22.1 Sub-Gaussian Processes

We are often interested in bounding expressions of the form

$$E\left[\sup_{\theta \in T} \theta^T \epsilon \right],$$

where $T \subset \mathbb{R}^n$, and $\epsilon = (\epsilon_1, \ldots, \epsilon_n)$ is a vector of independent $\text{SG}(\sigma^2)$ random variables.

Example: Suppose we have a class of the form $T = F(x_1^n) = \{ (f(x_1), \ldots, f(x_n)) : f \in F, x_i \in \mathbb{R}^d \}$ or $A(x_1^n) = \{ A \cap x_1^n, A \in A \}$, where A is a collection of subsets of \mathbb{R}^n.

- Suppose $\epsilon = (\epsilon_1, \ldots, \epsilon_n)$ is a vector of n independent Rademacher random variables.
 Then $R_n(T) = E\left[\sup_{\theta \in T} \theta^T \epsilon \right]$ is the Rademacher complexity of T (or F).

- Suppose $\epsilon = (\epsilon_1, \ldots, \epsilon_n)$ is a vector of n independent $\mathcal{N}(0,1)$ (or $\mathcal{N}(0,\sigma^2)$) random variables.
 Then $G_n(T) = E\left[\sup_{\theta \in T} \theta^T \epsilon \right]$ is the Gaussian complexity of T (or F).

Remark: Rademacher and Gaussian complexities are sometimes of a similar order and sometimes of different orders.

If $T = \{ \theta \in \mathbb{R}^d : ||\theta||_2 \leq 1 \}$, then $R_n(T) \approx G_n(T) \leq \sqrt{d}$.

If $T = \{ \theta \in \mathbb{R}^d : ||\theta||_1 \leq 1 \}$, then $R_n(T) = 1$ and $G_n(T) \leq \sqrt{\log d}$.

To show these results, we would use the facts $||x||_2 = \sup_{v : ||v||_2 \leq 1} v^T x = \sup_{v : ||v||_1 \leq 1} v^T x$ and $||x||_1 = \sup_{v : ||v||_\infty \leq 1} v^T x$.

Let $\{X_\theta, \theta \in T\}$ be a mean zero stochastic process indexed by T. Similar to above, we may be interested in expression of the form $E\left[\sup_{\theta \in T} X_\theta \right]$.

Examples:

1) Rademacher and Gaussian complexities. In the examples above, we could represent $X_\theta = \epsilon^T \theta$, where we are interested in $E\left[\sup_{\theta \in T} X_\theta \right]$.

2) Non-parametric least-squares regression. We observe n pairs $(Y_1, x_1), \ldots, (Y_n, x_n)$ where x_1, \ldots, x_n are deterministic points in $[0,1]$. We assume that $Y_i = f^*(x_i) + \epsilon_i$, where $(\epsilon_1, \ldots, \epsilon_n) \sim \text{SG}(\sigma^2)$ and...
\(f^* \in \mathcal{F} \) (a class of real-valued functions on \([0,1]\)). Let \(\hat{f} \in \text{argmin}_{f \in \mathcal{F}} \frac{1}{n} \sum (Y_i - f(x_i))^2 \) be the least squares estimator. We want to bound \(\mathbb{E} \left[\frac{1}{n} \sum_{i=1}^{n} (\hat{f}(x_i) - f^*(x_i))^2 \right] \).

Small \(\text{MSE} \) means that \(\hat{f} \) is a good approximation to \(f^* \). To analyze the performance of \(\hat{f} \), we start with the basic inequality:

\[
\text{MSE} \leq \frac{2}{n} \sum_{i=1}^{n} \epsilon_i \left(\hat{f}(x_i) - f^*(x_i) \right)
\]

\[
\leq \frac{2}{\sqrt{n}} \sup_{f,g \in \mathcal{F}} |X_f - X_g|
\]

where \(X_f = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \epsilon_i f(x_i) \). So

\[
\mathbb{E} \left[\frac{1}{n} \sum_{i=1}^{n} \left(\hat{f}(x_i) - f^*(x_i) \right)^2 \right] \leq \frac{2}{\sqrt{n}} \mathbb{E} \left[\sup_{f,g \in \mathcal{F}} |X_f - X_g| \right].
\]

Also, for any two functions \(f, g \in \mathcal{F} \),

\[
V(X_f - X_g) = \mathbb{E} \left[\left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \epsilon_i (f(x_i) - g(x_i)) \right)^2 \right]
\]

\[
= \frac{1}{n} \mathbb{E} \left[\left(\sum_{i=1}^{n} \epsilon_i (f(x_i) - g(x_i)) \right)^2 \right]
\]

\[
\leq \frac{1}{n} \mathbb{E} \left[\sum_{i=1}^{n} \epsilon_i^2 \left(\sum_{i=1}^{n} (f(x_i) - g(x_i))^2 \right) \right]
\]

\[
= \frac{1}{n} \mathbb{E} \left[\sum_{i=1}^{n} \epsilon_i^2 \right] \sum_{i=1}^{n} (f(x_i) - g(x_i))^2
\]

\[
\leq \frac{1}{n} \cdot n \sigma^2 \|f - g\|_2^2
\]

\[
= \sigma^2 \|f - g\|_2^2.
\]

3) Estimation in Wasserstein distance. Essentially, the Wasserstein distance is the amount of mass one must move from one distribution to another to make them equal.

Suppose \(P \) and \(Q \) are distributions on \(\mathbb{R} \). The Wasserstein distance between \(P \) and \(Q \) is

\[
W_1(P, Q) = \sup_{f \in \mathcal{F}} |Pf - Qf|,
\]

where \(Pf = \mathbb{E}_{X \sim P}[f(X)] \) and \(\mathcal{F} = \{ f : [0,1] \to \mathbb{R}, f \text{ is 1-Lipschitz} \} \). (That is, for any \(f \in \mathcal{F} \) and \(x, y \in [0,1] \), \(|f(x) - f(y)| \leq |x - y| \).)

An equivalent characterization is given by

\[
W_1(P, Q) = \inf_{(x,y)} \mathbb{E}[|X - Y|, X \sim P, Y \sim Q].
\]
We might want to use this metric to compare a true distribution to its empirical distribution. Suppose \((X_1, \ldots, X_n) \simid P\) and \(P_n\) is the corresponding empirical measure. Then \(W_1(P_n, P) = \sup_{f \in F} |X_f|\), where \(X_f = P_n f - Pf\). So \(E[X_f] = 0\) for all \(f\). Then we see
\[
E[W_1(P_n, P)] = E\left[\sup_{f \in F} |X_f| \right].
\]

22.1.1 Sub-Gaussian Processes

Definition 22.1 (Sub-Gaussian process.) A zero-mean stochastic process \(X_\theta : \theta \in \mathbb{T}\) is sub-Gaussian with respect to metric \(d\) on \(\mathbb{T}\) if for \(\theta, \theta' \in \mathbb{T}\) and \(\lambda \in \mathbb{R}\),
\[
\mathbb{E}\left[e^{\lambda (X_\theta - X_{\theta'})} \right] \leq \exp \left[\frac{\lambda^2}{2} d^2(\theta, \theta') \right].
\]

Equivalently, for \(\theta, \theta' \in \mathbb{T}\), \(X_\theta - X_{\theta'} \in \text{SG}(d^2(\theta, \theta'))\). \(d(\cdot)\) is called the canonical metric. In the case of Gaussian random variables, the canonical metric is given by \(d(\theta, \theta') = \sqrt{V(X_\theta - X_{\theta'})}\).

By Hoeffding’s inequality for sub-Gaussians,
\[
\mathbb{P}(|X_\theta - X_{\theta'}| \geq t) \leq 2 \exp \left\{ - \frac{t^2}{2d^2(\theta, \theta')} \right\}.
\]

Examples:

1) Rademacher and Gaussian complexities. In these cases, \(\mathbb{T} \subseteq \mathbb{R}^n\). These processes are sub-Gaussian with respect to \(d(\theta, \theta') = ||\theta - \theta'||_2\) on \(\mathbb{T}\) because
\[
V(X_\theta - X_{\theta'}) = V(\epsilon^T \theta - \epsilon^T \theta') \leq ||\theta - \theta'||_2 \sigma^2.
\]

(This proves that \(X_\theta - X_{\theta'} \in \text{SG}(||\theta - \theta'||_2 \sigma^2)\).) In the case where \(\epsilon_i\) is Rademacher, \(\sigma^2 = 1\). In the case where \(\epsilon_i \sim N(0, \sigma^2)\), \(\sigma^2\) in equation 22.1 is the same \(\sigma^2\) as the normal variance.

2) Non-parametric least squares regression. As before, we define \(X_f = \frac{1}{\sqrt{n}} \sum_{i=1}^n \epsilon_i f(x_i)\), where \(x_1, \ldots, x_n\) are deterministic. \(X_f\) is SG, and so is \(X_f - X_g\). Previously, we showed \(V(X_f - X_g) \leq \sigma^2 ||f - g||_2^2\). In this case, we can use the canonical distance \(d(f, g) = \sqrt{\frac{1}{n} \sum_{i=1}^n (f(x_i) - g(x_i))^2}\).

3) Wasserstein distance. In this problem, we had \(X_f = P_n f - Pf\). This is an SG process with respect to \(d(f, g) = \frac{||f - g||_1}{\sqrt{n}}\). This is an exercise, and the result can be obtained by using Azuma-Hoeffding.

22.1.2 Metric Entropy

Definition 22.2 (Metric entropy.) Let \(\mathbb{T} \subseteq \mathbb{R}^n\) and let \(d\) be a distance metric on \(\mathbb{T}\). For \(\delta > 0\), the metric entropy of \(\mathbb{T}\) with respect to \(d\) is given by \(\log N(\mathbb{T}, \delta)\), where \(N(\mathbb{T}, \delta)\) is the \(\delta\)-covering number of \(\mathbb{T}\).

Definition 22.3 (Diameter of \(\mathbb{T}\).) Let \(\mathbb{T} \subseteq \mathbb{R}^n\) and let \(d\) be a distance metric on \(\mathbb{T}\). The diameter of the set \(\mathbb{T}\) is given by \(D = \sup_{\theta, \theta' \in \mathbb{T}} d(\theta, \theta')\).
Proposition 22.4 (1-step discretization bound.) Assume \(\{X_\theta : \theta \in \mathbb{T}\} \) is a SG process with respect to \(d \). Then for all \(\delta \in (0, D] \),

\[
E \left[\sup_{\theta, \theta' \in \mathbb{T}} |X_\theta - X_{\theta'}| \right] \leq 2E \left[\sup_{\gamma, \gamma' \in \mathbb{T}} |X_\gamma - X_{\gamma'}| \right] + 4D \sqrt{\log N(\mathbb{T}, \delta)}.
\]

\(\delta \) is a tuning parameter. As \(\delta \) decreases, the first term decreases and the second term increases.

Remarks:

1) For arbitrary \(\theta_0 \in \mathbb{T} \),
\[
E \left[\sup_{\theta \in \mathbb{T}} X_\theta \right] = E \left[\sup_{\theta \in \mathbb{T}} (X_\theta - X_{\theta_0}) \right] \leq E \left[\sup_{\theta, \theta' \in \mathbb{T}} (X_\theta - X_{\theta'}) \right].
\]

2) Constants are not optimal.

Proof: Let \(\theta_1, \ldots, \theta_N \) be a minimal \(\delta \)-cover of \(\mathbb{T} \), where \(N = N(\mathbb{T}, \delta) \). Then for all \(\theta \in \mathbb{T} \), there exists \(j \) \((1 \leq j \leq N) \) such that \(d(\theta, \theta_j) \leq \delta \).

Fix \(\theta \in \mathbb{T} \). Choose \(j \) such that \(d(\theta, \theta_j) \leq \delta \). Then

\[
X_\theta - X_{\theta_1} = X_\theta - X_{\theta_j} + X_{\theta_j} - X_{\theta_1} \leq \sup_{\gamma, \gamma' \in \mathbb{T}} (X_\gamma - X_{\gamma'}) + \max_i |X_{\theta_j} - X_{\theta_1}|.
\]

We can obtain a similar bound for \(X_{\theta_j} - X_{\theta'} \), where \(\theta' \) is another point in \(\mathbb{T} \).

Adding up and using the fact that \(\theta \) and \(\theta' \) are arbitrary,

\[
\sup_{\theta, \theta' \in \mathbb{T}} (X_\theta - X_{\theta'}) \leq 2 \sup_{\gamma, \gamma' \in \mathbb{T}} (X_\gamma - X_{\gamma'}) + 2 \max_i |X_{\theta_j} - X_{\theta_1}|.
\]

To finish the proof, we will take the expectation of both sides. Since \(X_{\theta_j} - X_{\theta_1} \in SG(D^2) \), we know
\[
E[\max_i |X_{\theta_j} - X_{\theta_1}|] \leq 2D \sqrt{\log N(\mathbb{T}, \delta)}.
\]
(See the maximal inequality from the 9-13 lecture notes.) So

\[
E \left[\sup_{\theta, \theta' \in \mathbb{T}} |X_\theta - X_{\theta'}| \right] \leq 2E \left[\sup_{\gamma, \gamma' \in \mathbb{T}} |X_\gamma - X_{\gamma'}| \right] + 2E \left[\max_i |X_{\theta_j} - X_{\theta_1}| \right] \leq 2E \left[\sup_{\gamma, \gamma' \in \mathbb{T}} |X_\gamma - X_{\gamma'}| \right] + 4D \sqrt{\log N(\mathbb{T}, \delta)}.
\]

Applications: For \(\mathbb{T} \subseteq \mathbb{R}^n \) and \(\delta \in (0, D] \) (where \(D \) is the diameter of \(\mathbb{T} \)), define

\[
\mathbb{T}(\delta) := \{ \gamma - \gamma' : \gamma, \gamma' \in \mathbb{T}, \|\gamma - \gamma'\|_2 \leq \delta \}.
\]

Then where \(\epsilon \) is a vector of Rademacher random variables and \(d(\cdot) \) is Euclidean distance,

\[
\mathcal{R}_n(\mathbb{T}(\delta)) = E \left[\sup_{\gamma, \gamma' \in \mathbb{T}} \epsilon^T (\gamma - \gamma') \right] \leq E[\|\epsilon\|_2] \leq \sqrt{n} \delta.
\]
The same inequality holds for $G_n(\tilde{T}(\delta))$ if ϵ is a vector of $N(0,1)$ random variables.

Applying the 1-step discretization bound, we see

$$E \left[\sup_{\theta, \theta' \in \mathcal{T}} \epsilon^T (\theta - \theta') \right] \lesssim \min_{\delta \in (0,D]} \{ \delta \sqrt{n} + \sqrt{\log N(\mathcal{T}, \delta)} \}$$

(up to constants). Again, as $\delta \to 0$, $\delta \sqrt{n} \to 0$ and $\sqrt{\log N(\mathcal{T}, \delta)}$ increases (often to infinity). To balance, we set $\delta \sqrt{n} = \sqrt{\log N(\mathcal{T}, \delta)}$ and solve for δ.

References