assume that we know k when doing community detection, though it's not the case in practice. In practice people will use some methods to choose k.

Example 21.2. Suppose n = 2m, k = 2, and communities are $\{1, \dots, m\}$, $\{m + 1, \dots, 2m\}$. For 0 < q < p < 1, assume that

$$B = \left[\begin{array}{cc} p & q \\ q & p \end{array} \right].$$

Then

$$\Theta B \Theta^{\top} = \begin{bmatrix} p & \cdots & p & q & \cdots & q \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ p & \cdots & p & q & \cdots & q \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ q & \cdots & q & p & \cdots & p \end{bmatrix}$$

So rank $(\Theta B \Theta^{\top}) = 2$, with top-2 eigenvalues and eigenvectors

$$\lambda_1 = \left(\frac{p+q}{2}\right) \cdot n, \ U_1 = \frac{1}{\sqrt{n}}[1, \cdots, 1] \in \mathbb{R}^n$$

and

$$\lambda_2 = \left(\frac{p-q}{2}\right) \cdot n, \ U_2 = \frac{1}{\sqrt{n}} [1, \cdots, 1, -1, \cdots, -1] \in \mathbb{R}^n.$$

From now on let's consider community detection under the setting of Example 21.2. Think of A as

$$A = P + E.$$

Since diagonal entries of P are zero, we have

$$\|P\| \sim \left(\frac{p+q}{2}\right)^n.$$

Also, $||E|| \sim \sqrt{n}$ with high probability. To estimate Θ , we introduce the following algorithm of spectral clustering.

Spectral clustering algorithm

- 1 Compute the second eigenvector U_2 of A.
- 2 Cluster nodes based on the sign of the entries of U_2 .

By Davis-Khan theorem, we can show that this algorithm works well. The eigengap in Davis-Khan theorem is

$$\delta = \min\{\lambda_2, \lambda_1 - \lambda_2\} = \min\{q, \frac{p-q}{2}\} \times n \triangleq \mu n$$

Then, by Davis-Khan theorem,

$$\min_{\varepsilon \in \{1,-1\}} \|\varepsilon U_2(A) - U_2(P)\| \le \frac{2^{3/2} \|E\|}{\mu n}$$

Since $||E|| \lesssim \sqrt{n}$, we know that with high probability,

$$\min_{\varepsilon \in \{1,-1\}} \|\varepsilon U_2(A) - U_2(P)\| \lesssim \frac{C}{\mu \sqrt{n}},$$

which is equivalent to

$$\min_{\varepsilon \in \{1,-1\}} \|\varepsilon \sqrt{n} U_2(A) - \sqrt{n} U_2(P)\| \lesssim \frac{C}{\mu}$$

with high probability. Since $\sqrt{n}U_2(P) \in \{1, -1\}^n$, if $\operatorname{sign}(\varepsilon U_2(A)_i) \neq \operatorname{sign}(\varepsilon U_2(P)_i)$, where $U_2(A)_i$ is the *i*-th entry of A, then

$$n\left(\varepsilon U_2(A)_i - \varepsilon U_2(P)_i\right)^2 \ge 1.$$

Therefore,

$$\#\{i \in \{1, \cdots, n\} : \operatorname{sign}(\varepsilon U_2(A)_i) \neq \operatorname{sign}(\varepsilon U_2(P)_i)\} \le \frac{C^2}{\mu^2}.$$

Thus, if $\frac{C^2}{\mu^2} \cdot \frac{1}{n} \to 0$ as $n \to \infty$, then the spectral clustering algorithm is correct over all nodes except for a vanishing fraction. In conclusion, the condition we need is

$$\frac{C^2}{\mu^2} \cdot \frac{1}{n} \to 0 \Leftrightarrow \min\{q, \frac{p-q}{2}\} \gg \frac{1}{\sqrt{n}}.$$

Remark

- It's reasonable that successful community detection requires $\frac{p-q}{2} \gg \frac{1}{\sqrt{n}}$, since a larger $\frac{p-q}{2}$ implies a larger signal-to-noise ratio.
- However, the condition $q \gg \frac{1}{\sqrt{n}}$ seems strange, since q = 0 will lead to two dis-connected communities, and make it trivial to do community detection. The reason why q cannot vanish is that the method, spectral clustering on the second eigenvector, is too restricted. But this is not a big problem in practice, because usually people only use community detection method on a connected graph, otherwise it would be more reasonable to take different components as different (groups of) communities.
- In the case q = 0, if we consider clustering two eigenvectors together, we can still use spectral clustering to do community detection well. In fact,

$$\lambda_1 = \lambda_2 = pm, \lambda_3 = \dots = \lambda_n = 0, \ U_1 = [\mathbf{1}, \mathbf{0}]', U_2 = [\mathbf{0}, \mathbf{1}]',$$

where $\mathbf{1} = [1, \dots, 1]$ and $\mathbf{0} = [0, \dots, 0]$. Therefore, the rows of $U = [U_1, U_2]$ only take values of (0, 1) and (1, 0). Similar to what we do above, we can prove that rows of $U(A) = [U_1(A), U_2(A)]$ concentrate around two centroids when p is not too small. There are many general discussions of spectral clustering, for example, [LR2015].

21.2 Uniform Law of Large Numbers

Suppose $\{X_1, \dots, X_n\} \stackrel{i.i.d.}{\sim} P$ are real-valued random variables. Let $F_X(x) = \mathbb{P}(X_1 \leq x)$ denote the cumulative distribution function. We can estimate $F_X(x)$ by

$$\hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbf{1} X_i \le x \sim \frac{1}{n} \operatorname{Binomial}(n, F_X(x)).$$

Using, e.g., Hoeffding's inequality, one can show that for any fixed $x \in \mathbb{R}$,

$$\hat{F}_n(x) \xrightarrow{P} F_X(x).$$

The next question would be, what if we want to construct an estimator $\hat{F}_n(x)$, such that

$$\sup_{x \in \mathbb{R}} |\hat{F}_n(x) - F_X(x)| \xrightarrow{P} 0?$$

To answer this question and more general ones, we first introduce a more general framework. Let P be a probability distribution over some space $(\mathcal{X}, \mathcal{B})$, and \mathcal{F} be a collection of real-valued functions on \mathcal{X} . Suppose $\{X_1, \dots, X_n\} \stackrel{i.i.d.}{\sim} P$. Based on this sample we can construct P_n , called empirical measure, as a random probability measure on $(\mathcal{X}, \mathcal{B})$, by

$$P_n: A \in \mathcal{X} \mapsto P_n(A) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{X_i \in A}.$$

Then for any $f \in \mathcal{F}$, let

$$\mathbb{P}f = \mathbb{E}_{X \sim P}[f(X)] = \int_{\mathcal{X}} f(x) \mathrm{d}P(x),$$
$$\mathbb{P}_n f = \mathbb{E}_{X \sim P_n}[f(X)] = \int_{\mathcal{X}} f(x) \mathrm{d}P_n(x),$$

We are interested in the behaviour of

$$|P - P_n||_{\mathcal{F}} = \sup_{f \in \mathcal{F}} |\mathbb{P}f - \mathbb{P}_n f|$$

=
$$\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^n \left(f(X_i) - \mathbb{E}[f(X_i)] \right) \right|.$$

As an example, can we prove or disprove that $\sup_{x \in \mathbb{R}} |\hat{F}_n(x) - F_X(x)| \xrightarrow{P} 0$? The class of results like $||P - P_n||_{\mathcal{F}} \xrightarrow{P} 0$ are called uniform law of large numbers, and we will discuss it in details next time.

References

[LR2015] Lei, Jing and Rinaldo, Alessandro. Consistency of spectral clustering in stochastic block models. Ann. Statist. 43 (2015), no. 1, 215–237. doi:10.1214/14-AOS1274.