1. Let F be a collection of functions from \mathbb{R}^d into $[0, b]$, for some $b > 0$. For each $\delta > 0$, let $N_\infty(\delta, F)$ denote the δ-covering number of F in the d_∞ distance given by

$$d_\infty(f, g) = \sup_{x \in \mathbb{R}^d} |f(x) - g(x)|, \quad f, g \in F.$$

Let (X_1, \ldots, X_n) be an i.i.d. sample from some distribution P on \mathbb{R}^d and P_n be the associated empirical measure. Show that

$$\mathbb{P}(\|P_n - P\|_F > \epsilon) \leq 2N_\infty(\epsilon/3, F)e^{-\frac{2n\epsilon^2}{9b^2}} \quad \epsilon > 0.$$

Hint: for any $\epsilon > 0$, consider a minimal $\epsilon/3$ covering of F. Then, for each $f \in F$, there exists a function \bar{f} in the cover (which one depends on f) such that $d_\infty(f, \bar{f}) \leq \epsilon/3$. Run with it...

2. Reading Assignment.

Reproduce the proof of Theorem 2.1 in the following paper, which provides dimension-free performance of k-means in Hilbert spaces.

You may assume that $H = \mathbb{R}^d$.

3. Recall the relative VC bounds: for a class A of sets in \mathbb{R}^d and an i.i.d. sample (X_1, \ldots, X_n) from a probability distribution P,

$$\mathbb{P}\left(\sup_{A \in A} \frac{P(A) - P_n(A)}{\sqrt{P(A)}} > \epsilon\right) \leq 4S_A(2n)e^{-n\epsilon^2/4}, \quad \epsilon > 0,$$

and

$$\mathbb{P}\left(\sup_{A \in A} \frac{P_n(A) - P(A)}{\sqrt{P_n(A)}} > \epsilon\right) \leq 4S_A(2n)e^{-n\epsilon^2/4}, \quad \epsilon > 0,$$

where $S_A(n)$ is the n-shattering coefficient of A, i.e.

$$\max_{x_1^n} |A(x_1^n)| = \max_{x_1^n} |x_1^n \cap A, A \in A|$$

where x_1^n denotes an n-tuple of points in \mathbb{R}^d. See, e.g.,

(a) Show that

$$\mathbb{P}(\exists A \in A: P(A) > \epsilon \text{ and } P_n(A) \leq (1 - t)P(A)) \leq 4S_A(2n)e^{-nt^2/4},$$

for all $t \in (0, 1]$ and $\epsilon > 0$. What do you obtain when $t = 1$?
(b) Show that, uniformly over all the sets $A \in \mathcal{A}$,

$$P(A) \leq P_n(A) + 2\sqrt{P_n(A) \log S_A(2n) + \log \frac{4}{\delta}} + \frac{4 \log S_A(2n) + \log \frac{4}{\delta}}{n},$$

with probability at least $1 - \delta$.

(c) Let B be a closed ball in \mathbb{R}^d (of arbitrary center and radius). Let k be a positive integer. Then $P_n(B) > \frac{k}{n}$ if and only if B contains more than k sample points. Show that, for any $\delta \in (0,1)$ and with $k \geq C'd \log n$ for some $C' > 0$, there exists a constant C_δ (depending on δ and C') such that, with probability at least $1 - \delta$, every ball B satisfies the following conditions:

i. if $P(B) > C_\delta \frac{\log n}{n}$, then $P_n(B) > 0$;

ii. if $P(B) \geq \frac{k}{n} + C_\delta \frac{\sqrt{k d \log n}}{n}$, then $P_n(B) \geq \frac{k}{n}$;

iii. if $P(B) \leq \frac{k}{n} - C_\delta \frac{\sqrt{k d \log n}}{n}$, then $P_n(B) \leq \frac{k}{n}$;

Hint: use the fact that the VC dimension of the class of all closed Euclidean balls in \mathbb{R}^d is $d+1$.

This result is used to prove consistency of density based clustering in the paper

4. More on using relative deviations. Let X_1, \ldots, X_n be an i.i.d. sample from P, a probability distribution on \mathbb{R}^d. For a given $h > 0$ consider the following estimator for the Lebesgue density of P:

$$\hat{f}_h(x) = \frac{1}{n} \frac{1}{h^d V_d} \sum_{i=1}^n 1(||x - X_i|| \leq h), \quad x \in \mathbb{R}^d,$$

where V_d is the volume of the Euclidean unit ball in \mathbb{R}^d. Consider the function

$$f_h(x) = \mathbb{E}[\hat{f}_h(x)], \quad x \in \mathbb{R}^d.$$

(a) Show that f_h is a density (i.e. it is non-negative and integrate to 1). Hint: you may use the fact that the volume of any Euclidean ball of radius h in \mathbb{R}^d is $h^d V_d$.

(b) We are interested in finding out how much f_h and \hat{f}_h differ in the L_∞ norm. Use the relative deviation bounds to compute an upper bound for the probability

$$\mathbb{P} \left(\sup_{x \in \mathbb{R}^d} |f_h(x) - \hat{f}_h(x)| \geq \epsilon \right),$$

where $\epsilon > 0$. Hint: use again the fact that the VC dimension of the class of all closed Euclidean balls in \mathbb{R}^d is $d + 1$.

5. Exercise 5.11.