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7.1 Bounded Differences Inequality

Continuing from the previous lecture, we now show the proof of the bounded differences inequality, also
known as McDiarmid’s inequality.

Theorem 7.1 (Bounded Differences Inequality) Suppose (X1, . . . , Xn) are independent random vari-
ables, and let f : Rn → R satisfy the bounded differences property with constants L1, . . . , Ln.

Then

P(|Z − E[Z]| ≥ t) ≤ 2 exp

(
− 2t2∑n

i L
2
i

)
where Z = f(X1, . . . , Xn).

Proof: Define the martingale difference

Dk = E[Z|X1, . . . , Xk]− E[Z|X1, . . . , Xk−1]

for k = 1, . . . , n and D0 = E[Z]. Then we have Z − E[Z] =
∑n

i Dk. If we also define

Ak = inf
x

E[Z|X1, . . . , Xk−1, x]− E[Z|X1, . . . , Xk−1]

= inf
x

∫
f(X1, . . . , Xk−1, x, xk+1, . . . , xn)dP (xk+1) · · · dP (xn)

Bk = sup
x

E[Z|X1, . . . , Xk−1, x]− E[Z|X1, . . . , Xk−1]

= sup
x

∫
f(X1, . . . , Xk−1, x, xk+1, . . . , xn)dP (xk+1) · · · dP (xn),

then we have sandwiched Ak

Ak ≤ Dk ≤ Bk a.e ∀k = 1, . . . , n.

We need to bound the quantity Bk−Ak. By independence of the Xk and the bounded difference assumption

Bk −Ak = sup
x

E[Z|X1, . . . , Xk−1, x]− inf
x

E[Z|X1, . . . , Xk−1, x]

= sup
x,y

∫
f(X1, . . . , Xk−1, x, xk+1, . . . , xn)

− f(X1, . . . , Xk−1, y, xk+1, . . . , xn)dP (xk+1) · · · dP (xn)

≤ Lk.

We apply Azuma-Hoeffding (as proven in the last lecture), and the result follows.
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7.1.0.1 Examples of Bounded Differences Inequality

1. U-statistics. Let X1, . . . , Xn
iid∼ P , and let g : R2 → R such that g is symmetric in its arguments. A

U-statistic of order 2 is a random variable with the form

Un =
1(
n
2

) ∑
i<j

g(Xi, Xj).

• One example is g(x1, x2) = 1
2 (x1 − x2)2. Then E[g(X1, X2)] = Var[X1].

• Another example: µ = P(X1 +X2 ≥ 0). If P is symmetric around 0, then µ = 1/2.

• A third example (Kendall’s tao): let Zi = (Xi, Yi)
iid∼ P , for i = 1, . . . , n. Let

τ =
4

n(n− 1)

∑
i<j

1{(Yj − Yi)(Xj −Xi) > 0} − 1

which calculates the fraction of concordant pairs, where we have concordance if (Yj − Yi)(Xj −
Xi) > 0. Then τ + 1 is a U-statistic with order 2 given by

g

((
x1

x2

)
,

(
y1

y2

))
= 2× 1{(y2 − y1)(x2 − x1) > 0}

If X ⊥ Y (and both have continuous distributions), then E[τ ] = 0.

• A fact is that if Un is a U-statistic such that E[Un] = θ, where θ is some parameter of interest,
then

Var[Un] ≤ Var[T ],

where T is any unbiased estimator of θ.

What is the concentration of Un around E[Xn]? Let’s further assume that the U-statistic kernel g is
bounded in L∞-norm, i.e.

||g||∞ = sup
x∈R2

|g(x)| ≤ b.

We can check the bounded difference property, first expressing Un as Un = f(x1, . . . , xn). Then for all
x1, . . . , xn, and (x, y) ∈ R

|f(x1, . . . , xk−1, x, xk+1, . . . , xn)− f(x1, . . . , xk−1, y, xk+1, . . . , xn)|

≤ 1(
n
2

) ∑
j 6=k

|g(x, xj), g(y, xj)|

≤ (n− 1)(
n
2

) 2b =
4b

n
.

By the bounded differences inequality,

P(|Un − E[Un]| ≥ t) ≤ 2 exp

(
−nt

2

8b2

)
.

In general, for a U-statistic of order m with the form

Un =
1(
n
m

) ∑
i1<i2<···<im

g(Xi1 , . . . , Xim),
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we can form a bound

P(|Un − E[Un]| ≥ t) ≤ 2 exp

(
− nt2

2m2b2

)
.

Note that better bounds exist of the order exp
(
−nt2

m

)
(Hoeffding, 1948), although this is a simple way

to start.

2. Clique number in Erdös-Renyi random graphs. Let G = {Xi,j}i<j be a random graph with n

vertices, where Xi,j
iid∼ Bernoulli(p), p ∈ (0, 1). Define C as the clique number, or the size of the largest

complete subgraph. What can we say about the clique number? The bounded difference inequality
gives a bound of the form

P
(∣∣∣∣Cn − E[C]

n

∣∣∣∣ ≥ t) ≤ 2 exp(−2nt2).

However, there is one problem: What is E[C]?

3. Empirical measure. Let A be a collection of subsets in Rd, and let X1, . . . , Xn
iid∼ P on (Rd,Bn).

For each A ∈ A, define the empirical measure as

Pn(A) =
1

n

n∑
i=1

1{Xi ∈ A},

therefore E[Pn(A)] = P (A) for all A. We are interested in the largest deviation to the true measure

Z
∆
= sup

A∈A
|Pn(A)− P (A)|.

For example, take d = 1,A = {(−∞, x], x ∈ R}. Then

Z = sup
A∈A
|Pn(A)− P (A)| = sup

x
|Fn(x)− F (x)|,

which is the empirical CDF. Then by the bounded difference inequality,

P(|Z − E[Z]| ≥ t) ≤ 2 exp(−2nt2).

But, note we still have the same issue: What is E[Z]? This is the next topic once we cover a few more
useful concentration inequalities.

7.2 Concentration Inequalities

We will cover several noteworthy concentration equalities. The results are stated below without proof–see
Chapters 2 and 3 of Wainwright for details.

7.2.1 Lipschitz Functions of Gaussians

Let Z1, . . . Zn
iid∼ N (0, 1), and let f : Rn → R be L-Lipschitz, i.e.

|f(x)− f(y)| ≤ L||x− y||.

Then,

P(|f(z1, . . . , zn)− E[f(z1, . . . , zn)]| ≥ t) ≤ 2 exp

(
− t2

2L2σ2

)
.
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What is striking about this result is that the dimension does not appear in the bound! This is a dimension-
free bound, as long as we keep the Lipschitz assumption.

Corollary 7.2 Let Y ∼ Nd(0,Σ) and let

X = max
i
Yi or max

i
|Yi|.

Then

P(|X − E[X]| ≥ t) ≤ 2 exp

(
− t2

2σ2

)
where σ2 = maxi Σii.

7.2.2 Maximal Inequalities

Often, we are interested in computing high probability bounds and the expected values of the quantities

sup
i∈I

Xi or sup
i∈I
|Xi|

where I is some (possibly infinite) set. If I is finite, we can find bounds through union bounds or some other
properties (sub-Gaussianity) of the random variables. But what about infinite and uncountable I?

We can first try to approximate the set with a finite subset. As a first approach, consider a discretization of
the set by evaluating only a grid of points over the space.

7.2.2.1 Approximating large spaces

First, recall the definition of a metric space.

Definition 7.3 (Metric space) A metric space is a pair (X , d), where X is an arbitrary set, and d is a
metric, d : X × X → [0,∞)] with the following properties for any x, y, z ∈ X

1. d(x, y) ≥ 0 (Non-negativity)

2. d(x, y) = 0⇔ x = y (Identity of indiscernibles)

3. d(x, y) = d(y, x) (Symmetry)

4. d(x, z) ≤ d(x, y) + d(y, z) (Triangle inequality)

Examples

• The set Rd with the Lp-norm defined for 1 ≤ p ≤ ∞ is a d-dimensional normed vector space. This is

the pair (Rd, || · ||p), where ||x||p = (
∑

i |xi|p)
1/p

. If p =∞, take ||x||∞ = maxi |xi|.

• Consider a discrete space where X = {0, 1}d, and d is the normalized Hamming’s distance

dH(x, y) =
1

n

d∑
i=1

1(xi 6= yi).
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• (Lp spaces). Let X be the set of real-valued functions on [0, 1], and

dp(f, g) = ||f − g||p =

(∫ 1

0

|f(x)− g(x)|p dx
)1/p

.

Note that Lp(X , d) consists of equivalence classes. If we have p =∞, then

||f − g||∞ = sup
x
|f(x)− g(x)|,

which is a metric on C ([0, 1]), or the set of continuous functions on [0, 1].

Next class, we will study covering and packing numbers.


