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1.1 Abstract

Statistical models with latent structure have a history going back to the
1950s and have seen widespread use in the social sciences and, more
recently, in computational biology and in machine learning. Here we
study the basic latent class model proposed originally by the sociologist
Paul F. Lazarfeld for categorical variables, and we explain its geometric
structure. We draw parallels between the statistical and geometric prop-
erties of latent class models and we illustrate geometrically the causes
of many problems associated with maximum likelihood estimation and
related statistical inference. In particular, we focus on issues of non-
identifiability and determination of the model dimension, of maximiza-
tion of the likelihood function and on the effect of symmetric data. We
illustrate these phenomena with a variety of synthetic and real-life ta-
bles, of different dimensions and complexities. Much of the motivation
for this work stems from the “100 Swiss Franks” problem, which we
introduce and describe in detail.
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1.2 Introduction

Latent class (LC) or latent structure analysis models were introduced
in the 1950s in the social science literature to model the distribution of
dichotomous attributes based on a survey sample from a population of
individuals organized into distinct homogeneous classes according to an
unobservable attitudinal feature. See Anderson (1954), Gibson (1955),
Madansky (1960) and, in particular, Henry and Lazarfeld (1968). These
models were later generalized in Goodman (1974), Haberman (1974),
Clogg and Goodman (1984) as models for the marginal distribution of a
set of manifest categorical variables, assumed to be conditionally inde-
pendent given an unobservable or latent categorical variable, building
upon the then recently developed literature on log-linear models for
contingency tables. More recently, latent class models have been de-
scribed and studied as special cases of a larger class of directed acyclic
graphical models with hidden nodes, sometimes referred to as Bayes
networks, or causal models. See, e.g., Lauritzen (1996), Cowell et al.
(1999), Humphreys and Titterington (2003) and, in particular, Geiger
et al. (2001). A number of recent papers have established fundamental
connections between the statistical properties of latent class models and
their algebraic and geometric features. See Settimi and Smith (1998,
2005), Smith and Croft (2003), Rusakov and Geiger (2005),Watanabe
(2001) and Garcia et al. (2005).

Despite these recent important theoretical advances, the fundamen-
tal statistical tasks of estimation, hypothesis testing and model selec-
tion remain surprisingly difficult and, in some cases, infeasible, even for
small models. Nonetheless, LC models are widely used and there is a
“folklore” associated with estimation in various computer packages im-
plementing algorithms such as EM for estimation purposes, e.g., see Ue-
bersax (2006a,b).

The goal of this article is two-fold. First, we offer a simplified geomet-
ric and algebraic description of LC models and draw parallels between
their statistical and geometric properties. The geometric framework en-
joys notable advantages over the traditional statistical representation
and, in particular, offers natural ways of representing singularities and
non-identifiability problems. Furthermore, we argue that the many sta-
tistical issues encountered in fitting and interpreting LC models are a
reflection of complex geometric attributes of the associated set of proba-
bility distributions. Second, we illustrate with examples, most of which
quite small and seemingly trivial, some of the computational, statistical
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and geometric challenges that LC models pose. In particular, we focus on
issues of non-identifiability and determination of the model dimension,
of maximization of the likelihood function and on the effect of symmetric
data. We also show how to use symbolic software from computational
algebra to obtain a more convenient and simpler parametrization and
for unravelling the geometric features of LC models. These strategies
and methods may carry over to more complex latent structure models,
such as in Bandeen-Roche et al. (1997).

In the next section, we describe the basic latent class model and its
statistical properties and, in Section 1.4, we discuss the geometry of the
models. In Section 1.5, we turn to our examples exemplifying the identi-
fiability issue and the complexity of the likelihood function, with a novel
focus on the problems arising from symmetries in the data. In section
1.6, we present some computational results for two real-life examples, of
small and very large dimension. In the final section1.7 we investigate
in a theoretical fashion the effect of symmetry in the data on maximum
likelihood estimation and derive some results towards the proof of the
“100 Swiss Franks” problem from section 1.5.

1.3 Latent Class Models for Contingency Tables

Consider k categorical variables, X1, . . . , Xk, where each Xi takes value
on the finite set [di] ≡ {1, . . . , di}. Letting D =

⊗k
i=1[di], RD is the

vector space of k-dimensional arrays of the format d1 × . . . × dk, with
a total of d =

∏
i di entries. The cross-classification of N indepen-

dent and identically distributed realizations of (X1, . . . , Xk) produces a
random integer-valued vector n ∈ RD, whose coordinate entry nii,...,ik
corresponds to the number of times the label combination (i1, . . . , ik)
is observed in the sample, for each (i1, . . . , ik) ∈ D. The table n has
a Multinomial(N,p) distribution, where p is a point in the (d − 1)-
dimensional probability simplex ∆d−1 with coordinates

pi1,...,ik = Pr {(X1, . . . , Xk) = (i1, . . . , ik)} , (i1, . . . , ik) ∈ D.

Let H be an unobservable latent variable, defined on the set [r] =
{1, . . . , r}. In its most basic version, also known as the naive Bayes
model, the LC model postulates that, conditional on H, the variables
X1, . . . , Xk are mutually independent. Specifically, the joint distribu-
tions of X1, . . . , Xk and H form the subset V of the probability simplex
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∆dr−1 consisting of points with coordinates

pi1,...,ik,h = p
(h)
1 (i1) . . . p(h)

k (ik)λh, (i1, . . . , ik, h) ∈ D × [r], (1.1)

where λh is the marginal probability Pr{H = h} and p
(h)
l (il) is the

conditional marginal probability Pr{Xl = il|H = h}, which we assume
to be strictly positive for each h ∈ [r] and (i1, . . . , ik) ∈ D.

The log-linear model specified by the polynomial mappings (1.1) is a
decomposable graphical model (see, e.g, Lauritzen, 1996) and V is the
image set of a homeomorphism from the parameter space

Θ ≡
{
θ: θ = (p(h)

1 (i1) . . . p(h)
k (ik), λh), (i1, . . . , ik, h) ∈ D × [r]

}
=

⊗
i ∆di−1 ×∆r−1,

so that global identifiability is guaranteed. The remarkable statistical
properties of this type of models and the geometric features of the set V
are well understood. Statistically, equation (1.1) defines a linear expo-
nential family of distributions, though not in its natural parametrization.
The maximum likelihood estimates, or MLEs, of λh and p(h)

l (il) exist if
and only if the minimal sufficient statistics, i.e., the empirical joint dis-
tributions of (Xi, H) for i = 1, 2, . . . , k, are strictly positive and are given
in closed form as rational functions of the observed two-way marginal
distributions of Xi and H for i = 1, 2, . . . , k. The log-likelihood func-
tion is strictly concave and the maximum is always attainable, possibly
on the boundary of the parameter space. Furthermore, the asymptotic
theory of goodness-of-fit testing is fully developed.

Geometrically, we can obtain the set V as the intersection of ∆dr−1

with an affine variety (see, e.g., Cox et al., 1996) consisting of the solu-
tions set of a system of r

∏
i

(
di

2

)
homogeneous square-free polynomials.

For example, when k = 2, each of these polynomials take the form of
quadric equations of the type

pi1,i2,hpi′1,i′2,h = pi′1,i2,hpi1,i′2,h, (1.2)

with i1 6= i′1, i2 6= i′2 and for each fixed h. Provided the probabilities
are strictly positive, equations of the form (1.2) specify conditional odds
ratio of 1, for every pair (Xi, Xi′) given H = h. Furthermore, for each
given h, the coordinate projections of the first two coordinates of the
points satisfying (1.2) trace the surface of independence inside the sim-
plex ∆d−1. The strictly positive points of V form a smooth manifold
whose dimension is r

∏
i(di − 1) + (r − 1) and whose co-dimension cor-

responds to the number of degrees of freedom. The singular points of V
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all lie on the boundary of the simplex ∆dr−1 and identify distributions
with degenerate probabilities along some coordinates. More generally,
the singular locus of V can be described similarly in terms of its stratified
components, whose dimensions and co-dimensions can also be computed
explicitly.

Under the LC model, the variable H is unobservable and the new
model H is a r-class mixture over the exponential family of distribu-
tions prescribing mutual independence among the manifest variables
X1, . . . , Xk. Geometrically, H is the set of probability vectors in ∆d−1

obtained as the image of the marginalization map from ∆dr−1 onto ∆d−1

which consists of taking the sum over the coordinate corresponding to
the latent variable. Formally, H is made up of all probability vectors
in ∆d−1 with coordinates satisfying the accounting equations (see, e.g.,
Henry and Lazarfeld, 1968)

pi1,...,ik =
∑
h∈[r]

pi1,...,ik,h =
∑
h∈[r]

p
(h)
1 (i1) . . . p(h)

k (ik)λh, (1.3)

where (i1, . . . , ik, h) ∈ D × [r].
Despite being expressible as a convex combination of very well-behaved

models, even the simplest form of the LC model (1.3) is far from being
well-behaved and, in fact, shares virtually none of the properties of the
standard log-linear models. In particular, the latent class models spec-
ified by equations (1.3) do not define exponential families, but instead
belong to a broader class of models called stratified exponential families
(see Geiger et al., 2001), whose properties are much weaker and less well
understood. The minimal sufficient statistics for an observed table n
are the observed counts themselves and we can achieve no data reduc-
tion via sufficiency. The model may not be identifiable, because for a
given p ∈ ∆d−1 satisfying (1.3), there may be a subset of Θ, known as
the non-identifiable space, consisting of parameter points all satisfying
the same accounting equations. The non-identifiability issue has in turn
considerable repercussions on the determination of the correct number
of degrees of freedom for assessing model fit and, more importantly, on
the asymptotic properties of standard model selection criteria (e.g. like-
lihood ratio statistic and other goodness-of-fit criteria such as BIC, AIC,
etc), whose applicability and correctness may no longer hold.

Computationally, maximizing the log-likelihood can be a rather la-
borious and difficult task, particularly for high dimensional tables, due
to lack of concavity, the presence of local maxima and saddle points,
and singularities in the observed Fisher information matrix. Geometri-
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cally, H is no longer a smooth manifold in the relative interior of ∆d−1,
with singularities even at probability vectors with strictly positive coor-
dinates, as we show in the next section. The problem of characterizing
the singular locus of H and of computing the dimensions of its stratified
components (and of the tangent spaces and tangent cones of its singular
points) is of statistical importance: singularity points of H are probabil-
ity distributions of lower complexity, in the sense that they are specified
by lower-dimensional subsets of Θ, or, loosely speaking, by less param-
eters. Because the sample space is discrete, although the singular locus
of H has typically Lebesgue measure zero, there is nonetheless a positive
probability that the maximum likelihood estimates end up being either
a singular point in the relative interior of the simplex ∆d−1 or a point
on the boundary. In both cases, standard asymptotics for hypothesis
testing and model selection fall short.

1.4 Geometric Description of Latent Class Models

In this section, we give a geometric representation of latent class models,
summarize existing results and point to some of the relevant mathemat-
ical literature. For more details, see Garcia et al. (2005) and Garcia
(2004).

The latent class model defined by (1.3) can be described as the set
of all convex combinations of r-tuple of points lying on the surface of
independence inside ∆d−1. Formally, let

σ: ∆d1−1 × . . .×∆dk−1 → ∆d−1

(p1(i1), . . . , pk(ik)) 7→
∏
j pj(ij)

be the map sending the vectors of marginal probabilities into the k-
dimensional array of joint probabilities for the model of complete inde-
pendence. The set S ≡ σ(∆d1−1 × . . . ×∆dk−1) is a manifold in ∆d−1

known in statistics as the surface of independence and in algebraic ge-
ometry (see, e.g. Harris, 1992) as (the intersection of ∆d−1 with) the
Segre embedding of Pd1−1 × . . . × Pdk−1 into Pd−1. The dimension of
S is

∏
i(di − 1), i.e., the dimension of the corresponding decomposable

model of mutual independence. The set H can then be constructed
geometrically as follows. Pick any combination of r points along the
hyper-surface S, say p(1), . . . ,p(r), and determine their convex hull, i.e.
the convex set consisting of all points of the form

∑
h p(h)λh, for some

choice of (λ1, . . . , λr) ∈ ∆r−1. The coordinates of any point in this new
subset satisfy, by construction, the accounting equations (1.3). In fact,
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the closure of the union of all such convex hulls is precisely the latent
class model H. In algebraic geometry, H would be described as the in-
tersection of ∆d−1 with the r-th secant variety of the Segre embedding
mentioned above.

Fig. 1.1. Surface of independence for the 2× 2 table with 3 secant lines.

Example 1.4.1 The simplest example of a latent class model is for a 2×
2 table with one latent variable with r = 2. The surface of independence,
i.e. the intersection of the simplex ∆3 with the Segre variety, is shown
in Figure 1.1. The secant variety for this latent class model is the union
of all the secant lines, i.e. the lines connecting any two distinct points
lying on the surface of independence. Figure 1.1 displays three such
secant lines. It is not too hard to picture that the union of all such
secant lines is the enveloping simplex ∆3 and, therefore, H fills up all
the available space (for formal arguments, see Catalisano et al., 2002,
Proposition 2.3).

The model H is not a smooth manifold. Instead, it is a semi-algebraic
set (see, e.g., Benedetti, 1990), clearly singular on the boundary of the
simplex, but also at strictly positive points along the (r − 1)st secant
variety (both of Lebesgue measure zero). This means that the model is
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singular at all points in H which satisfy the accounting equations with
one or more of the λh’s equal to zero. In Example 1.4.1 above, the surface
of independence is a singular locus for the latent class model. From the
statistical viewpoint, singular points of H correspond to simpler models
for which the number of latent classes is less than r (possibly 0). As
usual, for these points one needs to adjust the number of degrees of
freedom to account for the larger tangent space.

Unfortunately, we have no general closed-form expression for comput-
ing the dimension of H and the existing results only deal with specific
cases. Simple considerations allow us to compute an upper bound for the
dimension of H, as follows. As Example 1.4.1 shows, there may be in-
stances for whichH fills up the entire simplex ∆d−1, so that d−1 is an at-
tainable upper bound. Counting the number of free parameters in (1.3),
we can see that this dimension cannot exceed r

∑
i(di − 1) + r − 1, (c.f.

Goodman, 1974, page 219). This number, the standard dimension, is
the dimension of the fully observable model of conditional independence.
Incidentally, this value can be determined mirroring the geometric con-
struction of H as follows (c.f. Garcia, 2004). The number r

∑
i(di − 1)

arises from the choice of r points along the
∑
i(di − 1)-dimensional sur-

face of independence, while the term r − 1 accounts for the number of
free parameters for a generic choice of (λ1, . . . , λr) ∈ ∆r−1. Therefore,
we conclude that the dimension of H is bounded by

min

{
d− 1, r

∑
i

(di − 1) + r − 1

}
, (1.4)

a value known in algebraic geometry as the expected dimension the va-
riety H.

Cases of latent class models with dimension strictly smaller than the
expected dimension have been known for a long time. In the statisti-
cal literature, Goodman (1974) noticed that the latent class models for
4 binary observable variables and a 3-level latent variable, whose ex-
pected dimension is 14, has dimension 13. In algebraic geometry, secant
varieties with dimension smaller than the expected dimension (1.4) are
called deficient (e.g., see Harris, 1992). In particular, Exercise 11.26 in
Harris (1992) gives an example of a deficient secant variety, which cor-
responds to a LC model for a 2-way table with a binary latent variable.
In this case, the deficiency is 2, as is demonstrated below in equation
(1.5). The true or effective dimension of a latent class model, i.e. the
dimension of the semi-algeraic set H representing it, is crucial for estab-
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lishing identifiability and for computing correctly the number of degrees
of freedom. In fact, if a model is deficient, then the pre-image of each
probability array in H arising from the accounting equations is a subset
(in fact, a variety) of Θ called the non-dentifiable subspace, with dimen-
sion exactly equal to the deficiency itself. Therefore, a deficient model is
non-identifiable, with adjusted degrees of freedom equal to the number
of degrees of freedom for the observable graphical model plus the value
of the deficiency.

The effective dimension of H is equal to the maximal rank of the
Jacobian matrix for the polynomial mapping from Θ into H given co-
ordinatewise by (1.3). Geiger et al. (2001) showed that this value is
equal to the dimension of H almost everywhere with respect to the Leb-
segue measure, provided the Jacobian is evaluated at strictly positive
parameter points θ, and used this result to devise a simple algorithm to
compute numerically the effective dimension.

More recently, in the algebraic-geometry literature, Catalisano et al.
(2002, 2003) have obtained explicit formulas for the effective dimensions
of some secant varieties which are of statistical interest. In particular,
they show that for k = 3 and r ≤ min{d1, d2, d3}, the latent class model
has the expected dimension and is identifiable. On the other hand,
assuming d1 ≤ d2 ≤ . . . ≤ dk, H is deficient when

∏k−1
i=1 di −

∑k−1
i=1 (di −

1) ≤ r ≤ min
{
dk,
∏k−1
i=1 di − 1

}
. Finally, under the same conditions, H

is identifiable when 1
2

∑
i(di−1)+1 ≥ max{dk, r}. In general, obtaining

bounds and results of this type is highly non-trivial and is an open area
of research.

In the remainder of the paper, we will focus on simpler latent class
models for tables of dimension k = 2 and illustrate with examples the re-
sults mentioned above. For latent class models on two-way tables, there
is an alternative, quite convenient way of describing H by representing
each p in ∆d−1 as a d1 × d2 matrix and the map σ as a vector product.
In fact, each point p in S is a rank one matrix obtained as p1p>2 , where
p1 ∈ ∆d1−1 and p2 ∈ ∆d1−2 are the appropriate marginal distributions
of X1 and X2. Then, the accounting equations for a latent class models
with r levels become

p =
∑
h

p(h)
1 (p(h)

2 )>λh, (p1,p2, (λ1, . . . , λr)) ∈ ∆d1−1×∆d2−1×∆r−1

i.e. the matrix p is a convex combination of r rank 1 matrices lying on
the surface of independence. Therefore, all points in H are non-negative
matrices with entries summing to one and with rank at most r. This
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simple observation allows one to compute the effective dimension of H
for 2-way tables as follows. In general, a real valued d1 × d2 matrix
has rank r or less if and only if the homogeneous polynomial equations
corresponding to all of its (r + 1)× (r + 1) minors all vanish. Provided
k < min{d1, d2}, on Rd1×Rd2 , the zero locus of all such equations form a
determinantal variety of co-dimension (d1− r)(d2− r) (c.f. Harris, 1992,
Proposition 12.2) and hence has dimension r(d1 + d2)− r2. Subtracting
this value from the expected dimension (1.4), and taking into account
the fact that all the points lie inside the simplex, we obtain

r(d1 + d2 − 2) + r − 1−
(
r(d1 + d2)− r2 − 1

)
= r(r − 1). (1.5)

This number is also the difference between the dimension of the (fully
identifiable, i.e. of expected dimension) graphical model of conditional
independence X1 and X2 given H, and the deficient dimension of the
latent class model obtained by marginalizing over the variable H.

The study of higher dimensional tables is still an open area of re-
search. The mathematical machinery required to handle larger dimen-
sions is considerably more complicated and relies on the notions of
higher-dimensional tensors, rank tensors and non-negative rank tensors,
for which only partial results exist. See Kruskal (1975), Cohen and Roth-
blum (1993) and Strassen (1983) for details. Alternatively, Mond et al.
(2003) conduct an algebraic-topological investigation of the topological
properties of stochastic factorization of stochastic matrices representing
models of conditional independence with one hidden variable and All-
man and Rhodes (2006, 2007) explore an overlapping set of problems
framed in the context of trees with latent nodes and branches.

The specific case of k-way tables with 2 level latent variables is a fortu-
nate exception, for which the results for 2-way tables just described ap-
ply. In fact, Landsberg and Manivel (2004) show that that these models
are the same as the corresponding model for any two-dimensional table
obtained by any “flattening” of the d1 × . . . × dk-dimensional array of
probabilities p into a two-dimensional matrix. Flattening simply means
collapsing the k variables into two new variables with f1 and f2 levels,
and re-organizing the entries of the k-dimensional tensor p ∈ ∆d−1 into
a f1× f1 matrix accordingly, where, necessarily, f1 + f2 =

∑
i di. Then,

H is the determinantal variety which is the zero set of all 3 × 3 sub-
determinants of the matrix obtained by any such flattening. The second
example in Section 1.5.1 below illustrates this result.
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1.5 Examples Involving Synthetic Data

We further elucidate the non-identifiability phenomenon from the alge-
braic and geometric point of view, and the multi-modality of the log-
likelihood function issue using small synthetic examples. In particular,
in the “100 Swiss Franks” problem below, we embark on a exhaustive
study of a table with symmetric data and describe the effects of such
symmetries on both the parameter space and the log-likelihood func-
tion. Although those examples treat simplest cases of LC models, they
already exhibit considerable statistical and geometric complexity.

1.5.1 Effective Dimension and Polynomials

We show how it is possible to take advantage of the polynomial nature
of equations (1.3) to gain further insights into the algebraic properties
of distributions obeying latent class models. All the computations that
follow were made in SINGULAR (Greuel et al., 2005) and are described in
details, along with more examples, in Zhou (2007). Although in principle
symbolic algebraic software allows one to compute the set of polynomial
equations that fully characterize LC models and their properties, this is
still a difficult and costly task that can be accomplished only for smaller
models.

The accounting equations (1.3) determine a polynomial mapping f : Θ→
∆d−1 given by

(p1(i1) . . . pk(ik), λh) 7→
∑
h∈[r]

p1(i1) . . . pk(ik)λh, (1.6)

so that the latent class model is analytically defined as its image, i.e.
H = f(Θ). Then, following the geometry-algebra dictionary princi-
ple (see, e.g., Cox et al., 1996), the problem of computing the effective
dimension of H can in turn be geometrically cast as a problem of com-
puting the dimension of the image of a polynomial map. We illustrate
how this representation offers considerable advantages with some small
examples.

Consider a 2×2×2 table with r = 2 latent classes. From Proposition
2.3 in Catalisano et al. (2002), the latent class models with 2 classes and
3 manifest variables are identifiable. The standard dimension, i.e. the
dimension of the parameter space Θ is r

∑
i(di − 1) + r − 1 = 7, which

coincides with the dimension of the enveloping simplex ∆7. Although
this condition implies that the number of parameters to estimate is no
larger than the number of cells in the table, a case which, if violated,
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would entail non-identifiability, it does not guarantee that the effective
dimension is also 7. This can be verified by checking that the symbolic
rank of the Jacobian matrix of the map (1.6) is indeed 7, almost ev-
erywhere with respect to the Lebesgue measure. Alternatively, one can
determine the dimension of the non-identifiable subspace using compu-
tational symbolic algebra. First, we consider the ideal of polynomials
generated by the 8 equations in (1.6) in the polynomial ring in which the
(redundant) 16 indeterminates are the 8 joint probabilities in ∆7 and
the 3 pairs of marginal probabilities in ∆1 for the observable variables,
and the marginal probabilities in ∆1 for the latent variable. Then we use
implicization (see, e.g., Cox et al., 1996, Chapter 3) to eliminate all the
marginal probabilities and to study the Groebner basis of the resulting
ideal in which the indeterminates are the joint probabilities only. There
is only one element in the basis,

p111 + p112 + p121 + p122 + p211 + p212 + p221 + p222 = 1,

which gives the trivial condition for probability vectors. This implies
the map (1.6) is surjective, so that H = ∆7 and the effective dimension
is also 7, showing identifiability, at least for positive distributions.

Next, we consider the 2×2×3 table with r = 2. For this model, Θ has
dimension 9 and the symbolic rank of the associated Jacobian matrix is
9 as well, so that the model is identifiable. Alternatively, using the same
route as in the previous example, we see that, in this case, the image
of the polynomial mapping (1.6) is the variety associated to the ideal
whose Groebner basis consists of the trivial equation

p111+p112+p113+p121+p122+p123+p211+p212+p213+p221+p222+p223 = 1,
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and four polynomials corresponding to the determinants∣∣∣∣∣∣
p121 p211 p221

p122 p212 p222

p123 p213 p223

∣∣∣∣∣∣
∣∣∣∣∣∣
p1+1 p211 p221

p1+2 p212 p222

p1+3 p213 p223

∣∣∣∣∣∣
∣∣∣∣∣∣
p+11 p121 p221

p+12 p122 p222

p+13 p123 p223

∣∣∣∣∣∣
∣∣∣∣∣∣
p111 p121 + p211 p221

p112 p122 + p212 p222

p113 p123 + p213 p223

∣∣∣∣∣∣ ,

(1.7)

where the subscript symbol “+” indicates summation over that coordi-
nate. The zero set of the above determinants coincide with the deter-
minantal variety specified by the zero set of all 3× 3 minors of the 3×4
matrix  p111 p121 p211 p221

p112 p122 p212 p222

p113 p123 p213 p223

 (1.8)

which is a flattening of the 2 × 2 × 3 array of probabilities describing
the joint distribution for the latent class model under study. This is in
accordance with the result in Landsberg and Manivel (2004) mentioned
above. Now, the determinantal variety given by the vanishing locus of
all the 3 × 3 minors of the matrix (1.8) is the latent class model for a
3×4 table with 2 latent classes, which, according to (1.5), has deficiency
equal to 2. The effective dimension of this variety is 9, computed as the
standard dimension, 11, minus the deficiency. Therefore, the effective
dimension of the model we are interested is also 9 and we conclude that
the model is identifiable.

Table 1.1 summarizes some of our numerical evaluations of the dif-
ferent notions of dimension for a different LC models. We computed
the effective dimensions by evaluating with MATLAB the numerical rank
of the Jacobian matrix, based on the algorithm of Geiger et al. (2001)
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and also using SINGULAR, for which only computations involving small
models were feasible.

Table 1.1. Different dimensions of some latent class models. The
Complete Dimension is the dimension d− 1 of the envoloping

probability simplex ∆d−1. See also Table 1 in Kocka and Zhang (2002).

Effective Standard Complete
Latent Class Model Dimension Dimension Dimension Deficiency

∆d−1 r

2× 2 2 3 5 3 0
3× 3 2 7 9 8 1
4× 5 3 17 23 19 2

2 × 2 × 2 2 7 7 7 0
2 × 2 × 2 3 7 11 7 0
2 × 2 × 2 4 7 15 7 0
3 × 3 × 3 2 13 13 26 0
3 × 3 × 3 3 20 20 26 0
3 × 3 × 3 4 25 27 26 1
3 × 3 × 3 5 26 34 26 0
3 × 3 × 3 6 26 41 26 0
5 × 2 × 2 3 17 20 19 2
4 × 2 × 2 3 14 17 15 1
3 × 3 × 2 5 17 29 17 0
6 × 3 × 2 5 34 44 35 1
10 × 3 × 2 5 54 64 59 5

2× 2× 2× 2 2 9 9 15 0
2× 2× 2× 2 3 13 14 15 1
2× 2× 2× 2 4 15 19 15 0
2× 2× 2× 2 5 15 24 15 0
2× 2× 2× 2 6 15 29 15 0

1.5.2 The 100 Swiss Franks Problem

1.5.2.1 Introduction

Now we study the problem of fitting a non-identifiable 2-level latent
class model to a two-way table with symmetry counts. This problem
was suggested by Bernd Sturmfels to the participants of his postgradu-
ate lectures on Algebraic Statistics held at ETH Zurich in the Summer
semester of 2005 (where he offered 100 Swiss Franks for a rigorous solu-
tion), and is described in detail as Example 1.16 in Pachter and Sturmfels
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(2005). The observed table is

n =


4 2 2 2
2 4 2 2
2 2 4 2
2 2 2 4

 (1.9)

and the 100 Swiss Franks problem requires proving that the three tables
in Table 1.2 a) are local maxima for the the basic LC model with one
binary latent variable. For this model, the standard dimension of Θ =
∆3×∆3×∆1 is 2(3+3)+1 = 13 and, by (1.5), the deficiency is 2. Thus,
the model is not identifiable and the pre-image of each point p ∈ H by
the map (1.6) is a 2-dimensional surface in Θ. To keep the notation
light, we write αih for p(h)

1 (i) and βjh for p(h)
2 (j), where i, j = 1, . . . , 4

and α(h) and β(h) for the conditional marginal distribution of X1 and
X2 given H = h, respectively. The accounting equations for the points
in H become

pij =
∑

h∈{1,2}

λhαihβjh, i, j ∈ [4] (1.10)

and the log-likelihood function, ignoring an irrelevant additive constant,
is

`(θ) =
∑
i,j

nij log

 ∑
h∈{1,2}

λhαihβjh

 , θ ∈ ∆3 ×∆3 ×∆1.

It is worth emphasizing, as we did above and as the previous display
clearly shows, that the observed counts are minimal sufficient statistics.

Alternatively, we can re-parametrize the log-likelihood function using
directly the points in H rather than the points in the parameter space
Θ. Recall from our discussion in section 1.4 that, for this model, the
4× 4 array p is in H if and only if each 3× 3 minor vanishes. Then, we
can write the log-likelihood function as

`(p) =
∑
i,j

nij log pij , p ∈ ∆15, det(p∗ij) = 0 all i, j ∈ [4], (1.11)

where p∗ij is the 3 × 3 sub-matrix of p obtained by erasing the ith row
and the jth column.

Although the first order optimality conditions for the Lagrangian cor-
responding to the parametrization (1.11) are algebraically simpler and
can be given the form of a system of polynomial equations, in prac-
tice, the classical parametrization (1.10) is used in both the EM and
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the Newton-Raphson implementations in order to compute the maxi-
mum likelihood estimate of p. See Goodman (1979), Haberman (1988),
and Redner and Walker (1984) for more details about these numerical
procedures.

1.5.2.2 Global and Local Maxima

Using both the EM and Newton-Raphson algorithm with several dif-
ferent starting points, we found 7 local maxima of the log-likelihood
function, reported in Table 1.2. The maximal value was found exper-
imentally to be −20.8074 + const., where const. denotes the additive
constant stemming from the multinomial coefficient. The maximum is
achieved by the three tables of fitted values Table 1.2 a). The remain-
ing four tables are local maxima of −20.8616 + const., close in value to
the actual global maximum. Using SINGULAR (see (Greuel et al., 2005)),
we checked that the tables found satisfy the first order optimality con-
ditions (1.11). After verifying numerically the second order optimality
conditions, we conclude that those points are indeed local maxima. As
noted in Pachter and Sturmfels (2005), the log-likelihood function also
has a few saddle points.

A striking feature of the global maxima in Table 1.2 is their invari-
ance under the action of the symmetric group on four elements acting
simultaneously on the row and columns. Different symmetries arise for
the local maxima. We will give an explicit representation of these sym-
metries under the classical parametrization (1.10) in the next section.

Despite the simplicity and low-dimensionality of the LC model for
this table and the strong symmetric features of the data, we have yet
to provide a purely mathematical proof that the three top arrays in
Table 1.2 correspond to a global maximum of the likelihood function.
We view the difficulty and complexity of the 100 Swiss Franks problem
as a consequence of the inherent difficulty of even small LC models
and perhaps an indication that the current theory has still many open,
unanswered problems. In Section 1.7, we present partial results towards
the completion of the proof.

1.5.2.3 Unidentifiable Space

It follows from equation (1.5) that the non-identifiable subspaces are a
two-dimensional subsets of Θ. We give an explicit algebraic description
of this space, which we will then use to obtain interpretable plots of the
profile likelihood.

Firstly, we focus on the three global maxima in Table 1.2 a). By
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Table 1.2. Tables of fitted value corresponding to the 7 maxima of the
likelihood equation for the 100 Swiss Franks data shown in (1.9). a):

global maximua (log-likelihood value −20.8079 + conts.). b): local
maxima (log-likelihood value −20.8616 + conts.).

a)0B@ 3 3 2 2
3 3 2 2
2 2 3 3
2 2 3 3

1CA
0B@ 3 2 3 2

2 3 2 3
3 2 3 2
2 3 2 3

1CA
0B@ 3 2 2 3

2 3 3 2
2 3 3 2
3 2 2 3

1CA
b)0B@ 8/3 8/3 8/3 2

8/3 8/3 8/3 2
8/3 8/3 8/3 2
2 2 2 4

1CA
0B@ 8/3 8/3 2 8/3

8/3 8/3 2 8/3
2 2 4 2

8/3 8/3 2 8/3

1CA
0B@ 8/3 2 8/3 8/3

2 4 2 2
8/3 2 8/3 8/3
8/3 2 8/3 8/3

1CA
0B@ 4 2 2 2

2 8/3 8/3 8/3
2 8/3 8/3 8/3
2 8/3 8/3 8/3

1CA

the well-known properties of the EM algorithm (see, e.g., Pachter and
Sturmfels, 2005, Theorem 1.15), if the vector of parameters θ is a sta-
tionary point in the maximization step, then θ is a critical point and
hence a good candidate for a local maximum. Using this observation, it
is possible to show (see Zhou, 2007) that any point in Θ satisfying the
equations

α1h = α2h, α3h = α4h h = 1, 2
β1h = β2h, β3h = β4h h = 1, 2∑
h λhα1hβ1h =

∑
h λhα3hβ3t = 3/40∑

h λhα1hβ3h =
∑
h λhα3hβ1t = 2/40

(1.12)

is a stationary point. Notice that the first four equations in (1.12) require
α(h) and β(h) to each have the first and second pairs of coordinates
identical, for h = 1, 2. The equation (1.12) defines a 2-dimensional
surface in Θ. Using SINGULAR, we can verify that, holding, for example,
α11 and β11 fixed, determines all of the other parameters according to
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Fig. 1.2. The 2-dimensional surface defined by equation (1.13), when evaluated
over the ball in R3 of radius 3, centered at the origin. The inner box is the
unit cube [0, 1]3 and its intersection with the surface corresponds to solutions
points defining probability distributions.

the equations 

λ1 = 1
80α11β11−20α11−20∗β11+6

λ2 = 1− λ1

α21 = α11

α31 = α41 = 0.5− α11

α12 = α22 = 10β11−3
10(4β11−1)

α32 = α42 = 0.5− α12

β21 = β11

β31 = β41 = 0.5− β11

β12 = β22 = 10α11−3
10(4α11−1)

β32 = β42 = 0.5− β12.

Using the elimination technique (see Cox et al., 1996, Chapter 3) to
remove all the variables in the system except for λ1, we are left with one
equation

80λ1α11β11 − 20λ1α11 − 20λ1β11 + 6λ1 − 1 = 0. (1.13)

Without the constraints for the coordinates of α11, β11 and λ1 to be
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probabilities, (1.13) defines a two-dimensional surface in R3, depicted in
Figure 1.2. Notice that the axes do not intersect this surface, so that zero
is not a possible value for α11, β11 and λ1. Because the non-identifiable
space in Θ is 2-dimensional, equation (1.13) actually defines a bijection
between α11, β11 and λ1 and the rest of the parameters. Then, the
intersection of the surface (1.13) with the unit cube [0, 1]3, depicted as a
red box in Figure 1.2, is the projection of the non-identifiable subspace
into the 3-dimensional unit cube where α11, β11 and λ1 live. Figure 1.3
displays two different views of this projection.

The preceding arguments hold unchanged if we replace the symme-
try conditions in the first two lines of equation (1.12) with either of
these other two conditions, requiring different pairs of coordinates to be
identical, namely

α1h = α3h, α2h = α4h, β1h = β3h, β2h = β4h (1.14)

and

α1h = α4h, α2h = α3h, β1h = β4h, β2h = β3h, (1.15)

where h = 1, 2.
The non-identifiable surfaces inside Θ corresponding each to one of

the three pairs of coordinates held fixed in equations (1.12), (1.14) and
(1.15), produce the three distinct tables of maximum likelihood esti-
mates reported in Table 1.2 a). Figure 1.3 shows the projection of the
non-identifiable subspaces for the three MLEs in Table 1.2 a) into the
three dimensional unit cube for λ1, α11 and β11. Although each of these
three subspaces are disjoint subsets of Θ, their lower dimensional projec-
tions comes out as unique. By projecting onto the different coordinates
λ1, α11 and β21 instead, we obtain two disjoint surfaces for the first, and
second and third MLE, shown in Figure 1.4.

Table 1.3 presents some estimated parameters using the EM algo-
rithm. Though these estimates are hardly meaningful, because of the
non-identifiability issue, they show the symmetry properties we pointed
out above and implicit in equations (1.12), (1.14) and (1.15), and they
explain the invariance under simultaneous permutation of the fitted ta-
bles. In fact, the number of global maxima is the number of different
configurations of the 4 dimensional vectors of estimated marginal prob-
abilities with two identical coordinates, namely 3. This phenomenon,
entirely due to the strong symmetry in the observed table (1.9), is com-
pletely separate from the non-identrifiability issues, but just as problem-
atic.
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Table 1.3. Estimated parameters by the EM algorithm for the three
global maxima in Table 1.2 a).

Estimated Means Estimated Parameters

bα(1) = bβ(1) bα(2) = bβ(2) bλ0B@ 3 3 2 2
3 3 2 2
2 2 3 3
2 2 3 3

1CA
0B@ 0.3474

0.3474
0.1526
0.1526

1CA
0B@ 0.1217

0.1217
0.3783
0.3783

1CA „
0.5683
0.4317

«
0B@ 3 2 3 2

2 3 2 3
3 2 3 2
2 3 2 3

1CA
0B@ 0.3474

0.1526
0.3474
0.1526

1CA
0B@ 0.1217

0.3783
0.1217
0.3783

1CA „
0.5683
0.4317

«
0B@ 3 2 2 3

2 3 3 2
2 3 3 2
3 2 2 3

1CA
0B@ 0.3474

0.1526
0.1526
0.3474

1CA
0B@ 0.1217

0.3783
0.3783
0.1217

1CA „
0.5683
0.4317

«

By the same token, we can show that vectors of marginal probabilities
with 3 identical coordinates also produce stationary points for the EM
algorithms. This type of stationary points trace surfaces inside Θ which
determine the local maxima of Table 1.2 b). The number of these local
maxima corresponds, in fact, to the number of possible configurations
of 4-dimensional vectors with 3 identical coordinates, namely 4. Figure
1.5 depicts the lower dimensional projections into λ1, α11 and β11 of the
non-identifiable subspaces for the first MLE in Table 1.2 a), the first
three local maxima and the last local maxima in Table 1.2 b).

We can summarize our finding as follows: the maxima in Table 1.2
define disjoint 2-dimensional surfaces inside the parameter space Θ, the
projection of one of them being depicted in Figure 1.3. While non-
identifiability is a structural feature of these models which is indepen-
dent of the observed data, the multiplicity and invariance properties
of the maximum likelihood estimates and the other local maxima is a
phenomenon caused by the symmetry in the observed table of counts.

1.5.2.4 Plotting the Log-likelihood Function

Having determined that the non-identifiable space is 2-dimensional and
that there are multiple maxima, we proceed with some plots of the
profile log-likelihood function. To obtain a non-trivial surface, we need
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to consider three parameters. Figures 1.9 and 1.7 display the surface
and contour plot respectively of the profile log-likelihhod function for
α11 and α21 when α31 is one of the fixed parameters. Both Figures show
clearly the different maxima, each lying on the top of “ridges” of the
log-likelihood surface which are placed symmetrically with respect to
each others. The position and shapes of these ridges reflect, once again,
the symmetric properties of the estimated probabilities and parameters.

1.5.2.5 Further Remarks and Open Problem

We conclude this section with some observations and pointers to open
problems.

One of the interesting aspects we came across while fitting the table
(1.9) was the proximity of the values of the local and global maxima
of the log-likelihood function. Furthermore, although these values are
very close, the fitted tables corresponding to global and local maxima
are remarkably different. Even though the data (1.9) are not sparse, we
wonder about the effect of cell sizes. Figure 1.8 show the same profile
log-likelihood for the table (1.9) multiplied by 10,000. While the number
of global and local maxima, the contour plot and the basic symmetric
shape of the profile log-likelihood surface remain unchanged after this
rescaling, the peaks around the global maxima have become much more
pronounced and so has the difference between of the values of the global
and local maxima.

We have looked at a number of variations of table (1.9), focussing in
particular on the symmetric data. We report only some of our results
and refer to Zhou (2007) for a more extensive study. Table 1.4 shows the
values and number of local and global maxima for a the 6× 6 version of
(1.9). As for the 4× 4 case, we notice strong invariance features of the
various maxima of the likelihood function and a very small difference
between the value of the global and local maxima.

Fitting the same model to the table
1 2 2 2
2 1 2 2
2 2 1 2
2 2 2 1


we found 6 global maxima of the likelihood function (their value was
−77.2927 + const.), which give as many maximum likelihood estimates,
all obtainable via simultaneous permutation of rows and columns of the
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Table 1.4. Stationary points for the 6×6 version of the table (1.9).

Fitted counts Log-likelihood

0BBBBB@
4 2 2 2 2 2
2 12/5 12/5 12/5 12/5 12/5
2 12/5 12/5 12/5 12/5 12/5
2 12/5 12/5 12/5 12/5 12/5
2 12/5 12/5 12/5 12/5 12/5
2 12/5 12/5 12/5 12/5 12/5

1CCCCCA −300.2524 + const.

0BBBBB@
7/3 7/3 7/3 7/3 7/3 7/3
7/3 13/5 13/5 13/5 29/15 29/15
7/3 13/5 13/5 13/5 29/15 29/15
7/3 13/5 13/5 13/5 29/15 29/15
7/3 29/15 29/15 29/15 44/15 44/15
7/3 29/15 29/15 29/15 44/15 44/15

1CCCCCA −300.1856 + const.

0BBBBB@
3 3 2 2 2 2
3 3 2 2 2 2
2 2 5/2 5/2 5/2 5/2
2 2 5/2 5/2 5/2 5/2
2 2 5/2 5/2 5/2 5/2
2 2 5/2 5/2 5/2 5/2

1CCCCCA −300.1729 + const.

0BBBBB@
8/3 8/3 8/3 2 2 2
8/3 8/3 8/3 2 2 2
8/3 8/3 8/3 2 2 2
2 2 2 8/3 8/3 8/3
2 2 2 8/3 8/3 8/3
2 2 2 8/3 8/3 8/3

1CCCCCA −300.1555 + const. (MLE)

0BBBBB@
7/3 7/3 7/3 7/3 7/3 7/3
7/3 7/3 7/3 7/3 7/3 7/3
7/3 7/3 7/3 7/3 7/3 7/3
7/3 7/3 7/3 7/3 7/3 7/3
7/3 7/3 7/3 7/3 7/3 7/3
7/3 7/3 7/3 7/3 7/3 7/3

1CCCCCA −301.0156 + const.

0BBBBB@
7/3 7/3 7/3 7/3 7/3 7/3
7/3 35/9 35/18 35/18 35/18 35/18
7/3 35/18 175/72 175/72 175/72 175/72
7/3 35/18 175/72 175/72 175/72 175/72
7/3 35/18 175/72 175/72 175/72 175/72
7/3 35/18 175/72 175/72 175/72 175/72

1CCCCCA −300.2554 + const.
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table 
7/4 7/4 7/4 7/4
7/4 7/4 7/4 7/4
7/4 7/4 7/6 7/3
7/4 7/4 7/3 7/6

 .

Based on the various cases we have investigated, we have the following
conjecture, which we verified computationally up to dimension k = 50:

Conjecture: The MLEs For the n × n table with values x along the
diagonal and values y ≤ x for off the diagonal elements, the maximum
likelihood estimates for the latent class model with 2 latent classes are

the 2×2 block diagonal matrix of the form
(

A B

B′ C

)
and the permu-

tated versions of it, where A, B, and C are

A =
(
y + x−y

p

)
· 1p×p,

B = y · 1p×q,
C =

(
y + x−y

q

)
· 1q×q,

and p =
⌊
n
2

⌋
, q = n− p.

We also noticed other interesting phenomena, which suggest the need
for further geometric analysis. For example, consider fitting the (non-
identifiable) latent class model with 2 levels to the table of counts (sug-
gested by Bernd Sturmfels)  5 1 1

1 6 2
1 2 6

 .

Based on our computations, the maximum likelihood estimates appear
to be unique, namely the table of fitted values 5 1 1

1 4 4
1 4 4

 . (1.16)

Looking at the non-identifiable subspace for this model, we found
that the MLEs (1.16) can arise from combinations of parameters some
of which can be 0, such as

α(1) = β(1) =

 0.7143
0.1429
0.1429

 , α(2) = β(2) =

 0
0.5
0.5

 , λ =
(

0.3920
0.6080

)
.
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This finding seems to indicate the possibility of singularities besides the
obvious ones given by marginal probabilities for H containing 0 coor-
dinates (which have the geometric interpretation as lower order secant
varieties) and by points p along the boundary of the simplex ∆d−1.
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Fig. 1.3. Intersection of the surface defined by equation (1.13) with the unit
cube [0, 1]3, from two different views.
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Fig. 1.4. Projection of the non-identifiable subspaces corresponding to the first
and second and third MLE from Table 1.2 a) into the 3-dimensional unit cube
where λ1, α11 and β21 take values.
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Fig. 1.5. Projection of the non-identifiable subspaces corresponding to the
first MLE in Table 1.2 a), the first three local maxima and the last local
maxima in Table 1.2 b) into the 3-dimensional unit cube where λ1, α11 and
β11 take values. In this coordinate system, the projection of non-identifiable
subspaces for the first three local maxima in Table 1.2 b) results in the same
surface; in order to obtain distinct surfaces, it would be necessary to change
the coordinates over which the projections are made.
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Fig. 1.6. The plot of the profile likelihood as a function of α11 and α21 when
α31 is fixed to 0.2. There are seven peaks: the three black points are the
MLEs and the four gray diamonds are the other local maxima.
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Fig. 1.7. The contour plot of the profile likelihood as a function of α11 and
α21 when α31 is fixed. There are seven peaks: the three black points are the
MLEs and the four gray points are the other local maxima.
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Fig. 1.8. The contour plot of the profile likelihood as a function of α11 and
α21 when α31 is fixed for the data (1.9) multiplied by 10000. As before, there
are seven peaks: three global maxima and four identical local maxima.



32 Contents

1.6 Two Applications

1.6.1 Example: Michigan Influenza

Monto et al. (1985) present data for 263 individuals on the outbreak
of influenza in Tecumseh, Michigan during the four winters of 1977-
1981: (1) Influenza type A (H3N2), December 1977–March 1978; (2)
Influenza type A (H1N1), January 1979–March 1979; (3) Influenza type
B, January 1980–April 1980 and (4) Influenza type A (H3N2), December
1980–March 1981. The data have been analyzed by others including
Haber (1986) and we reproduce them here as Table 1.5. This table
is characterized by a large count for the cell corresponding to lack of
infection from any type of influenza.

Table 1.5. Infection profiles and frequency of infection for four
influenza outbreaks for a sample of 263 individuals in Tecumseh,

Michigan during the winters of 1977-1981. A value of 0 in the first four
columns codes the lack of infection. Source: Monto et al. (1985). The

last column is the values fitted by the naive Bayes model with r = 2.

Type of Influenza Observed Counts Fitted Values

(1) (2) (3) (4)

0 0 0 0 140 139.5135
0 0 0 1 31 31.3213
0 0 1 0 16 16.6316
0 0 1 1 3 2.7168
0 1 0 0 17 17.1582
0 1 0 1 2 2.1122
0 1 1 0 5 5.1172
0 1 1 1 1 0.4292
1 0 0 0 20 20.8160
1 0 0 1 2 1.6975
1 0 1 0 9 7.7354
1 0 1 1 0 0.5679
1 1 0 0 12 11.5472
1 1 0 1 1 0.8341
1 1 1 0 4 4.4809
1 1 1 1 0 0.3209

The LC model with one binary latent variable (which is identifiable
by Theorem 3.5 in Settimi and Smith, 2005) fits the data extremely well,
as shown in Table 1.5. We also conducted a log-linear model analysis of
this dataset and concluded that there is no indication of second or higher
order interaction among the four types of influenza. The best log-linear
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model selected via both Pearson’s chi-squared and the likelihood ratio
statistic was the model of conditional independence of influenza of type
(2), (3) and (4) given influenza of type (1) and was outperformed by the
LC model.

Despite the reduced dimensionality of this problem and the large sam-
ple size, we report on the instability of the Fisher scoring algorithm
implemented in the R package gllm, e.g., see Espeland (1986). As the
algorithm cycles through, the evaluations of the expected Fisher infor-
mation matrix become increasing ill-conditioned and eventually produce
instabilities in the estimated coefficients and, in particular, in the stan-
dard errors. These problems disappear in the modified Newton-Raphson
implementation, originally suggested by Haberman (1988), based on an
inexact line search method known in the convex optimization literature
as the Wolfe condition.

1.6.2 Data From the National Long Term Care Survey

Erosheva (2002) and Erosheva et al. (2007) analyze an extract from the
National Long Term Care Survey in the form of a 216 contingency table
that contains data on 6 activities of daily living (ADL) and 10 instru-
mental activities of daily living (IADL) for community-dwelling elderly
from 1982, 1984, 1989, and 1994 survey waves. The 6 ADL items include
basic activities of hygiene and personal care (eating, getting in/out of
bed, getting around inside, dressing, bathing, and getting to the bath-
room or using toilet). The 10 IADL items include basic activities nec-
essary to reside in the community (doing heavy housework, doing light
housework, doing laundry, cooking, grocery shopping, getting about out-
side, travelling, managing money, taking medicine, and telephoning). Of
the 65,536 cells in the table, 62,384 (95.19%) contain zero counts, 1,729
(2.64%)contain counts of 1, 499 (0.76%) contain counts of 2. The largest
cell count, corresponding to the (1, 1, . . . , 1) cell, is 3,853.

Erosheva (2002) and Erosheva et al. (2007) use an individual-level
latent mixture model that bears a striking resemblance to the LC model.
Here we report on analyses with the latter.

We use both the EM and Newton-Raphson algorithms to fit a number
of LC models with up to 20 classes, which can be shown to be all iden-
tifiable in virtue of Proposition 2.3 in Catalisano et al. (2002). Table
1.6 reports the maximal values of the log-likelihood function and the
values of the BIC, which seem to indicate that larger LC models with
many levels are to be preferred. To provide a better sense of how well
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Table 1.6. BIC and log-likelihood values for various values of r for the
NLTCS dataset.

r Dimension Maximal log-likelihood BIC

2 33 -152527.32 305383.97
3 50 -141277.14 283053.25
4 67 -137464.19 275597
5 84 -135272.97 271384.21
6 101 -133643.77 268295.46
7 118 -132659.70 266496.96
8 135 -131767.71 264882.63
9 152 -131367.70 264252.25

10 169 -131033.79 263754.09
11 186 -130835.55 263527.24
12 203 -130546.33 263118.46
13 220 -130406.83 263009.09
14 237 -130173.98 262713.04
15 254 -129953.32 262441.37
16 271 -129858.83 262422.04
17 288 -129721.02 262316.06
18 305 -129563.98 262171.63
19 322 -129475.87 262165.07
20 339 -129413.69 262210.34

these models fit the data, we show in Table 1.7 the fitted values for the
six largest cells, which, as mentioned, deviate considerably from most
of the cell entries. We have also considered alternative model selection
criteria such as AIC and modifications of it. AIC (with and without a
second order correction) points to k > 20! (An ad-hoc modification of
AIC due to Anderson et al. (1994) for overdispersed data gives rather
bizarre results.) The dimensionality of a suitable LC model for these
data appears to be much greater than for the individual level mixture
model in Erosheva et al. (2007).

Because of its high dimensionality and remarkable degree of sparsity,
this example offers an ideal setting for testing the relative strengths and
disadvantages of the EM and Newton-Raphson algorithms. In general,
the EM algorithm, as a hill-climbing method, moves steadily towards
solutions with higher values of the log-likelihood, but converges only
linearly. On the other hand, despite its faster quadratic rate of conver-
gence, the Newton-Raphson method tends to be very time and space
consuming when the number of variables is large, and may be numer-
ically unstable if the Hessian matrices are poorly conditioned around
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Table 1.7. Fitted values for the largest six cells for the NLTCS dataset
for various values of r.

r Fitted values

2 826.78 872.07 6.7 506.61 534.36 237.41
3 2760.93 1395.32 152.85 691.59 358.95 363.18
4 2839.46 1426.07 145.13 688.54 350.58 383.19
5 3303.09 1436.95 341.67 422.24 240.66 337.63
6 3585.98 1294.25 327.67 425.37 221.55 324.71
7 3659.80 1258.53 498.76 404.57 224.22 299.52
8 3663.02 1226.81 497.59 411.82 227.92 291.99
9 3671.29 1221.61 526.63 395.08 236.95 294.54

10 3665.49 1233.16 544.95 390.92 237.69 297.72
11 3659.20 1242.27 542.72 393.12 244.37 299.26
12 3764.62 1161.53 615.99 384.81 235.32 260.04
13 3801.73 1116.40 564.11 374.97 261.83 240.64
14 3796.38 1163.62 590.33 387.73 219.89 220.34
15 3831.09 1135.39 660.46 361.30 261.92 210.31
16 3813.80 1145.54 589.27 370.48 245.92 219.06
17 3816.45 1145.45 626.85 372.89 236.16 213.25
18 3799.62 1164.10 641.02 387.98 219.65 221.77
19 3822.68 1138.24 655.40 365.49 246.28 213.44
20 3836.01 1111.51 646.39 360.52 285.27 220.47

Observed 3853 1107 660 351 303 216

critical points, which again occurs more frequently in large problems
(but also in small ones, such as the Michigan Influenza examples above).

For the class of basic LC models considered in this paper, the time
complexity for one single step of the EM algorithm is O (d · r ·

∑
i di),

while the space complexity is O (d · r). In contrast, for the Newton-
Raphson algorithm, both the time and space complexity areO

(
d · r2 ·

∑
i di
)
.

Consequently, for the NLTCS dataset, when r is bigger than 4, Newton-
Raphson is sensibly slower than EM, and when r goes up to 7, Newton-
Raphson needs more than 1G of memory. Another significant drawback
of the Newton-Raphson method we experienced while fitting both the
Michigan influenza and the NLTCS dataset is its potential numerical in-
stability, due to the large condition numbers of the Hessian matrices. As
remarked at the end of the previous section, following Haberman (1988),
a numerically convenient solution is to modify the Hessian matrices so
that they remain negative definite and then approximate locally the log-
likelihood by a quadratic function. However, since the log-likelihood is
neither concave nor quadratic, these modifications do not necessarily
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guarantee its values increases at each iteration step. As a result, the
algorithm may experience a considerable slowdown in the rate of con-
vergence, which we in fact observed with the NLTCS data. Table 1.8
shows the condition numbers for the true Hessian matrices evaluated at
the numerical maxima, for various values of r. This table suggests that,
despite full identifiability, the log-likelihood has a very low curvature
around the maxima and that it is likely, in fact, to be quite flat. To fur-
ther elucidate this point, we show in Figure 1.9 the profile log-likelihood
plot for the parameter α12 in the simplest LC model with r = 2. The
actual profile log-likelihood is shown in red and is obtained as the up-
per envelop of two distinct, smooth curves, each corresponding to local
maxima of the log-likelihood. The location of the optimal value of α12

is displayed with a vertical line. Besides illustrating multimodality, the
log-likelihood function in this example is notable for its relative flatness
around its global maximum.

Table 1.8. Condition numbers of Hessian matrices at the maxima for
the NLTCS data.

r Condition number

2 2.1843e+ 03
3 1.9758e+ 04
4 2.1269e+ 04
5 4.1266e+ 04
6 1.1720e+ 08
7 2.1870e+ 08
8 4.2237e+ 08
9 8.7595e+ 08
10 8.5536e+ 07
11 1.2347e+ 19
12 3.9824e+ 08
13 1.0605e+ 20
14 3.4026e+ 18
15 3.9783e+ 20
16 3.2873e+ 09
17 1.0390e+ 19
18 2.1018e+ 09
19 2.0082e+ 09
20 2.5133e+ 16
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Fig. 1.9. The plot of the profile likelihood for the NLCST dataset, as a function
of α12. The vertical line indicates the location of the maximizer.

1.7 On Symmetric Tables and the MLE

In this section, inspired by the 100 Swiss Franks problem (1.9), we in-
vestigate in detail some of the effects that invariance to row and column
permutations of the observed table have on the MLE. In particular, we
study the seemingly simple problem of computing the MLE for the ba-
sic LC model when the observed table is square, symmetric and has
dimension bigger than 3.

We show how symmetry in the data allows one to symmetrize, via
averaging, local maxima of the likelihood function and to obtain critical
points that are more symmetric. In various examples we looked at, these
have larger likelihood than the tables from which they are obtained. We
also prove that if the aforementioned averaging process always causes
likelihood to go up, then among the 4 × 4 matrices of rank 2, the ones
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maximizing the log-likelihhod function for the 100 Swiss Franks problem
(1.9) are given in Table 1.2 a).

We will further simplify the notation and write L for the likelihood
function, which can be expressed as

L(M) =

∏
i,jM

ni,j

i,j

(
∑
i,jMi,j)

P
i,j ni,j

, (1.17)

where ni,j is the count for the (i, j) cell and M is a square matrix with
positive entries at which L is evaluated. The denominator is introduced
as a matter of convenience to projectivize, i.e. ensuring that multiplying
the entire matrix by a scalar will not change L.

1.7.1 Introduction and Motivation

A main theme in this section is to understand in what ways symmetry
in data forces symmetry in the global maxima of the likelihood function.
One question is whether our ideas can be extended at all to nonsymmet-
ric data by suitable scaling. We prove that nonsymmetric local maxima
will imply the existence of more symmetric points which are critical
points at least within a key subspace and are related in a very explicit
way to the nonsymmetric ones. Thus, if the EM algorithm leads to a
local maximum which lacks certain symmetries, then one may deduce
that certain other, more symmetric points are also critical points (at
least within certain subspaces), and so check these to see if they give
larger likelihood. There is numerical evidence that they do, and also a
close look at our proofs shows that for “many” data points this sym-
metrization process is guaranteed to increase the value of the likelihood,
by virtue of a certain single-variable polynomial encoding of the likeli-
hood function often being real-rooted.

Here is an example of our symmetrization process. Given the data

4 2 2 2 2 2
2 4 2 2 2 2
2 2 4 2 2 2
2 2 2 4 2 2
2 2 2 2 4 2
2 2 2 2 2 4

,
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one of the critical points located by the EM algorithm is

7/3 7/3 7/3 7/3 7/3 7/3
7/3 13/5 13/5 13/5 29/15 29/15
7/3 13/5 13/5 13/5 29/15 29/15
7/3 13/5 13/5 13/5 29/15 29/15
7/3 29/15 29/15 29/15 44/15 44/15
7/3 29/15 29/15 29/15 44/15 44/15

.

One way to interpret this matrix is that Mi,j = 7/3 + eifj where

e = f = (0,2/
√

15,2/
√

15,2/
√

15,−3/
√

15,−3/
√

15).

Our symmetrization process suggests replacing the vectors e and f each
by the vector

(1/
√

15, 1/
√

15, 2/
√

15, 2/
√

15,−3/
√

15,−3/
√

15)

in which two coordinates are averaged; however, since one of the values
being averaged is zero, it is not so clear whether this should increase
likelihood. However, repeatedly applying such symmetrization steps to
this example, does converge to a local maximum. Now let us speak more
generally. Let M be an n by n matrix of rank at most two which has
row and column sums all equalling kn, implying (by results of Section
1.7.2) that we may write Mi,j as k + eifj where e, f are each vectors
whose coordinates sum to 0.

We are interested in the following general question:

Question 1.7.1 Suppose a data matrix is fixed under simultaneously
swapping rows and columns i, j. Consider any M as above, i.e. with
Mi,j = k + eifj. Does ei > ej > 0, fi > fj > 0 (or similarly ei < ej <

0, fi < fj < 0 ) imply that replacing ei, ej each by ei+ej

2 and fi, fj each
by fi+fj

2 always increases the likelihood?

Remarks The weaker conditions ei > ej = 0 and fi > fj = 0 (resp.
ei < ej = 0, fi < fj = 0) do not always imply that this replacement
will increase likelihood. However, one may consider the finite list of
possibilities for how many zeroes the vectors e and f may each have;
an affirmative answer to Question 1.7.1 would give a way to find the
matrix maximizing likelihood in each case, and then we could compare
this finite list of maxima to find the global maximum.

Question 1.7.2 Are all real-valued critical points of the likelihood func-
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tion obtained by setting some number of coordinates in the e and f vec-
tors to zero and then averaging by the above process so that the eventual
vectors e and f have all positive coordinates equal to each other and all
negative coordinates equal to each other? This seems to be true in many
examples.

One may check that the example discussed in Chapter 1 of Pachter and
Sturmfels (2005) gives another instance where this averaging approach
leads quickly to what appears to be a global maximum. Namely, given
the data matrix

4 2 2 2
2 4 2 2
2 2 4 2
2 2 2 4

and a particular starting point, the EM algorithm converges to the saddle
point

1
48

4 2 3 3
2 4 3 3
3 3 3 3
3 3 3 3

,

whose entries may be written asMi,j = 1/48(3+aibj) for a = (−1,1,0,0)
and b = (−1,1,0,0). Averaging −1 with 0 and 1 with the other 0 simul-
taneously in a and b immediately yields the global maximum directly
by symmetrizing the saddle point, i.e. rather than finding it by running
the EM algorithm repeatedly from various starting points.

An affirmative answer to Question 1.7.1 would imply several things.
It would yield a (positive) solution to the 100 Swiss Franks problem, as
discussed in Section 1.7.3. More generally, it would explain in a rather
precise way how certain symmetries in data seem to impose symmetry
on the global maxima of the maximum likelihood function. Moreover it
would suggest good ways to look for global maxima, as well as constrain-
ing them enough that in some cases they can be characterized, as we
demonstrate for the 100 Swiss Franks problem. To make this concrete,
one thing it would tell us for an n by n data matrix which is fixed by
the Sn action simultaneously permuting rows and columns in the same
way, is that any probability matrix maximizing likelihood for such a data
matrix will have at most two distinct types of rows.

We do not know the answer to this question, but we do prove that this
type of averaging will at least give a critical point within the subspace
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in which ei, ej , fi, fj may vary freely but all other parameters are held
fixed. Data also provide evidence that the answer to the question may
very well be yes. At the very least, this type of averaging appears to be
a good heuristic for seeking local maxima, or at least finding a way to
continue to increase maximum likelihood beyond what it is at a critical
point one reaches. Moreover, while real data are unlikely to have these
symmetries, perhaps it could come close, and this could still be a good
heuristic to use in conjunction with the EM algorithm.

1.7.2 Preservation of Marginals and Some Consequences

Proposition 1.7.1 Given a two-way table in which all row and column
sums (i.e. marginals) are equal, then for M to maximize the likelihood
function among matrices of a fixed rank, the row and column sums of
M must be equal.

We prove the case mentioned in the abstract, which should generalize
by adjusting exponents and ratios in the proof. It may very well also
generalize to distinct marginals and tables with more rows and columns.

Proof Let R1, R2, R3, R4 be the row sums of M . Suppose R1 ≥ R2 ≥
R3 > R4; other cases will be similar. Choose δ so that R3 = (1 +
δ)R4. We will show that multiplying row 4 by any 1 + ε with 0 <

ε < min(1/4, δ/2) will strictly increase L, giving a contradiction to M

maximizing L. The result for column sums follows by symmetry.
Let us write L(M ′) for the new matrix M ′ in terms of the variables

xi,j for the original matrix M , so as to show that L(M ′) > L(M). The
first inequality below is proven in Lemma 1.7.1.

L(M ′) =
(1 + ε)10(

∏4
i=1 xi,i)

4(
∏
i6=j xi,j)

2

R1 +R2 +R3 + (1 + ε)R4)40

>
(1 + ε)10(

∏4
i=1 xi,i)

4(
∏
i 6=j xi,j)

2

[(1 + 1/4(ε− ε2))(R1 +R2 +R3 +R4)]40

=
(1 + ε)10(

∏4
i=1 xi,i)

4(
∏
i 6=j xi,j)

2

[(1 + 1/4(ε− ε2))4]10[R1 +R2 +R3 +R4]40

=
(1 + ε)10(

∏4
i=1 xi,i)

4(
∏
i 6=j xi,j)

2

[1 + 4(1/4)(ε− ε2) + 6(1/4)2(ε− ε2)2 + · · ·+ (1/4)4(ε− ε2)4]10[
∑4
i=1Ri]40
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≥ (1 + ε)10

(1 + ε)10
· L(M)

Lemma 1.7.1 If ε < min(1/4, δ/2) and R1 ≥ R2 ≥ R3 = (1 + δ)R4,
then R1 +R2 +R3 + (1 + ε)R4 < (1 + 1/4(ε− ε2))(R1 +R2 +R3 +R4).

Proof It is equivalent to show εR4 < (1/4)(ε)(1− ε)
∑4
i=1Ri. However,

(1/4)(ε)(1− ε)(
4∑
i=1

Ri) ≥ (3/4)(ε)(1− ε)(1 + δ)R4 + (1/4)(ε)(1− ε)R4

> (3/4)(ε)(1− ε)(1 + 2ε)R4 + (1/4)(ε)(1− ε)R4

= (3/4)(ε)(1 + ε− 2ε2)R4 + (1/4)(ε− ε2)R4

= εR4 + [(3/4)(ε2)− (6/4)(ε3)]R4 − (1/4)(ε2)R4

= εR4 + [(1/2)(ε2)− (3/2)(ε3)]R4

≥ εR4 + [(1/2)(ε2)− (3/2)(ε2)(1/4)]R4

> εR4.

Corollary 1.7.1 There exist vectors (e1, e2, e3, e4) and (f1, f2, f3, f4)
such that

∑4
i=1 ei =

∑4
i=1 fi = 0 and Mi,j = K + eifj. Moreover, K

equals the average entry size.

In particular, this tells us that L may be maximized by treating it as a
function of just six variables, namely e1, e2, e3, f1, f2, f3, since e4, f4 are
also determined by these; changing K before solving this maximization
problem simply has the impact of multiplying the entire matrix M that
maximizes likelihood by a scalar.

Let E be the deviation matrix associated to M , where Ei,j = eifj .

Question 1.7.3 Another natural question to ask, in light of this corol-
lary, is whether the matrix of rank at most r maximizing L is expressible
as the sum of a rank one matrix and a matrix of rank at most r− 1 that
maximizes L among matrices of rank at most r − 1.

Remarks When we consider matrices with fixed row and column sums,
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then we may ignore the denominator in the likelihood function and sim-
ply maximize the numerator.

Corollary 1.7.2 If M which maximizes L has ei = ej, then it also has
fi = fj. Consequently, if it has ei 6= ej, then it also has fi 6= fj.

Proof One consequence of having equal row and column sums is that it
allows the likelihood function to be split into a product of four functions,
one for each row, or else one for each column; this is because the sum of
all table entries equals the sum of those in any row or column multiplied
by four, allowing the denominator to be written just using variables from
any one row or column. Thus, once the vector e is chosen, we find the
best possible f for this given e by solving four separate maximization
problems, one for each fi, i.e. one for each column. Setting ei = ej
causes the likelihood function for column i to coincide with the likelihood
function for column j, so both are maximized at the same value, implying
fi = fj .

Next we prove a slightly stronger general fact for matrices in which
rows and columns i, j may simultaneously be swapped without changing
the data matrix:

Proposition 1.7.2 If a matrix M maximizing likelihood has ei > ej > 0,
then it also has fi > fj > 0.

Proof Without loss of generality, say i = 1, j = 3. We will show that if
e1 > e3 and f1 < f3, then swapping columns one and three will increase
likelihood, yielding a contradiction. Let

L1(e1) = (1/4 + e1f1)4(1/4 + e1f2)2(1/4 + e1f3)2(1/4 + e1f4)2

and

L3(e3) = (1/4 + e2f1)2(1/4 + e2f2)2(1/4 + e3f3)4(1/4 + e3f4)2,

namely the contributions of rows 1 and 3 to the likelihood function. Let

K1(e1) = (1/4 + e1f3)4(1/4 + e1f2)2(1/4 + e1f1)2(1/4 + e1f4)2

and

K3(e3) = (1/4 + e3f3)2(1/4 + e3f2)2(1/4 + e3f1)4(1/4 + e3f4)2,

so that after swapping the first and third columns, the new contribution
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to the likelihood function from rows one and three is K1(e1)K3(e3).
Since the column swap does not impact that contributions from rows
2 and 4, the point is to show K1(e1)K3(e3) > L1(e1)L3(e3). Ignoring
common factors, this reduces to showing

(1/4 + e1f3)2(1/4 + e3f1)2 > (1/4 + e1f1)2(1/4 + e3f3)2,

in other words

(1/16+1/4(e1f3+e3f1)+e1e3f1f3)2 > (1/16+1/4(e1f1+e3f3)+e1e3f1f3)2,

namely e1f3 + e3f1 > e1f1 + e3f3. But since e3 < e1, f1 < f3, we have
0 < (e1 − e3)(f3 − f1) = (e1f3 + e3f1) − (e1f1 + e3f3), just as needed.

Question 1.7.4 Does having a data matrix which is symmetric with
respect to transpose imply that matrices maximizing likelihood will also
be symmetric with respect to transpose?

Perhaps this could also be verified again by averaging, similarly to
what we suggest for involutions swapping a pair of rows and columns
simultaneously.

1.7.3 The 100 Swiss Franks Problem

We use the results derived to far to show how to reduce the 100 Swiss
Franks problem to Question 1.7.1. Thus, an affirmative answer to Ques-
tion 1.7.1 would provide a mathematical proof formally that the three
tables in 1.2 a) are global maxima of the log-likelihood function for the
basic LC model with r = 2 and data given in (1.9).

Theorem 1.7.1 If the answer to Question 1.7.1 is yes, then the 100
Swiss Franks problem is solved.

Proof Proposition 1.7.1 showed that for M to maximize L, M must have
row and column sums which are all equal to the quantity which we call
R1, R2, R3, R4, C1, C2, C3, or C4 at our convenience. The denominator
of L may therefore be expressed as (4C1)10(4C2)10(4C3)10(4C4)10 or as
(4R1)10(4R2)10(4R3)10(4R4)10, enabling us to rewrite L as a product of
four smaller functions using distinct sets of variables.

Note that letting S4 simultaneously permute rows and columns will
not change L, so let us assume the first two rows of M are linearly
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independent. Moreover, we may choose the first two rows in such a way
that the next two rows are each nonnegative combinations of the first
two. Since row and column sums are all equal, the third row, denoted v3,
is expressible as xv1 + (1− x)v2 for v1, v2 the first and second rows and
x ∈ [0, 1]. One may check that M does not have any row or column with
values all equal to each other, because if it had one, then it would have
the other, reducing to a three by three problem which one may solve,
and one may check that the answer does not have as high of likelihood
as

3 3 2 2
3 3 2 2
2 2 3 3
2 2 3 3

.

Proposition 1.7.3 will show that if the answer to Question 1.7.1 is yes,
then for M to maximize L, we must have x = 0 or x = 1, implying row
3 equals either row 1 or row 2, and likewise row 4 equals one of the first
two rows. Proposition 1.7.4 shows M does not have three rows all equal
to each other, and therefore must have two pairs of equal rows. Thus,
the first column takes the form (a, a, b, b)T , so it is simply a matter of
optimizing a and b, then noting that the optimal choice will likewise
optimize the other columns (by virtue of the way we broke L into a
product of four expressions which are essentially the same, one for each
column). Thus, M takes the form

a a b b

a a b b

b b a a

b b a a

since this matrix does indeed have rank two. Proposition 1.7.5 shows
that to maximize L one needs 2a = 3b, finishing the proof.

Proposition 1.7.3 If the answer to Question 1.7.1 is yes, then row 3
equals either row 1 or row 2 in any matrix M which maximizes likelihood.
Similarly, each row i with i > 2 equals either row 1 or row 2.

Proof M3,3 = xM1,3 + (1 − x)M2,3 for some x ∈ [0, 1], so M3,3 ≤
max(M1,3,M2,3). If M1,3 = M2,3, then all entries of this column are
equal, and one may use calculus to eliminate this possibility as fol-
lows: either M has rank one, and then we may replace column three
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by (c, c, 2c, c)T for suitable constant c to increase likelihood, since this
only increases rank to at most two, or else the column space of M is
spanned by (1, 1, 1, 1)T and some (a1, a2, a3, a4) with

∑
ai = 0; specifi-

cally, column three equals (1/4, 1/4, 1/4, 1/4) +x(a1, a2, a3, a4) for some
x, allowing its contribution to the likelihood function to be expressed
as a function of x whose derivative at x = 0 is nonzero, provided that
a3 6= 0, implying that adding or subtracting some small multiple of
(a1, a2, a3, a4)T to the column will make the likelihood increase. If
a3 = 0, then row three is also constant, i.e. e3 = f3 = 0. But then, an
affirmative answer to the second part of Question 1.7.1 will imply that
this matrix does not maximize likelihood.

Suppose, on the other hand, M1,3 > M2,3. Our goal then is to show
x = 1. By Proposition 1.7.1 applied to columns rather than rows, we
know that (1, 1, 1, 1) is in the span of the rows, so each row may be
written as 1/4(1, 1, 1, 1) + cv for some fixed vector v whose coordinates
sum to 0. Say row 1 equals 1/4(1, 1, 1, 1) + kv for k = 1. Writing row
three as 1/4(1, 1, 1, 1) + lv, what remains is to rule out the possibility
l < k. However, Proposition 1.7.2 shows that l < k and a1 < a3

together imply that swapping columns one and three will yield a new
matrix of the same rank with larger likelihood.

Now we turn to the case of l < k and a1 ≥ a3. If a1 = a3 then swap-
ping rows one and three will increase likelihood. Assume a1 > a3. By
Corollary 1.7.1, we have (e1, e2, e3, e4) with e1 > e3 and (f1, f2, f3, f4)
with f1 > f3. Therefore, if the answer to Question 1.7.1 is yes, then
replacing e1, e3 each by e1+e3

2 and f1, f3 each by f1+f3
2 yields a matrix

with larger likelihood, completing the proof.

Proposition 1.7.4 In any matrix M maximizing L among rank 2 ma-
trices, no three rows of M are equal to each other.

Proof Without loss of generality, if M had three equal rows, then M

would take the form
a c e g

b d f h

b d f h

b d f h

but then the fact that M maximizes L ensures d = f = h and c = e = g

since L is a product of four expressions, one for each column, so that the
second, third and fourth columns will all maximize their contribution to
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L in the same way. Since all row and column sums are equal, simple
algebra may be used to show that all entries must be equal. However,
we have already shown that such matrices do not maximize L.

Proposition 1.7.5 To maximize M requires a, b related by 2a = 3b.

Proof We must maximize a6b4

(8a+8b)10 . We may assume a + b = 1 since
multiplying the entire matrix by a constant does not change L, so we
maximize (1/8)10a6b4 with b = 1 − a; in other words, we maximize
f(a) = a6(1 − a)4. But solving f ′(a) = 0 = 6a5(1 − a)4 + a6(4)(1 −
a)3(−1) = a5(1−a)3[6(1−a)− 4a] yields 6(1−a)− 4a = 0, so a = 6/10
and b = 4/10 as desired.

1.8 Conclusions

In this paper we have reconsidered the classical latent class model for
contingency table data and studied its geometric and statistical prop-
erties. We have exploited theoretical and computational tools from al-
gebraic geometry to display the complexities of the latent class model.
We have focused on the problem of maximum likelihood estimation and
have studied the singularities arising from symmetries in the contingency
table data and the multiple maxima that appear to result from these.
We have given an informal characterization of this problem, but a strict
mathematical proof of the existence of identical multiple maxima has
eluded us; we describe elements of a proof in a separate section.

We have also applied LC models to synthetic data and to data arising
from two real-life applications. In one, the model is quite simple and
maximum likelihood estimation poses little problems, whereas in the
other high-dimensional example various issues, computational as well as
model-based, arise. From the computational standpoint, both the EM
and the Newton-Raphson algorithm are especially vulnerable to prob-
lems of multimodality and provide little in the way of clues regarding
the dimensionality difficulties associated with the underlying structure of
LC models. Furthermore, the seemingly singular behavior of the Fisher
information matrix at the MLE that we observe even for well-behaved,
identifiable models is an additional element of complexity.

Based on our work, we would advise practitioners to exercise caution
in applying LC models, especially to sparse data. They have a tremen-
dous heuristic appeal and in some examples provide a clear and convinc-
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ing description of the data. But in many situations, the kind of complex
behavior explored in this paper may lead to erroneous inferences.
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