14.1 Uniform Bound via Rademacher Complexity

We are interested in bounding the quantity
\[
\|\mathbb{P}_n - \mathbb{P}\|_\mathcal{F} = \sup_{f \in \mathcal{F}} |\mathbb{P}_n f - \mathbb{P} f|
\]
where \(\mathbb{P}_n f = \frac{1}{n} \sum_{i=1}^{n} f(X_i)\) and \(\mathbb{P} f = \mathbb{E}[f(X)]\) with \(X\) and \(\{X_i\}_{i=1}^{n}\) i.i.d. from \(\mathbb{P}\). In the following analysis, we assume only boundedness of function \(f \in \mathcal{F}\):

\begin{assumption}
\(\mathcal{F}\) is a class of functions \(f : \mathcal{X} \to \mathbb{R}\) satisfying \(\|f\|_\infty \leq b, \forall f \in \mathcal{F}\).
\end{assumption}

Given an \(n\)-tuple \(x^n := (x_1, ..., x_n) \in \mathcal{X}\) and let
\[
\mathcal{F}(x^n) = \{(f(x_1), f(x_2), ..., f(x_n)) \in \mathbb{R}^n | f \in \mathcal{F}\}.
\]
The empirical Rademacher Complexity of \(\mathcal{F}\) w.r.t. samples \(x^n\) is defined as
\[
\mathcal{R}_n(\mathcal{F}(x^n)) := \mathbb{E}_{\epsilon^n} \left[\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \epsilon_i f(x_i) \right]
\] (14.1)
where \(\epsilon^n := (\epsilon_1, ..., \epsilon_n)\) are i.i.d. Rademacher random variables (i.e. \(\mathbb{P}(\epsilon_i = 1) = \mathbb{P}(\epsilon_i = -1) = 1/2\)). \(\mathcal{R}_n(\mathcal{F}(x^n))\) computes the expected maximum correlation between \(n\) random signs \(\epsilon^n\) and points in \(\mathcal{F}(x^n)\).

The Rademacher Complexity of function class \(\mathcal{F}\) w.r.t. a distribution \(\mathbb{P}\) is then a distribution \(\mathbb{P}\) is then
\[
\mathcal{R}_n(\mathcal{F}) := \mathbb{E}_X \left[\mathcal{R}_n(\mathcal{F}(X^n)) \right] = \mathbb{E}_{X,\epsilon} \left[\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} \epsilon_i f(x_i) \right| \right].
\] (14.2)

Note \(X^n\) and \(\epsilon^n\) are independent. \(\mathcal{R}_n(\mathcal{F})\) is a measure on the "size" of \(\mathcal{F}\). If it is large, then \(\|\mathbb{P}_n - \mathbb{P}\|_\mathcal{F}\) could be also large. We want
\[
\mathcal{R}_n(\mathcal{F}) \to 0
\]
as \(n \to \infty\).

14.1.1 Upper Bound

For upper bounding \(\|\mathbb{P}_n - \mathbb{P}\|_\mathcal{F}\), we have the following theorem.
Theorem 14.2 Let \mathcal{F} be a class of functions satisfying Assumption 14.1. We have
\[
P \left(\| \mathbb{P}_n - \mathbb{P} \|_{\mathcal{F}} \geq 2 \mathcal{R}_n(\mathcal{F}) + t \right) \leq 2 \exp \left\{ \frac{nt^2}{2b^2} \right\}
\]
for all n and $t > 0$.

When $n \to \infty$, from the Theorem, if $\mathcal{R}_n(\mathcal{F}) \to 0$, $\| \mathbb{P}_n - \mathbb{P} \|_{\mathcal{F}} \to 0$ almost surely by Borel-Cantelli’s lemma. Function class with $\| \mathbb{P}_n - \mathbb{P} \|_{\mathcal{F}} \to 0$ in probability is called Glivenko-Cantelli class.

Proof: (Theorem 14.2)

The proof has two parts. Part-(i) shows that $\mathbb{P}_n - \mathbb{P}$ converges around its mean $\mathbb{E}[\| \mathbb{P}_n - \mathbb{P} \|_{\mathcal{F}}]$. Part-(ii) bounds $\mathbb{E}[\| \mathbb{P}_n - \mathbb{P} \|_{\mathcal{F}}]$ by $2\mathcal{R}_n(\mathcal{F})$ (using symmetrization technique).

Part i) To apply bounded differences inequality on the function
\[
G(x_1, ..., x_n) := \sum_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} f(x_i),
\]
where $\bar{f}(X) = f(X) - \mathbb{E}_X[f(X)]$, we need to verify that $G(.)$ has bounded difference when varying each single coordinate. Since $G(.)$ is invariant to permutation of $(x_1, ..., x_n)$, without loss of generality, let y and x differ by only J-th coordinate $y_J \neq x_J$. For any $f \in \mathcal{F}$, we have
\[
\left| \frac{1}{n} \sum_{i=1}^{n} \bar{f}(x_i) - \sup_{h \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} h(y_i) \right| \leq \left| \frac{1}{n} \sum_{i=1}^{n} \bar{f}(x_i) - \frac{1}{n} \sum_{i=1}^{n} \bar{f}(y_i) \right| \\
\leq \frac{1}{n} |\bar{f}(x_J) - \bar{f}(y_J)| \\
\leq \frac{2b}{n}.
\]

Then taking supremum over $f \in \mathcal{F}$ on both sides, we have $G(x) - G(y) \leq 2b/n$. Similarly, we can obtain $G(y) - G(x) \leq 2b/n$ by the same argument. Then since we have verified $|G(x) - G(y)| \leq 2b/n$ when x, y differ by a single coordinate, applying the bounded differences inequality yields
\[
P \left(\| \mathbb{P}_n - \mathbb{P} \|_{\mathcal{F}} - \mathbb{E}[\| \mathbb{P}_n - \mathbb{P} \|_{\mathcal{F}}] \geq t \right) = \mathbb{P} \left(\left| G(x^n) - \mathbb{E}[G(x^n)] \right| \geq t \right) \leq 2 \exp \left\{ -\frac{nt^2}{2b^2} \right\}
\]
as desired.

Part ii) Using the symmetrization argument, we have
\[
\mathbb{E}[\| \mathbb{P}_n - \mathbb{P} \|_{\mathcal{F}}] = \mathbb{E}_X \left[\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} (f(X_i) - \mathbb{E}_Y[f(Y_i)]) \right] \\
= \mathbb{E}_X \left[\sup_{f \in \mathcal{F}} \mathbb{E}_Y \left[\frac{1}{n} \sum_{i=1}^{n} (f(X_i) - f(Y_i)) \right] \right] \\
\leq \mathbb{E}_{X,Y} \left[\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} (f(X_i) - f(Y_i)) \right]
\]
where the last is Jensen’s inequality. Now let \(\epsilon = (\epsilon_1, ..., \epsilon_n) \) be i.i.d. Rademacher random variables. The distribution of \(\epsilon_i(f(X_i) - f(Y_i)) \) is exactly the same as \(f(X_i) - f(Y_i) \). Therefore,

\[
\mathbb{E}[\|P_n - P\|_F] \leq \mathbb{E}_{X,Y,\epsilon}
\left[
\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} \epsilon_i(f(X_i) - f(Y_i)) \right|
\right] = 2\mathbb{E}_{X,\epsilon}
\left[
\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} \epsilon_i f(X_i) \right|
\right] = 2\mathcal{R}_n(\mathcal{F}).
\]

\[\square\]

14.1.2 Lower Bound

To show that Rademacher complexity gives a tight enough bound on

\[\|P_n - P\|_F = \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} f(X_i) - \mathbb{E}[f(X)] \right|,\]

the following theorem gives a more general result on bounding the expectation of \(\|P_n - P\|_F \) with the expectation of its symmetrized version

\[\|\mathcal{R}_n\|_F := \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} \epsilon_i f(X_i) \right|,\]

Theorem 14.3 For any convex, non-decreasing function \(\Phi : \mathbb{R} \rightarrow \mathbb{R} \), we have

\[
\mathbb{E}_{X,\epsilon}
\left[
\Phi\left(\frac{1}{2}\|\mathcal{R}_n\|_F\right)
\right] \leq \mathbb{E}_X
\left[
\Phi(\|P_n - P\|_F)
\right] \leq \mathbb{E}_{X,\epsilon}
\left[
\Phi(2\|\mathcal{R}_n\|_F)
\right],
\]

(14.3)

where \(\mathcal{F} = \{f - \mathbb{E}[f] \mid f \in \mathcal{F}\} \).

Proof: The proof for the upper bound is similar to that for Theorem 14.2. First, by applying symmetrization and Jensen’s inequality, we have

\[
\mathbb{E}_X
\left[
\Phi(\|P_n - P\|_F)
\right] = \mathbb{E}_X
\left[
\Phi\left(\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} f(X_i) - \mathbb{E}[f(Y_i)] \right| \right)
\right]
\leq \mathbb{E}_{X,Y}
\left[
\Phi\left(\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} f(X_i) - f(Y_i) \right| \right)
\right]
\leq \mathbb{E}_{X,Y,\epsilon}
\left[
\Phi\left(\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} \epsilon_i(X_i) - f(Y_i) \right| \right)
\right]
\]

Then by triangular inequality and Jensen’s inequality (again!), we have

\[
\mathbb{E}_X
\left[
\Phi(\|P_n - P\|_F)
\right] \leq \mathbb{E}_{X,Y,\epsilon}
\left[
\Phi\left(\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} \epsilon_i f(X_i) \right| + \frac{1}{n} \sum_{i=1}^{n} \epsilon_i f(Y_i) \right)
\right]
\leq \frac{1}{2} \mathbb{E}_{X,\epsilon}
\left[
\Phi\left(2 \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} \epsilon_i f(X_i) \right| \right)
\right] + \frac{1}{2} \mathbb{E}_{Y,\epsilon}
\left[
\Phi\left(2 \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} \epsilon_i f(Y_i) \right| \right)
\right]
\]

\[= \mathbb{E}_{X,\epsilon}
\left[
\Phi\left(2 \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} \epsilon_i f(X_i) \right| \right)
\right],
\]

\[\square\]
which proves the upper bound in (14.3). Now for the lower bound, using Jensen’s inequality and symmetrization equality, we have

$$
E_{X,\epsilon} \left[\Phi \left(\frac{1}{2} \sup_{f \in F} \left| \frac{1}{n} \sum_{i=1}^{n} \epsilon_i (f(X_i) - E[Y|f(Y)]) \right| \right) \right] = E_{X,\epsilon} \left[\Phi \left(\frac{1}{2} \sup_{f \in F} \left| \frac{1}{n} \sum_{i=1}^{n} \epsilon_i (f(X_i) - f(Y_i)) \right| \right) \right]
$$

By triangular inequality and by convexity of $\Phi(\cdot)$, we have

$$
\Phi \left(\frac{1}{2} \sup_{f \in F} \left| \frac{1}{n} \sum_{i=1}^{n} (f(X_i) - f(Y_i)) \right| \right)
\leq \Phi \left(\frac{1}{2} \sup_{f \in F} \left| \frac{1}{n} \sum_{i=1}^{n} (f(X_i) - E[f(X)]) \right| + \frac{1}{2} \sup_{f \in F} \left| \frac{1}{n} \sum_{i=1}^{n} (f(Y_i) - E[f(X)]) \right| \right)
\leq \frac{1}{2} \Phi \left(\sup_{f \in F} \left| \frac{1}{n} \sum_{i=1}^{n} (f(X_i) - E[f(X)]) \right| \right) + \frac{1}{2} \Phi \left(\sup_{f \in F} \left| \frac{1}{n} \sum_{i=1}^{n} (f(Y_i) - E[f(X)]) \right| \right)
$$

Taking expectation on both sides and noticing that Y_i and X_i are identically distributed give the lower bound in (14.3).

Note that the lower bound in (14.3) takes norm w.r.t. \bar{F} instead of F. The following corollary gives a lower bound of $\|P_n - P\|_F$ in terms of Rademacher complexity. It follows directly from the lower bound in Theorem 14.3.

Corollary 14.4 For a function class F satisfying assumption 14.1 and any $\delta \geq 0$,

$$
\|P_n - P\|_F \geq \frac{1}{2} R_n(F) - \frac{\sup_{f \in F} |E[f]|}{2\sqrt{n}} - \delta
$$

with probability at least $1 - e^{-\frac{n\delta^2}{2\sigma^2}}$.

The lower bound (14.4) indicates the when $n \to \infty$, if the Rademacher Complexity $R_n(F)$ does not converge to 0, $\|P_n - P\|$ will also not go to 0. In other words, the convergence of Rademacher Complexity is a necessary and sufficient condition for F to be a Glivenko-Cantelli class.

In the next lecture, we will focus on how to bound the Rademacher complexity $R_n(F)$ to get an actual uniform concentration bound for the function class F.