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Abstract

The Lasso is a popular model selection and estimation procedure for lin-
ear models that enjoys nice theoretical properties. In this paper, we study
the Lasso estimator for fitting autoregressive time series models. We adopt a
double asymptotic framework where the maximal lag may increase with the
sample size. We derive theoretical results establishing various types of con-
sistency. In particular, we derive conditions under which the Lasso estimator
for the autoregressive coefficients is model selection consistent, estimation
consistent and prediction consistent. Simulation study results are reported.

Keywords: Autoregressive model, Estimation consistency, Lasso
procedure, Model selection, Prediction consistency

1. Introduction

Classical stationary time series modeling assumes that data are a realiza-
tion of a mix of autoregressive processes and moving average processes, or
an ARMA model [see, e.g., 2]. Typically, both estimation and model fitting
rely on the assumption of fixed dimensional parameters and include (i) the
estimation of the appropriate coefficients under the somewhat unrealistic as-
sumption that the orders of the AR and of the MA processes are known in
advance, or (ii) some model selection procedures that sequentially fit models
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of increasing dimensions. In practice, however, it is very difficult to verify
the assumption that the realized series does come from an ARMA process.
Instead, it is usually assumed that the given data are a realization of a lin-

ear time series, which may be represented by an infinite-order autoregressive
process. Some study has been done on the accuracy of an AR approximation
for these processes: see [11, 13, 17]. In particular, Goldenshluger and Zeevi
[11] propose a nonparametric minimax approach and assess the accuracy of
a finite order AR process in terms of both estimation and prediction.

This paper is concerned with fitting autoregressive time series models
with the Lasso. The Lasso procedure, proposed originally by Tibshirani [18],
is one of the most popular approach for model selection in linear and general-
ized linear models, and has been studied in much of the recent literature; see,
e.g., [10, 14, 16, 21, 23, 24], to mention just a few. The Lasso procedure has
the advantage of simultaneously performing model selection and estimation,
and has been shown to be effective even in high dimensional settings where
the dimension of the parameter space grows with the sample size n. In the
context of an autoregressive modeling, the Lasso features become especially
advantageous, as both the AR order, and the corresponding AR coefficients
can be estimated simultaneously. Wang et al. [22] study linear regression
with autoregressive errors. They adapt the Lasso procedure to shrink both
the regression coefficients and the autoregressive coefficients, under the as-
sumption that the autoregressive order is fixed.

For the autoregressive models we consider in this work, the number of
parameters, or equivalently, the maximal possible lag, grows with the sam-
ple size. We refer to this scheme as a double asymptotic framework. The
double asymptotic framework enables us to treat the autoregressive order as
virtually infinite. The autoregressive time series with an increasing number
of parameters lies between a fixed order AR time series and an infinite-order
AR time series. This limiting process belongs to a family which is known
to contain many ARMA processes [see 11]. In this paper we show that the
Lasso procedure is particularly adequate for this double asymptotic scheme.

The rest of the paper is organized as follows. The next section formulates
the autoregressive modeling scheme and defines the Lasso estimator associ-
ated with it. Asymptotic properties of the Lasso estimator are presented in
Section 3. These include model selection consistency (Theorem 3.1), estima-
tion consistency (Theorem 3.2), and prediction consistency (Corollary 3.4).
Proofs are deferred to Section 6. A simulation study, given in Section 4, ac-
company the theoretical results. Discussion and concluding remarks appear
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in Section 5.

2. Penalized Autoregressive Modeling

In this section we describe our settings and set up the notation. We
assume that X1, . . . , Xn are n observations from an AR(p) process:

Xt = φ1Xt−1 + . . .+ φpXt−p + Zt , t = 1, . . . , n , (1)

where {Zt} is a sequence of independent Gaussian variables with EZt = 0,
E|Zt|2 = σ2 and cov(Zt, Xs) = 0 for all s < t. The last requirement is
standard, and rely on a reasoning under which the process {Xt} does not
depend on future values of the driving Gaussian noise. The assumption
about Gaussianity of {Zt} is by no means necessary, and can be relaxed. It
does, however, facilitate our theoretical investigation and the presentation
of various results, and therefore, it is in effect throughout the article. In
Section 5 we comment on how to modify our assumptions and proofs to
allow for non-Gaussian innovations {Zt}.

We further assume that {Xt} is causal, meaning that there exists a se-
quence of constants {ψj}, j = 0, 1, . . ., with absolutely convergent series,�∞

j=0 |ψj| < ∞, such that {Xt} has a MA(∞) representation:

Xt =
∞�

j=0

ψjZt−j , (2)

the series being absolutely convergent with probability one. Equivalently,
we could stipulate that {Xt} is purely non-deterministic, and then obtain
representation (2), with ψ0 = 1 and

�∞
j=0 ψ

2
j < ∞, directly from the Wold

decomposition [see, e.g. 2]. A necessary and sufficient condition for causality
is that 1 − φ1z − . . . − φpzp �= 0 for all complex z within the unit disc,
|z| ≤ 1. Notice that causality of {Xt}, and Gaussianity of {Zt}, together
imply Gaussianity of {Xt}. This follows from the fact that mean square
limits of Gaussian random variables are again Gaussian. The mean and
variance of Xt are given, respectively, by EXt = 0, E|Xt|2 = σ2

�∞
j=0 ψ

2
j . We

assume, for simplicity, and without any loss of generality, that E|Xt|2 = 1,
so that

�∞
j=0 ψ

2
j = σ−2. Let γ(·) be the autocovariance function given by

γ(k) = EXtXt+k, and let Γp =
�
γ(i − j)

�
i,j=1,...,p

, the p × p autocovariance
matrix, of lags smaller or equal to p− 1.
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We now describe the penalized �1 least squares estimator of the AR co-
efficients. Let y = (X1, . . . , Xn)�, φ = (φ1, . . . , φp)�, and Z = (Z1, . . . , Zn)�,
where apostrophe denotes transpose. Define the n× p matrix X with entry
Xt−j in the tth row and jth column, for t = 1, . . . , n and j = 1, . . . , p. The
Lasso-type estimator φ̂n ≡ φ̂n(Λn) is defined to be the minimizer of:

1

2n
�y −Xφ�2 + λn

p�

j=1

λn,j|φj| , (3)

where Λn = {λn, {λn,j , j = 1, . . . , p}} are tuning parameters, and � · �2 de-
notes the (squared) l2-norm. Here, λn is a grand tuning parameter, while
the {λn,j, j = 1, . . . , p} are specific tuning parameters associated with the
predictors Xt−j. The Lasso solution (3) will be sparse, as some of the au-
toregressive coefficients will be set to (exactly) zero, depending on the choice
of tuning parameters Λn. Naturally, one may want to further impose that
λn,j < λn,k for lag values satisfying j < k, to encourage even sparser solutions,
although this is not assumed throughout. The idea of using �1 regularization
to penalize differently the model parameters, as we do in (3), was originally
proposed by Zou [24] under the name of adaptive Lasso. As shown in [24],
from an algorithmic point of view, the solution to our adaptive Lasso (3) can
be obtained by a slightly modified version of the LARS algorithm of Efron
et al. [8]. A possible choice for λn,j would be to use the inverse least squares
estimates, as in [24], but this is not pursued here.

As mentioned before, we consider a double asymptotic framework, in
which the number of parameters p ≡ pn grows with n at a certain rate.
Clearly, the “large p small n” (p � n) scenario, which is an important subject
of many of nowadays articles, is not adequate here. Goldenshluger and Zeevi
[11] established minimax optimality for a different regularized least squares
estimator, under the assumption that p = O(log n). Moreover, as pointed out
in [11], the same order of p arises also in spectral density estimation (see [6]).
This paper shows that the proposed procedure (3) enjoys nice asymptotic
properties, under a much faster rate of growth of the AR order. In particular,
it is shown that model selection consistency, estimation consistency, and
prediction consistency hold if the maximal lag p grows with n as p = o (n),
p = o

�
n1/2

�
and p = o

�
n1/5

�
, respectively.

In classical linear time series modeling, one usually attempts to fit se-
quentially an AR(p) with increasing orders of the maximal lag p (or by fixing
p and then estimating the coefficients). The Lasso-type estimator of scheme
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(3) will shrink down to zero irrelevant predictors. Thus, not only that model
selection and estimation will occur simultaneously, but the fitted (selected)
model will be chosen among all relevant AR(p) processes, with an increasing
p.

3. Asymptotic Properties of the Lasso

In this section we derive the asymptotic properties of the Lasso estimator
φ̂n. These include model selection consistency, estimation consistency and
prediction consistency. We briefly describe each type of consistency, develop
the needed notation, and present the results, with proofs relegated to Section
6. We also establish the asymptotic distribution of the Lasso estimator in
the case where the number of true nonzero coefficient is kept fixed (while the
maximal lag p may keep growing with the sample size n).

3.1. Model Selection Consistency

We assume that the AR(p) process (1) is generated according to a true,
unknown parameter φ∗ = (φ∗

1, . . . , φ
∗
p). When p is large, it is not unreasonable

to believe that this vector is sparse, meaning that only a subset of potential
predictors are relevant. Model selection consistency is about recovering the
sparsity structure of the true, underlying parameter φ∗.

For any vector φ ∈ Rp, let sgn(φ) = (sgn(φ1), . . . , sgn(φp)), where sgn(φj)
is the sign function taking values −1, 0 or 1, if φj < 0, φj = 0 or φj > 0,
respectively. A given estimator φ̂n is said to be sign consistent if sgn(φ̂n) =
sgn(φ∗), with probability tending to one, as n tends to infinity, i.e.,

P(sgn(φ̂n) = sgn(φ∗)) −→ 1 , n → ∞ . (4)

Let S = {j : φ∗
j �= 0} = supp(φ∗) ⊂ {1, 2, . . . , p}. A weaker form of model

selection consistency, implied by the sign consistency, only requires that, with
probability tending to 1, φ∗ and φ̂n have the same support.

We shall need a few more definitions. Let s = |S| denote the cardinal-
ity of the set of true nonzero coefficients, and let ν = p − s = |Sc|, with
Sc = {1, . . . , p} \ S. For a set of indexes I, we will write xI = {xi, i ∈ I}
to denote the subvector of x whose elements are indexed by the coordi-
nates in I. Similarly, xIyI is a vector with elements xiyi. For a n × p
design matrix X, we let XI , for any subset I of {1, 2, . . . , p}, denote the
sub-matrix of X with columns as indicated by I. Sub-matrices of the auto-
covariance matrix Γp (and of any other matrix), are denoted similarly. For
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example, ΓIIc is (γ(i− j))i∈I,j /∈I . We use �A� for the maximal eigenvalue of
a symmetric matrix A, and �A�∞ for the usual matrix ∞-norm of A, i.e.,
�A�∞ = maxx �=0 �Ax�∞/�x�∞, where �x�∞ is the l∞-norm of a vector x, the
maximum absolute element of x. Finally, although virtually all quantities
related to (3) depend on n, we do not always make this dependence explicit
in our notation. Let αn = minj∈S |φ∗

j | denote the magnitude of the smallest
nonzero coefficient.

We are now ready to present our first result:

Theorem 3.1. Consider the AR(p) settings described above. Assume that

(i) there exists a finite, positive constant Cmax such that �Γ−1
SS�∞ ≤ Cmax;

(ii) there exists an � ∈ (0, 1] such that �ΓScSΓ
−1
SS�∞ ≤ 1− �.

Further, assume that the following conditions hold:

lim sup
n→∞

maxi∈S λn,i

minj∈Sc λn,j
≤ 1 , (5)

1

αn

��
s/n+ λn�λn,S�∞

�
−→ 0 , as n → ∞ , (6)

nλ2
n(mini∈Sc λn,i)2

max{s, ν} −→ ∞ , as n → ∞ . (7)

Then, the Lasso estimator φ̂n is sign consistent (cf. (4)).

Condition (ii) in Theorem 3.1 is an incoherence condition, which controls
the amount of correlation between relevant variables and irrelevant variables.
It is assumed in various guises elsewhere in the Lasso literature. In [21], it
is used to recover the sparsity pattern of high dimensional linear models.
In [23], a similar, but weaker, condition, that involves also the sign of the
non-zero coefficients is used (see also [24]). They call it the irrepresentable
condition. It is not totally unexpected that sign consistency of the Lasso
procedure in autoregressive processes requires a (slightly) stronger condition.
Condition (ii) appears also, under a slightly different form, in [19, 20], as
mentioned in [15, p. 4]. We define below a class of processes that satisfy
conditions (i) and (ii). This class, denoted by Hρ(l, L), is known to have
exponentially decaying autocovariances [see 11, Equation (18)], which is a
sufficient condition for both (i) and (ii) [see 23, Corollary 3].
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Condition (5) is intuitively clear and it appears under similar form in
[16]. It captures the rationale, recalling that one may have λj < λk for
j < k, that (even) the largest penalty coefficient of the relevant lags should
be kept asymptotically smaller than the smallest penalty coefficient of the
irrelevant lags. It clearly holds when λn,i = 1, for all i. Conditions (6) and
(7) are similar to conditions appearing in [14, 21, 16], to name but a few.

Comparable comments could be made with respect to other studies.
Putting λn,i = 1, one may notice that, although not directly comparable,
our condition (6) seems to be weaker than the pair of conditions (6) and (7)
in [23] (together with a condition about λn in their Theorem 3.). Here, we do
not put specific, separate constraints on rates of convergence related to s, αn

and λn, as they do. A similar conclusion could be made about our condition
(7). In [15], the irrepresentable condition is relaxed, and a two-step, hard-
threshold Lasso procedure is given and shown to be sign consistent. Here,
again, specific and separate constraints are given on s, αn and λn. Finally,
since the above sign consistency result holds also in the classical case of fixed
dimensions p, one may relate the required conditions with those given in
[24]. In particular, Proposition 1. in this paper provides a range of values for
the regularization parameter under which the Lasso estimator cannot be sign
consistent. Translating the regularization parameter in [24] to our parameter
(through a division by the sample size) we may notice that this happens if
n1/2λn converges either to 0 or to a fixed positive number. When the AR
order is kept fixed (and for simplicity, assume again that λn,i = 1), only
condition (7) requires attention, since then the minimal non-zero coefficient
is a constant. In that case, condition (7) reduces to n1/2λn → ∞. Indeed,
Proposition 1. in [24] suggests that interesting cases occur when the limit is
not finite, and this is further explored in Lemma 3. of that paper.

The proof of the theorem, and the established conditions, only implicitly
constrains the rate at which p may grow with the sample size. Clearly, as
mentioned above, if Xt is to be regressed on {Xt−1, Xt−2, . . . , Xt−p}, then p
must be smaller then n. Note that the choice p = n − a, for some fixed,
integer number a, or even the choice p = �bn�, for some b ∈ (0, 1), is ruled
out by condition (7). Indeed, one might be suspicious about the statistical
properties of the proposed estimator when p is comparable with n (p < n,
but is asymptotically close to n). However, the same condition shows that a
polynomial growth (i.e., p = nδ, for some δ < 1) is a suitable choice. This
would be true as long as n1−δλ2

n(mini∈Sc λn,i)2 diverges to infinity. Larger
values of δ will lead to slower rates of decay of λn.
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3.2. Estimation and Prediction Consistency

Our next result is about estimation consistency. An estimator φ̂n is said
to be estimation consistent, or l2-consistent if �φ̂n − φ∗� converges to zero,
as n tends to infinity. We have the following:

Theorem 3.2. Recall the AR(p) settings set forth below (1). Assume that

the minimal eigenvalue of Γp is bounded away from zero. Let p = o
�
n1/2

�
,

and rn = p1/2(n−1/2 + λn�λn,S�). Assume that λn�λn,S� = O
�
n−1/2

�
. Then,

the Lasso estimator φ̂n is estimation consistent with a rate of order OP (rn).

Prediction consistency is about a similar convergence statement, but for
the prediction of future values using the fitted model. In general, prediction
consistency holds if �Xφ̂n − Xφ∗� converges to zero, as n tends to infinity.
We show below a similar result when the sample autocovariance matrix X �X
is replaced by the (theoretical) autocovariance matrix Γp. We shall need the
following notation. For every p-dimensional vector a and p × p symmetric
matrix A, we denote with �a�2A = a�Aa, the (squared) l2-norm associated
with A. Since the results produced below are of finite sample nature, we
will say that φ̂n is prediction consistent (with rate τn → 0, and uncertainty
πn → 0) if there exist a constant C > 0 such that �φ̂n − φ∗�Γp ≤ Cτn holds
with probability at least 1 − πn. The autoregressive settings assumed here
are, in some sense, much more challenging than in linear (parametric or non-
parametric) regression models, for two reasons. Firstly, the design matrix is
not fixed as is usually assumed, and secondly, the entries of the X are not
independent across rows, as is usually assumed for random designs.

Our main result here is Corollary 3.4 which develops conditions under
which the Lasso estimator is prediction consistent with a specific rate. The
Corollary shows that this happens with certainty tending to one, exponen-
tially fast. Theorem 3.3 below is more general, and it establishes appro-
priate relationship between the parameters involved (i.e., n, p, s, λn). This
relationship together with two types of sparsity (see below), is then being
used in Corollary 3.4 to obtain the mentioned result. Theorem 3.3 is a
non-asymptotic result. The statement (and proof) of the theorem involves
several constants, most of which are exactly specified. We preferred giving
first a more elaborated, involved result, and then, as said before, specialize
to concrete examples.

The family of AR processes considered here are, in fact, a subset of a
larger family of time series. In order to establish the prediction consistency
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result, we make an explicit use of the structure of this larger family, which
we describe below. The specific structure of the family is needed in order to
state the results and also to prove them.

Following [11], we denote by Hρ(l, L), for some ρ > 1, 0 < l < 1, and
L > 1, a family consisting of all stationary Gaussian time series with EXt =
0, E|Xt|2 = 1, and with

0 < l ≤ |ψ(z)| ≤ L ,

for every complex z with |z| ≤ ρ, where ψ(z) is the MA(∞) transfer function
related to the AR polynomial by ψ(z) = 1/φ(z).

We shall need the notion of a strong mixing (or α-mixing) condition. Let
{Xt} be a time series defined on a probability space (Ω,F,P). For any two
(sub) σ-fields A and B, define

α(A,B) = sup
A∈A,B∈B

|P(A ∩B)− P(A)P(B)| .

Denote by F
t
s, the σ-field generated by (Xs, . . . , Xt), for −∞ ≤ s ≤ t ≤ ∞.

Then, {Xt} is said to be strongly mixing if αX(m) → 0, as m → ∞, where

αX(m) = sup
j∈{0,±1,±2,...}

α(Fj
−∞,F∞

j+m) .

The attractiveness of Hρ(l, L) comes from the fact that processes in
Hρ(l, L) are strong mixing with an exponential decay, i.e.

αX(m) ≤ 2

�
Lρ

l(ρ− 1)

�2

ρ−m . (8)

This follows since processes in Hρ(l, L) have exponentially decaying AR co-
efficients as well as exponentially decaying autocovariances [see 11, Lemma
1, and in particular, expression (39)].

Let C1, C2 be two universal constants (their explicit values are given
within the proof of the following theorem). Define

β1 = 1 +
1

log ρ
, β2 = 1 +

Lρ

l(ρ− 1)
, and D = (C3

1C2β
2
1β

3
2)

1/5 . (9)

Let λmin = minj=1,...,p λn,j, and λmax = maxj=1,...,p λn,j. We have:

Theorem 3.3. Recall the AR(p) settings set forth below (1). Assume:
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(i) There exists a finite, positive constant M such that λmax ≤ M .

(ii) For every p ≥ 2, there exists a positive constant κp, such that

Γp − κp diag(Γp)

is a positive semi-definite matrix.

If λn(s/p)1/2 ≤ Dn−2/5, then there exist a constant C (depending only on

M), and constants F1 and F2 (depending only on C1, C2, β1, β2), such that

for all 0 < c < ∞, and all y > σ2(n+Dn3/5),

�φ̂n − φ∗�2Γp
≤ Cλ2

n

s

κp
(10)

holds true with probability at least 1− πn, where

πn ≤ 6p exp

�
−F1 min

�
(σ−2y − n)1/3, c2σ−2,

n2λ2
nλ

2
min

y + cnλnλmax/2

��

+ p2 exp
�
−F2nλ

2
n(s/p

2)
�

. (11)

Condition (ii) has been used in the context of aggregation procedures for
nonparametric regression with fixed design ([3]), and also for nonparametric
regression with random design ([4]).

Theorem 3.3 may be utilized to show that the Lasso estimator φ̂n is
prediction consistent. One only needs to make sure that the bound (11)
on πn converges to zero. In fact, one may obtain a whole range of possible
rates of decay, depending on the choice of the different parameters involved,
s, p, λn, c, and y. In order to give a flavor of the possible rates, we specialize
below to two types of sparsity, where p = o

�
n1/5

�
is the maximal possible

growth rate. These types of sparsity, discussed in [21], are

• linear sparsity, i.e., s = δp, with δ ∈ (0, 1),

• functional power sparsity, i.e., s = pδ, with δ ∈ (0, 1).

The order p = o
�
n1/5

�
, which seems to be maximal here, is smaller than the

one required for the estimation consistency. This can be somewhat explained
by the fact that prediction consistency is usually harder to obtain, and also
because the prediction consistency result is a non-aymptotic result, whereas
the estimation consistency result is an asymptotic result.
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Corollary 3.4. Let conditions (i) and (ii) in Theorem 3.3 be in effect.

• Assume linear sparsity scheme. If p = o
�
n1/5

�
, and λn = O

�
n−2/5

�
,

then the Lasso estimator is prediction consistent (with rate λn

�
s/κp,

and uncertainty given by (12) below).

• Assume functional power sparsity scheme. If p = Dnβ, for some β <
1/5, and λn = O

�
nβ(1−δ)/2−2/5

�
, then the Lasso estimator is prediction

consistent (with rate λn

�
s/κp, and uncertainty given by (13) below).

Proof. Apply Theorem 3.3 with c = D1y/(nλnλmax), and y = D2n, for pos-
itive constants D1, D2. For linear sparsity scheme it is then straightforward
to see that there exists an appropriate constant F such that the bound (11)
on πn is smaller than

p2 exp
�
− F min

�
n1/3, n4/5/λ2

max, n
1/5λ2

min, n
1/5/p

��
, (12)

which tends to zero as n goes to infinity. Similarly, under functional power
sparsity scheme, there exists an appropriate constant F , such that the bound
(11) on πn is smaller than

p2 exp
�
− F min

�
n1/3, n4/5/λ2

max, n
β(1−δ)+1/5λ2

min, n
1/5/p

��
, (13)

which tends to zero as n goes to infinity.

3.3. Asymptotic Distribution

We close this section of properties of the Lasso procedure for autoregres-
sive processes with a central limit type of a result. Our result holds true under
the scenario where the number of true nonzero coefficients s is fixed (while p
may vary with n). Establishing a similar result when s grows with the sample
size is by no means trivial, mainly because of the nature of the problem (i.e.,
dependencies among variables in the design matrix). A statistical procedure
satisfying a result of the form of Theorem 3.5 below, together with the model
selection consistency result, is referred to as an oracle procedure (see [9]). As
Theorem 3.5 below shows, the Lasso estimator for autoregressive processes
is biased, a property shared with the Lasso estimator for linear (and other)
models (see [10, 16]).
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Theorem 3.5. Let the conditions underlying model selection consistency

hold. Denote by XSS the sample autocovariance matrix X �X restricted to

variables in S = {j : φ∗
j �= 0}. Then,

n1/2
�
(φ̂n,S − φ∗

S) + (XSS/n)
−1λnλn,Ssgn(φ

∗
S)
�
=⇒ N(0, σ2Γ−1

SS) , (14)

where ⇒ means convergence in distribution.

4. Illustrative Simulations

In this section we show with a simple simulation the model selection
consistency properties of the Lasso procedure. We consider a sparse autore-
gressive time series of length 1000 obeying the model

Xt = 0.2Xt−1 + 0.1Xt−3 + 0.2Xt−5 + 0.3Xt−10 + 0.1Xt−15 + Zt, (15)

with nonzero coefficients at lags 1, 3, 5, 10 and 15, where the innovations
{Zt} are i.i.d. Gaussians with mean zero and standard deviation 0.1. The
coefficients were chosen to satisfy the characteristic equation for a stationary
AR process.

Figure 1 shows one time series simulated according to the model (15),
along with its autocorrelation and partial autocorrelation plots and Figure 2
displays the fitted values for the first 15 autoregressive coefficients computed
using the Yule-Walker method implemented using R by the routine ar (the
Yule-Walker estimator has the same asymptotic distribution as the MLE’s).
Notice that the solution is non-sparse. The dashed vertical line indicates the
true nonzero coefficients.

All the simulations below were conducted using the lars (see [8]) and
glmnet (see [7]) routines, which are both very fast, especially compared with
any exhaustive order selection procedure based on the AIC, AICC or BIC
criteria, just to mention a few (see [2, Chapter 9] for more details).

4.1. Deterministic λn.

In our first experiment we consider three different values of p: 50, 200
and 500, so that the Lasso procedure uses 950, 800 and 500 observations,
respectively. We recall that our results on model selection consistency re-

quires p = o(n). We set λn,j = 1 for all j and λn =
�

logn log p
n , so that the

conditions for model selection consistency of Theorem 3.1 are satisfied.
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Figure 1: A time series simulated from the sparse autoregressive model (15) along with

its autocorrelation and partial autocorrelation coefficients.

We simulated 1000 times series according to the model (15). Figure 3
displays the histograms of the numbers of variables selected by the Lasso
procedure for the three values of p. Computations were performed with the
glmnet routine. Remarkably, despite p being orders of magnitude larger
than the true number of nonzero coefficients, the Lasso solutions are sparse,
with the numbers of estimated nonzero coefficients concentrated around the
correct value s = 5. Not surprisingly, the numbers increases with p but only
slightly, indicating some degree of robustness of the Lasso.

Table 1 reports the fraction of times, out of 1000 simulated time series,
that subsets of size 1 up to 5 of the true nonzero coefficients were correctly
included among the nonzero estimated coefficients. We can see that, in all the
simulations, 2 or more of the 5 nonzero coefficients were correctly recovered,
and in most cases, at least 4 were correctly included 94%, 87.2% and 69.4%
of the times when p is 50, 200 and 500, respectively. As above, we note that
the performance degrades as p increases.

Table 2 displays, for the three values of p we consider, the fraction of
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Figure 2: Autoregressive coefficients for the time series of Figure 1 obtained using the

routine ar. The dashed vertical line marks the lags for true nonzero coefficients.

times each of the 5 nonzero coefficients were correctly recovered. Just like in
the case in which λn is chosen by cross-validation, described next, the largest
coefficients, φ1, φ5 and φ10 were correctly recovered almost all the times,
while the smaller coefficients only a fraction of the times, which is however
never ignorable. Again, the reduction in performance due to larger values of
p is significant but not extreme.

Tables 1 and 2 also displays, for the case p = 50 only, the results we
obtained by using the BIC criterion along with a greedy step-down model
search, starting from lag 50 (the BIC is known to be a consistent order
selector for autoregressive processes). The computations were done in R using
the FitAR routine and took significantly more time than with the Lasso; for
larger values of p they become extremely slow. The results are comparable
with the Lasso solution, which seems to perform slightly better. Figure
4 shows the histograms of the number of variables selected using the BIC.
Once again, it is very similar to the first plot in Figure 3, although it appears
that the BIC tends to select slightly less variables than the Lasso.

Overall, the Lasso shows good performance and robustness to large values
of p compared to the length n of the time series.
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Figure 3: Histograms of the number of nonzero coefficients selected by the Lasso over 1000

simulations of the model (15) for different values of p.

p Method 1 2 3 4 5
50 Lasso 0 0 0.060 0.288 0.652
50 BIC 0 0.004 0.116 0.550 0.330
200 Lasso 0 0.010 0.118 0.460 0.412
500 Lasso 0.002 0.062 0.242 0.412 0.282

Table 1: Fraction of times, out of 1000 simulations, that subsets of size 1 up to 5 of the 5

true nonzero coefficients were correctly recovered using the Lasso for different values of p.
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p Method φ1 φ3 φ5 φ10 φ15

50 Lasso 0.996 0.710 0.998 1 0.888
50 BIC 0.812 1 0.728 1 0.666
200 Lasso 0.974 0.470 1 1 0.830
500 Lasso 0.894 0.374 0.990 0.998 0.654

Table 2: Fraction of times, out of 1000 simulations, that each of the 5 nonzero coefficients

were correctly recovered, for different values of p.

4.2. λn Chosen by Cross-Validation

We now keep the value of p fixed to 50 and further investigate the perfor-
mance of our method in this simpler case by having λn chosen using cross-
validation, as it is commonly done in practice.

Figure 5 shows the Lasso solution paths computed using the lars algo-
rithm and for a value of p = 50 for one simulation of the model (15). As
above, we only use one penalty parameter, i.e. we penalize equally all the
autoregressive coefficients. The vertical line marks the optimal �1 threshold
found by cross validation. In our simulations, we declared significant the
variables whose coefficients have nonzero solution paths meeting the vertical
line corresponding to the cross validation value.

In the exemplary instance displayed in Figure 5, all the nonzero autore-
gressive coefficients are correctly included in the model. Furthermore, a more
careful inspection of the solution paths reveals that the order at which the
significant variables enter the set of active solutions match very closely the
magnitude of the coefficients used in our model, with φ10 and φ5, the more
significant coefficients, entering almost immediately, and φ3 and φ15 entering
last.

We simulated 1000 time series from the model (15) and we selected the
significant variables according to the cross-validation rule described above.
Figure 6 displays the histogram of the number of selected variables. The
mean and standard deviations of these numbers are 6.42 and 2.44, respec-
tively, while the minimum, median and maximum numbers are 3, 6 and 22,
respectively.

As we can be seen from Figure 6, the cross validation criterion seems to
select a larger number of variables than s = 5, as it is often observed in prac-
tice. However, we also see that this typically larger set of nonzero estimates
include most of the times the indices of the true nonzero coefficients. Indeed,
Table 3 displays some summary statistics of our simulations. In particular,
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Figure 4: Histograms of the number of nonzero coefficients selected using a greedy step-

down model selection procedure based on the BIC over 1000 simulations of the model (15)

for p = 50.

the second row shows the fraction of times, out 1000 simulated time series,
that each of the nonzero autoregressive coefficients was correctly selected.
The second row indicates the fraction of times, out of 1000 simulations, that
the variable corresponding to each nonzero coefficient in (15) was among
the first five selected variables. Notice that φ10 and φ5 are always included
among the selected variables, while φ3 and φ15 have a significantly smaller,
but nonetheless quite high, chance of being selected.

φ φ1 φ3 φ5 φ10 φ15

Value 0.2 0.1 0.2 0.3 0.1
Number of times correctly selected 0.992 0.754 1.00 1.00 0.913
Number times selected among first 5 0.992 0.602 1.00 1.00 0.895

Table 3: Fraction of times, out of 1000 simulations, that the nonzero autoregressive coef-

ficients are correctly identified and number of times they are correctly selected among the

first 5 variables entering the solution paths.

We also investigated the order in which the autoregressive coefficients
entered the solution paths, the rationale being that more significant nonzero
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Figure 5: Solution paths of the lars algorithm when applied to the time series displayed

in Figure 1. The vertical bar represents the optimal �1 penalty for this time series selected

using cross validation.

variables enter sooner, in accordance with the way the lars algorithm works
(see [8]). Figure 7 summarizes our findings. In each of the barplots, the x-axis
indexes the steps at which the variable corresponding to the autoregressive
coefficient enters the solution path, while the y-axis displays the frequency.
Interestingly enough, in most cases, φ10 and φ5 are selected as the first and
second nonzero variables, while φ15 and, in particular, φ3 enter the set of
active variables later and are not even among the first five variables selected
in 1.9% the and 20.2% of cases, respectively.

4.3. On the Conditions for Sign Recovery

According to Theorem 3.1, sign consistency holds provided �ΓScSΓ
−1
SS�∞

is bounded away from one and the smallest absolute value of the nonzero
autoregressive coefficients is well above the noise level σ/

√
n (in fact, these

are the very same conditions that have also been found in the traditional
regression settings; see, for instance Theorem 1 in Wainwright [21]).

In our final simulation experiment, we investigate the conditions of The-
orem 3.1 for sign recovery of the autoregressive coefficients. We remark that
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cross validation.

the experiment we are about to describe was designed after the simulation
study presented in section 3.2 of [23], although with less favorable settings, as
we do not consider a fixed model, but rather a collection of randomly models
for which the non-zero coefficients can be close and below the noise level.

We simulated 100 causal autoregressive process with non-zero coefficients
at lags one and two. The autoregressive coefficients of each process were
obtained as the realization of a uniform distribution over the rectangle

[−0.5, 0.5]× [−1, .0.5],

which guarantees that each process is causal [see, e.g., 2, Section 3.1]. For a
given set of autoregressive coefficients, we simulated 100 unit variance autore-
gressive processes of length 1000 using the R routine ar. For each simulation,
we fitted the lasso autoregressive procedure using lars with p = 50. We
then computed the value η∞ = 1 − �ΓScSΓ

−1
SS�∞ and inspected the entire

lasso path to look for a set of estimated parameters with signs matching
exactly the signs of the true autoregressive parameters. Finally, for each
round of 100 simulations, we computed the proportion of times sign recovery
occurred and the average value of η∞.

Figure 10 shows the proportions of sign recoveries versus the average
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Figure 7: Frequencies of the order at which the 5 autoregressive coefficients entered the

solutions paths for the lars algorithm over 1000 simulations of the time series described

in (15).

20



-0.4 -0.2 0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

!!

P
ro

po
rti

on
 o

f p
er

fe
ct

 s
ig

n 
re

co
ve

ry

Figure 8: Proportions of sign recoveries versus the average values of η∞ for the simulation

experiment of Section 4.3.

values of η∞. For small values of η∞, sign recovery does not occur, while for
larger values of η∞ sign recovery happens more and more frequently, with the
transition occurring sharply around the value 0. Sign recovery however does
not occur systematically for larger values of η∞, as indicated by the points
marked as triangles. In fact, it seems to occur less frequently when η∞ is
larger, which is apparently in contrast with 3.1.

The reasons for this seeming discrepancy are two-fold. In order to illus-
trate them, recall that the empirical partial autocorrelation at lags for which
the autoregressive parameters are zero is approximately distributed like a
N(0, 1/n) [see, e.g., 2, Section 8.2]. Thus autocorrelation parameters that
are, in absolute value, close or even smaller than, say, 1.96

�
1/n = 0.062,

the width of the 95% pointwise confidence intervals for the partial auto-
correlation function, may be considered too close to the noise level to be
accurately detected. As shown in left plot of Figure 9, larger values of η∞
are associated to small (in absolute value) nonzero coefficients. In turn, small
coefficients are close to the noise level and, therefore, are harder to detect.
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Figure 9: Values of the parameter η∞ = 1 − �ΓScSΓ
−1
SS�∞ (computed by simulations)

over a grid of autoregressive parameters inside the casual rectangle [−0.5, 0.5]× [−1, 0.5].
Larger values of η∞ are associated with smaller autoregressive coefficients, in absolute

value. The right plot is a chopped version of the left one displaying only the values of η∞
for the points marked as triangles in Figure 10.

The right plot of Figure 9 only displays the portion of the causal rectangle
[−0.5, 0.5]×[−1, .0.5] which contains the points marked as triangles in Figure
10. It is clear from the cross-like pattern that region of the causal rectangle
where sign recovery may not hold despite a large value of η∞ are precisely
the region in which at least one of the two coefficients is small.

The second reason why recovery does not necessarily hold for these simu-
lations even though η∞ is large is the fact that, due to random fluctuations,
the empirical partial autocorrelation function may exhibit large (in absolute
value) spikes at lags for which the true auto correlation parameters are zero.
Especially when the non-zero autocorrelation parameters are small and close
to the noise level, such spikes may be of comparable or even larger magnitude
than the values of the empirical partial autocorrelation function at the first
and second lag. This will then result in a strong, though spurious, signal
which the lasso procedure will detect by adding very early to its solution
path the coefficients corresponding to these large spikes. In these cases then,
sign recovery is likely to be compromised. for the points marked as triangles
in Figure 4.3 we computed the proportion of times, out of 100 simulations, in
which the empirical autocorrelation function had its largest absolute values
at lags one and two. As we can see, in many cases these proportions are
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Figure 10: Proportion of times, sorted in ascending order, in which the empirical autocor-

relation function had its largest absolute values at lags one and two for the simulations

corresponding to the points marked as triangles in in Figure 10.

rather small.
To summarize, our simulations confirm that asymptotic sign recovery

of the autoregression coefficients by the lasso is guaranteed provided that
both �ΓScSΓ

−1
SS�∞ < 1 and 1

αn
√
n = o(1), which are two of the sufficient

conditions of Theorem 3.1. Indeed, we conjecture that such conditions are
also necessary.

5. Discussion

We defined the Lasso procedure for fitting an autoregressive model, where
the maximal lag may increase with the sample size. Under this double asymp-
totic framework, the Lasso estimator was shown to possess several consistency
properties. In particular, the Lasso estimator is model selection consistent,
estimation consistent, and prediction consistent when p = o (n), p = o

�
n1/2

�

and p = o
�
n1/5

�
, respectively. The advantage of using the Lasso procedure

in conjunction with a growing p is that the fitted model will be chosen among
all possible AR models whose maximal lag is between 1 and o (n). Letting
n go to infinity, we may virtually obtain a good approximation for a general
linear time series.

As mentioned in Section 2, the assumption about Gaussianity of the
underlying noise {Zt} is not necessary. The proof of the model selection
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consistency result (Theorem 3.1) avoids making use of Gaussianity by using
Burkholder’s inequality in conjunction with a maximal moment inequality.
The proof of the estimation consistency result (Theorem 3.2) requires Lemma
6.2, which does make use of the assumed Gaussianity. However, this is not
crucial. In fact, we can relax the Gaussianity assumption and require only
the Zt are IID(0, σ2), with bounded fourth moment [see 2, p. 226-227]. In
this case, instead of using Wick’s formula we may apply the moving average
representationXt =

�∞
j=0 ψjZt−j, along with the absolute summability of the

ψj’s. Finally, the prediction consistency result (Theorem 3.3 and Corollary
3.4) may also be obtained by relaxing the Gaussianity assumption. One only
needs to impose appropriate moment conditions of the driving noise.

The autoregressive modeling via the Lasso procedure stimulates other
interesting future directions. In many cases, non-linearity is evident from
the data. In order to capture deviation from linearity, one may try to fit a
non-linear (autoregressive) time series model to the data in the form

Xt = φ1Xt−1 + · · ·+ φpXt−p +
p�

ν=2

{φi1,...,iν

ν�

j=1

Xt−ij}+ Zt ,

where we used the Einstein notation for the term in the curly brackets, to
indicate summation over all i1 < i2 < . . . < iν . Notice that for even mild
values of p, the number of possible interaction terms may be very large. This
is a very challenging problem as one needs to obtain a solid understanding
of the properties of the non-linear autoregressive process before applying the
Lasso (or any other) procedure.

6. Proofs

Here we prove Theorems 3.1, Theorem 3.2 and Theorem 3.3. We also
briefly describe an outline for the proof of Theorem 3.5. Recall scheme
(3). This is a convex minimization problem. Denote by MΛn(·), for Λn =
{λn, {λn,j , j = 1, . . . p}}, the objective function, i.e.,

MΛn(φ) =
1

2n
�y −Xφ�2 + λn

p�

j=1

λn,j|φj| . (16)

The Lasso estimator is an optimal solution to the problem min{MΛn(φ) , φ ∈
Rp}. The Gradient and Hessian of the least-squares part in MΛn(·) are given,
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respectively, by n−1Xφ − n−1
�n

t=1 XtXt, and n−1X, where X (the gram
matrix associated with the design matrix X), and Xt is a notation that
we use throughout this section:

X = X �X , Xt = (Xt−1, . . . , Xt−p)
� .

6.1. Model Selection Consistency

Proof of Theorem 3.1. We adapt a Gaussian ensemble argument, given in
[21], to the present setting. Standard optimality conditions for convex opti-
mization problems imply that φ̂n ∈ Rp is an optimal solution to the problem
min{MΛn(φ) , φ ∈ Rp}, if, and only if,

1

n
Xφ̂n −

1

n

n�

t=1

XtXt + λnξ̂n = 0 , (17)

where ξ̂n ∈ Rp is a sub-gradient vector with elements ξ̂n,j = sgn(φ̂n,j)λn,j

if φ̂n,j �= 0, and |ξ̂n,j| ≤ λn,j otherwise. Plugging the model structure, y =
Xφ∗ + Z, into (17), one can see that the optimality conditions become

1

n
X(φ̂n − φ∗)− 1

n

n�

t=1

ZtXt + λnξ̂n = 0 . (18)

Recall the sparsity set, S = {j : φ∗
j �= 0} = supp(φ∗), the sparsity

cardinality s = |S|, and ν = p − s = |Sc|. Partitioning the design matrix
X to relevant and non-relevant variables, X = (XS, XSc), we may write the
gram matrix X as a block matrix of the form

X =

�
XSS XSSc

XScS XScSc

�
=

�
X �

SXS X �
SXSc

X �
ScXS X �

ScXSc

�
.

Notice, for example, that XSS = (
�n

t=1 Xt−iXt−j)i,j∈S. Incorporating this
into the optimality conditions (18) we obtain the following two relations,

1

n
XSS[φ̂n,S − φ∗

S] +
1

n
XSScφ̂n,Sc − 1

n

n�

t=1

ZtX
S
t = −λnξ̂n,S ,

1

n
XScS[φ̂n,S − φ∗

S] +
1

n
XScScφ̂n,Sc − 1

n

n�

t=1

ZtX
Sc

t = −λnξ̂n,Sc ,
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where XS
t , and XSc

t are vectors with elements {Xt−i , i ∈ S}, and {Xt−i , i ∈
Sc}, respectively. If n− s ≥ s then XSS is non-singular with probability one,
and we can solve for φ̂n,S and ξ̂n,Sc ,

φ̂n,S = φ∗
S +

� 1
n
XSS

�−1
�
− 1

n
XSScφ̂n,Sc +

1

n

n�

t=1

ZtX
S
t − λnξ̂n,S

�

−λnξ̂n,Sc = XScSX
−1
SS

�
− 1

n
XSScφ̂n,Sc +

1

n

n�

t=1

ZtX
S
t − λnξ̂n,S

�

+
1

n
XScScφ̂n,Sc − 1

n

n�

t=1

ZtX
Sc

t .

Now, sign consistency is equivalent (see [21]) to showing that
�����φ

∗
S +

� 1
n
XSS

�−1
� 1
n

n�

t=1

ZtX
S
t − λnλn,S sgn(φ

∗
S)
������ > 0 (19)

�����XScSX
−1
SS

� 1
n

n�

t=1

ZtX
S
t − λnλn,S sgn(φ

∗
S)
�
− 1

n

n�

t=1

ZtX
Sc

t

����� ≤ λnλn,Sc (20)

hold, elementwise, with probability tending to 1. This is true since sign
consistency hold if, and only if, φ̂n,Sc = 0, φ̂n,S �= 0 and ξ̂n,S = λn,S sgn(φ∗

S),
|ξ̂n,j| ≤ λn,j, for j ∈ Sc. Denote the events in (19), and in (20) by A and B,
respectively. The rest of the proof is devoted to showing that P(A) → 1, and
P(B) → 1, as n → ∞.

We commence with A. Let αn = minj∈S |φ∗
j |. Recall the notation �xI�∞

for the l∞ norm on a set of indices I, i.e., maxi∈I |xi| (and similarly for
matrices). It is enough to show that P(�AS�∞ > αn) → 0, as n tends to
infinity, where

AS =
� 1
n
XSS

�−1� 1
n

n�

t=1

ZtX
S
t − λnλn,S sgn(φ

∗
S)
�
. (21)

Confine attention to the matrix XSS. The entry at row i ∈ S and column
j ∈ S is given by

�n
t=1 Xt−iXt−j. Notice that, equivalently, we can write

this as
�n−i

t=1−i XtXt+i−j. Following [2], one can show that n−1XSS → ΓSS

in probability, as n → ∞, where ΓSS =
�
γ(i − j)

�
i∈S,j∈S, and γ(·) is the
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autocovariance function, γ(h) = EXtXt+h. Therefore, by assumption (i) in
Theorem 3.1, there exists a finite constant Cmax, such that �(n−1XSS)−1�∞ ≤
oP (1) + Cmax. We continue by investigating the probability associated with
the term inside the square brackets in (21).

Notice that �
�n

t=1 ZtXS
t �∞ is given by maxi∈S |

�n
t=1 ZtXt−i|, where Zt

and Xt−i are independent random variables for each t = 1, . . . , n, and i ∈ S.
Fix an i ∈ S, and define

Tn ≡ Tn,i =
n�

t=1

ZtXt−i . (22)

Let Fn = σ(. . . , Zn−1, Zn) be the sigma-field generated by {. . . , Zn−1, Zn}.
Simple calculation shows that {Tn,Fn}n is a martingale. Finally, Let Yn =
Tn − Tn−1 denote the martingale difference sequence associated with Tn. We
quote below a result [see, e.g., 12] concerning martingales moment inequali-
ties, which we shall make use of.

Theorem 6.1 (Burkholder’s Inequality). Let {Xn,Fn}∞n=1 be a martingale,

and X̃n = Xn − Xn−1 be the associated martingale difference sequence. Let

q > 1. For any finite and positive constants c = c(q), and C = C(q) (de-

pending only on q), we have

c
�
E
� n�

i=1

X̃2
i

�q/2�1/q ≤
�
E|Xn|q

�1/q ≤ C
�
E
� n�

i=1

X̃2
i

�q/2�1/q
. (23)

Applying Cauchy-Schwartz inequality followed by Burkholder’s inequal-
ity, we obtain

E|Tn| ≤
�
E
��

n�

t=1

ZtXt−i

��2
�1/2

≤ C
� n�

t=1

E|Z2
t X

2
t−i|

�1/2
≤ Cσ

√
n , (24)

where C is a finite and positive constant (from Burkholder’s inequality). The
last inequality follows by the independence between Zt and Xt−i, and since
E|Xt−i|2 = 1. Fix an arbitrary, positive ξ < ∞. By a trivial bound we get

Emax
i∈S

|Tn,i| ≤ ξ +
�

i∈S

� ∞

ξ

P[|Tn,i| > y] dy

≤ ξ +
1

ξ

�

i∈S

E|Tn,i|2

≤ ξ + C2σ21

ξ
sn ,
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recalling (24). Now, picking ξ =
√
sn, which is optimal, in the sense of

obtaining an (asymptotically) smallest fraction, we have,

1

n
Emax

i∈S
|Tn,i| ≤

�
s/n+ C2σ2

�
s/n = O

��
s/n

�
. (25)

This, in turn, implies, utilizing (21) and Markov’s inequality, that P(A) → 1,
by imposing the condition:

1

αn

��
s/n+ λn�λn,S�∞

�
−→ 0 , as n → ∞ ,

which is condition (6).
We turn to the event B. Repeating the argument below (21), it is enough

to show similar assertion about the event B, with the modification of re-
placing XScSX

−1
SS, by ΓScSΓ

−1
SS. A sufficient condition for this to hold is that

{�BSc�∞ ≤ λn mini∈Sc λn,i} happens with probability tending to one, where

BSc = ΓScSΓ
−1
SS

� 1
n

n�

t=1

ZtX
S
t − λnλn,S sgn(φ

∗
S)
�
− 1

n

n�

t=1

ZtX
Sc

t . (26)

Under the incoherence condition (condition (ii) in the statement of the
theorem), we have the following upper bound:

�BSc�∞ ≤ (1− �)
1

n
�

n�

t=1

ZtX
S
t �∞ + (1− �)λn�λn,S�∞ +

1

n
�

n�

t=1

ZtX
Sc

t �∞ ,

which leads to: P(�BSc�∞ > λn mini∈Sc λn,i) ≤

P
� 2(1− �)

nλn mini∈Sc λn,i
�

n�

t=1

ZtX
S
t �∞ > b

�
+P

� 2

nλn mini∈Sc λn,i
�

n�

t=1

ZtX
Sc

t �∞ > b
�
,

(27)
with b = 1 − (1 − �)�λn,S�∞/mini∈Sc λn,i. Note that inequality (27) follows
by the inclusion {U + V > z} ⊂ {U > z/2} ∪ {V > z/2}. Under condition
(5), it would be enough to consider the right hand side of (27), replacing (the
two instances of) b by �. For the first term in (27) we have

P
� 2(1− �)

nλn mini∈Sc λn,i
�

n�

t=1

ZtX
S
t �∞ > �

�
≤ 1− �

�

2

λn mini∈Sc λn,i

1

n
Emax

i∈Sc
|Tn,i| ,

(28)
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which tends by (25) to zero once

nλ2
n(mini∈Sc λn,i)2

s
−→ ∞ , as n → ∞ . (29)

The same argument may be adapted for maxi∈Sc |Tn,i|. We only need to
replace S by Sc. In this case we find that the condition

nλ2
n(mini∈Sc λn,i)2

ν
−→ ∞ , as n → ∞ , (30)

is sufficient for showing that the second term in (27) converges to zero. Con-
dition (7) in the statement of the theorem guarantees both (29) and (30).
The proof is now complete.

6.2. Estimation and Prediction Consistency

Proof of Theorem 3.2. We follow [10]. In particular, denoting rn = p1/2(n−1/2+
λn�λn,S�), we will show that for every � > 0 there exists a large enough con-
stant C, such that

P
�

inf
�u�=C

MΛn(φ
∗ + rnu) > MΛn(φ

∗)
�
> 1− � ,

where MΛn(·) is the objective function and is given in (16). This implies that
�φ̂n − φ∗� = OP (rn).

Multiplying both sides by n clearly does not change the probability. We
will show that −n(MΛn(φ

∗ + rnu) − Mλn(φ
∗)) < 0 holds uniformly over

�u� = C. Write

MΛn(φ) = h(φ) + λn

p�

j=1

λn,j|φj| ,

for h(φ) = �y −Xφ�2/2n. We have −n(MΛn(φ
∗ + rnu)−MΛn(φ

∗)) ≤

−n[h(φ∗ + rnu)− h(φ∗)]− nλn

�

j∈S

λn,j[|φ∗
j + rnuj| − |φ∗

j |] .

Consider separately the least squares term, and the term associated with the
l1-penalty. We have, exploiting the fact that

�n
t=1 XtXt = Xφ∗+

�n
t=1 ZtXt,

−n[h(φ∗ + rnu)− h(φ∗)] = rnu
�

n�

t=1

ZtXt − r2nu
�Xu/2 ≡ I1 − I2 .
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Recalling the definition of Tn,i =
�n

t=1 ZtXt−i (see (22)), and utilizing the
result in (24) we obtain

|I1| ≤ rn�u��
n�

t=1

ZtXt� = �u�OP (rn
√
pn) .

Moving on to I2, we write

I2 = r2nu
�Xu/2 = nr2nu

�(n−1X− Γp)u/2 + nr2nu
�Γpu/2 . (31)

We know that n−1Xij tends in probability to γ(i− j), where Xij is the (i, j)
entry of X, i.e., Xij =

�n
t=1 Xt−iXt−j. This clearly implies �n−1X − Γp� =

oP (1), in the fixed p scenario. Lemma 6.2 below shows that this may also
hold true in the growing p scenario which we consider here.

Lemma 6.2. Assume
�∞

j=0 |ψj| < ∞, as before. Let p = o
�
n1/2

�
. Then,

�n−1X− Γp� = oP (1) . (32)

Proof. We adopt arguments given in [2, p. 226-227]. Let � > 0 be given.
Using the fact that �A� ≤ �A�F , where � · �F is the Frobenius matrix norm,
{
�

i,j |Aij|2}1/2, we have

P(�n−1X− Γp� > �) ≤ 1

�2

p�

i,j=1

dij , (33)

where dij = E(n−1Xij − γ(i − j))2. We shall make use of Wick’s formula.
This formula gives the expectation of a product of several centered (joint)
Gaussian variables G1, . . . , GN , in terms of the elements of their covariance
matrix C = (cij):

E
k�

i=1

Gi =
�

ci1i2 · · · cik−1ik ,

for k = 2m, and zero otherwise. The sum extends over all different partitions
of {G1, . . . , G2m} into m pairs. Applying the formula, we obtain:

EX2
ij =

n−i�

s,t=1−i

EXtXt+i−jXsXs+i−j

=
n−i�

s,t=1−i

�
γ2(i− j) + γ2(s− t) + γ(s− t+ i− j)γ(−(s− t) + i− j)

�
,
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where we have used the equivalent representation Xij =
�n−i

t=1−i XtXt+i−j.
A change of variables k = s− t shows that

n−i�

s,t=1−i

�
γ2(s− t) + γ(s− t+ i− j)γ(−(s− t) + i− j)

�
=

n[γ2(0) + γ2(i− j)] + 2
n−1�

k=1

(n− k)[γ2(k) + γ(k + i− j)γ(−k + i− j)] .

Therefore,

dij =
p2

n2
γ2(i− j) +

1

n
[γ2(0) + γ2(i− j)]

+
2

n2

n−1�

k=1

(n− k)[γ2(k) + γ(k + i− j)γ(−k + i− j)] . (34)

Notice that
�∞

k=1 |γ2(k) + γ(k + i − j)γ(−k + i − j)| < ∞. This may
be seen by using the expression for the autocovariance function, γ(h) =
σ2

�∞
j=0 ψjψj+|h|, and by utilizing the summability of the ψj’s,

�∞
j=0 |ψj| <

∞. The expression (34) is therefore bounded by an O(1/n) order term. This,
in turn, shows that dij = O(1/n), uniformly for every i, j. The proof is com-
pleted by recalling the RHS of (33), which is of the order of magnitude of
O(p2/n).

Using Lemma 6.2 we obtain

|nr2nu�(n−1X− Γp)u/2| ≤ oP (1)nr
2
n�u�2 . (35)

We complete the argument with a bound on the term associated with the
penalties, −nλn

�
j∈S λn,j[|φ∗

j+rnuj|−|φ∗
j |]. Applying the triangle inequality

followed by the Cauchy-Schwarz inequality, it is clear that the above term
is absolutely bounded by λn�λn,S�nrn�u�. Now, the second term in I2 is
positive, by positive definiteness of the autocovariance matrix, and it dom-
inates the first term in I2. Under the assumptions of the theorem, one can
see that the term I1 is of order �u�o

�
n1/2

�
, and the term associated with the

penalties is of order �u�o
�
n1/4

�
, and therefore are both dominated by the

second term in I2, which is in the order of magnitude of �u�2o
�
n1/2

�
. This

completes the proof.
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Proof of Theorem 3.3. To make the proof more clear, we provide an outline
before getting into details. The proof develops through two steps. In the first
step, which involves Lemma 6.3 and Lemma 6.4, we show that (10) holds,
restricted to some event (I1 ∩ I2). The second step, which is lengthier and
involves probabilistic arguments, shows that the probability of (10) not hold-
ing is as described in (11). The second step uses the properties of the family
Hρ(l, L) of stationary Gaussian time series, which was described earlier, as
well as a Bernstein’s type of result for martingales.

We begin as in [4]. Recall that �a�2A stands for a�Aa, for every p-
dimensional vector a, and p× p symmetric matrix A. We proceed by stating
and proving two lemmas.

Lemma 6.3. Let assumptions (i), and (ii) of Theorem 3.3 be in effect.

Then,

�φ̂n − φ∗�2X/n ≤ 4λnM(sκ−1
p )1/2�φ̂n − φ∗�Γp (36)

holds true on

I1 =
�
| 2
n

n�

t=1

Xt−jZt| ≤ λnλn,j , for all j = 1, . . . , p
�
. (37)

Proof. By definition, the Lasso estimator φ̂n satisfies (see (16)),

n−1�y −Xφ̂n�2 + 2λn

p�

j=1

λn,j|φ̂n,j| ≤ n−1�y −Xφ∗�2 + 2λn

p�

j=1

λn,j|φ∗
j | .

Recalling the model y = Xφ∗ + Z, we obtain, by re-arranging the above
terms,

�φ̂n − φ∗�2X/n + 2λn

p�

j=1

λn,j|φ̂n,j| ≤ 2(φ̂n − φ∗)�
1

n
X �Z + 2λn

p�

j=1

λn,j|φ∗
j | .

Now, since (φ̂n−φ∗)� 1nX
�Z =

�p
j=1(φ̂n,j −φ∗

j)
1
n

�n
t=1 Xt−jZt, we have, on I1,

�φ̂n − φ∗�2X/n ≤ λn

p�

j=1

λn,j|φ̂n,j − φ∗
j |+ 2λn

p�

j=1

λn,j(|φ∗
j | − |φ̂n,j|)

≤ 4λn

�

j∈S

λn,j|φ̂n,j − φ∗
j | , (38)
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where the second inequality is obtained by decomposing the summation
�p

j=1

into
�

j∈S +
�

j /∈S, and using Cauchy-Schwarz inequality.
By assumption (ii), and the fact that γ(0) = E|Xt|2 = 1, we have

�

j∈S

|φ̂n,j − φ∗
j |2 ≤

p�

j=1

(φ̂n,j − φ∗
j)

2 = �φ̂n − φ∗�2diag(Γp)

≤ 1

κp
�φ̂n − φ∗�2Γp

. (39)

The proof is completed by applying the Cauchy-Schwarz inequality on (38),
and by using assumption (i).

We turn to the second lemma.

Lemma 6.4. Let assumptions (i), (ii) of Theorem 3.3 be in effect. Let

C be a constant (given explicitly in the proof) depending on M only. Put

� = λn(sp−1)1/2. Then,

�φ̂n − φ∗�2Γp
≤ Cλ2

nsκ
−1
p , (40)

holds true on I1 ∩ I2, where I1 is given by (37), and

I2 = {Mp ≤ �} , (41)

with

Mp = max
1≤i,j≤p

����
Xij

n
− γ(i− j)

���� . (42)

Proof. Note that
����φ̂n − φ∗�2X/n − �φ̂n − φ∗�2Γp

��� ≤ Mp�φ̂n − φ∗�21 .

Therefore,

�φ̂n − φ∗�2X/n ≥ �φ̂n − φ∗�2Γp
−Mpp

1/2�φ̂n − φ∗�
≥ �φ̂n − φ∗�2Γp

−Mp(pκ
−1
p )1/2�φ̂n − φ∗�Γp .

The first inequality follows since �a�1 ≤ n�a�2, and the second inequality is
satisfied under assumption (ii) (see (39)). Referring back to (36), we obtain,
on I1 ∩ I2,

�φ̂n − φ∗�2Γp
≤ 2(1/2 + 2M)λn(sκ

−1
p )1/2�φ̂n − φ∗�Γp .
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Applying the inequality 2xy ≤ 2x2 + y2/2 on the right-hand side of the
expression above (with x = (1/2 + 2M)λn(sκ−1

p )1/2, and y = �φ̂n − φ∗�Γp),
we establish the statement of the Lemma, with C = 4(1/2 + 2M)2.

The rest of the proof of Theorem 3.3 is devoted to showing that indeed
�φ̂n − φ∗�2Γp

≤ Cλ2
nsk

−1
p holds with probability tending to 1 (exponentially

fast), i.e., that the probability of the complement of I1 ∩ I2 is negligible. We
shall commence with I2.

We recall here the family of time series {Xt}, denoted by Hρ(l, L), for
some ρ > 1, 0 < l < 1, and L > 1 (Section 3.2). The family consists of all
stationary Gaussian time series with EXt = 0, E|Xt|2 = 1, and enjoys an
exponential decay of the strongly mixing coefficients (see (8)).

Lemma 6.5. Assume that � = λn(s/p)1/2 ≤ Dn−2/5, and D = (C3
1C2β2

1β
3
2)

1/5,

with C1 and C2 two constants explicitly specified in the proof. Then,

P(Ic2) ≤ p2 exp
�
− nλ2

n(s/p
2)/(4C1β1β2)

�
.

Proof. We begin with

P(|
n−i�

t=1−i

Yt| > �) ,

where

Yt ≡ Yt,i,j =
1

n
(XtXt+i−j − γ(i− j)) . (43)

The proof is based on an application of the pair of lemmas 6.6 and 6.7, after
noticing that

P(Ic2) = P(Mp > �) ≤
p�

i,j=1

P
�
��

n−i�

t=1−i

Yt

�� > �

�
.

Define k = i − j. It is enough to consider only k ≥ 0 (i ≥ j), since Xij and
γ(i− j) are symmetric. By the same argument below expression (39) in [11],
one may notice that {Yt} is strongly mixing with the rate αY (m) ≤ αX(m−k)
for m > k, and αY (m) ≤ 1/4 [see 1], but for our purposes in would be enough
to bound αY (m), for m > k, by simply 1.

We shall make use of the following two lemmas, adapted from [11].
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Lemma 6.6. Suppose {Xt} is a strongly mixing time series, Sn =
�n

t=1 Xt,

and cumr(Sn) is the rth order cumulant of Sn. For ν > 0 define the function

Λn(αX , ν) = max
�
1 ,

n�

m=1

(αX(m))1/ν
�
.

If, for some µ ≥ 0, H > 0

E|Xt|r ≤ (r!)µ+1Hr , t = 1, . . . , n, r = 2, 3, . . . ,

then |cumr(Sn)| ≤ 2r(1+µ)+112r−1(r!)2+µHr[Λn(αX , 2(r − 1))]r−1n.

Lemma 6.7. Let Y be a random variable with EY = 0. If there exist µ1 ≥ 0,
H1 > 0 and ∆ > 0 such that

|cumr(Y )| ≤
�
r!

2

�1+µ1 H1

∆r−2
, r = 2, 3, . . . ,

then

P(|Y | > y) ≤
�

exp{−y2/(4H1)} 0 ≤ y ≤ (H1+µ1
1 ∆)1/(2µ1+1)

exp{−(y∆)1/(1+µ1)/4} y ≥ (H1+µ1
1 ∆)1/(2µ1+1) .

Back to the proof of Lemma 6.5. Absolute moment of Yt are bounded as
follows:

E|Yt|r ≤ n−r2r−1
�
E|XtXt+k|r + |γ(k)|r

�

≤ n−r2r−1
��
E|Xt|2rE|Xt+k|2r

�1/2
+ γ(0)

�

≤ r!(4/n)r .

The second inequality follows by the Cauchy-Schwarz inequality together
with the inequality (a + b)j ≤ 2j−1(aj + bj), and the last inequality follows
by the assumed Gaussianity of Xt, and the inequality

�
2r
r

�
≤ 22r. We have

n�

m=1

(αX(m))1/2(r−1) ≤ k +

�
2Ll

l(ρ− 1)

�1/(r−1) n−k�

m=1

ρ−m/2(r−1)

≤ k +

�
2Ll

l(ρ− 1)

�1/(r−1) �
1 +

2(r − 1)

log ρ

�
,
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The first inequality utilizes the relationship between αY (m) and αX(m), and
inequality (8). The second inequality uses geometric series expression to-
gether with the inequality ρx − 1 ≥ x log ρ, for all x ≥ 0.

Therefore, defining k̂ = k if k > 0, and k̂ = 1, if k = 0, we obtain, after
some manipulations, similar to those in [11],

[Λn(αX , 2(r − 1))]r−1 ≤ 12r−1r!(k̂β1)
r−1β2 ,

for two constants β1 and β2, given, respectively, by 1+1/ log ρ and 1+Lρ/l(ρ−
1) (see (9)). The bound results from the inequalities (a+ b)j ≤ 2j−1(aj + bj),
nn ≤ n!en, and other trivial inequalities.

Applying Lemma 6.6 (by letting µ = 0 and H = 4/n) we may write
|cumr(

�n−i
t=1−i)Yt| ≤ RHS, where RHS can be put in the form (r!/2)3H∆2−r,

with H1 = C1β2(k̂β1/n), ∆ = C2(k̂β1/n)−1, and C1 = 210122, C2 = 2−312−2.
Now, applying Lemma 6.7 (with µ1 = 2, and H1 and ∆ as above) we obtain:

P
�
��

n−i�

t=1−i

Yt

�� > y

�
≤





exp

�
−y2n/(4C1k̂β1β2)

�
0 ≤ y ≤ Dk̂2/5n−2/5

exp
�
−1

4

�
C2

k̂β1

�1/4
(yn)1/3

�
y ≥ Dk̂2/5n−2/5 ,

(44)
where D = (C3

1C2β2
1β

3
2)

1/5. The proof is completed by applying the moderate
deviation part in (44) with y = �, and by noticing that 1 ≤ k̂ ≤ p.

We turn to evaluate the probability of the complement of the event I1.

Lemma 6.8. For all 0 < c < ∞ and y > σ2(n +Dn3/5) (where D is given

by (9)),

P(Ic1) ≤ 6p exp

�
−F1 min

�
(σ−2y − n)1/3, c2σ−2,

n2λ2
nλ

2
min

y + cnλnλmax/2

��
,

where F1 = min
�
(C2/β1)1/4/4, 2−9, 8−1

�
.

Proof. Let V 2
n = σ2

�n
t=1 X

2
t−i = σ2

�n−i
t=1−i X

2
t . Fix a y > σ2(n+Dn3/5) and

a 0 < c < ∞. Denote by Ĩ1 the event I1 (see (37)) with the absolute value
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removed. We begin by writing:

P(Ĩc1) ≤
p�

j=1

P
� 2
n

n�

t=1

Xt−jZt > λnλn,j

�

≤
p�

j=1

P
� ∞�

n=1

� 2
n

n�

t=1

Xt−jZt > λnλn,j , V
2
n ≤ y

��
+ pP(V 2

n > y)

=: I1 + I2 .

Clearly, I1 satisfies I1 ≤ I11 + I12, with

I11 =
p�

j=1

P
� ∞�

n=1

� 2
n

n�

t=1

Xt−jZt > λnλn,j , V
2
n ≤ y

�
,

∞�

r=3

W(j, t, r)
�
,

I12 =
p�

j=1

P
� ∞�

r=3

�
|Xt−j|r−2E|Zt|r >

r!

2
σ2cr−2

��
,

where W(j, t, r) =
�
|Xt−j|r−2E|Zt|r > r!

2 σ
2cr−2

�
. We analyze P(Ĩc1) by inves-

tigating I11, I12 and I2 separately.
For I2, we recall that Yt ≡ Yt,i,i = (X2

t −γ(0))/n (see (43) and the remark
below) is strongly mixing with exponential decay rate. Therefore, by the
large deviation part in (44) (with k̂ = 1),

P(V 2
n > y) ≤ P(|V 2

n − nσ2| > y − nσ2)

= P(|
n−i�

t=1−i

Yt| > σ−2n−1y − 1)

≤ exp

�
−1

4

�C2

β1

�1/4
(σ−2y − n)1/3

�
.

For I12, we use the bound E|Zt|2r ≤ σ2rr!22r (and the Cauchy-Schwarz
inequality) to obtain

�
|Xt−j|r−2E|Zt|r >

r!

2
σ2cr−2

�
⊂

�
|Xt−j| > 2−(1+r)/(r−2)σ−1c

�
.

Therefore, noticing that {2−(1+r)/(r−2)}∞r=3 is an increasing sequence, we have

I12 ≤
p�

j=1

P
�
|Xt−j| > 2−4σ−1c

�
≤ (2/π)1/2p exp{−2−8c2/2σ2} .
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For I11, we use the following theorem which is a Bernstein’s type of an
inequality for martingales.

Theorem 6.9 (De La Peña [5]). Let {Mn,Fn} be a martingale, with differ-

ence ∆n = Mn −Mn−1. Define V 2
n =

�n
i=1 σ

2
i =

�n
i=1 E(∆2

i |Fi−1). Assume

that E(|∆i|r |Fi−1) ≤ (r!/2)σ2
i c

r−2 a.e. for r ≥ 3, 0 < c < ∞. Then, for all

x, y > 0,

P
� ∞�

n=1

{Mn > x , V 2
n ≤ y}

�
≤ exp

�
− x2

2(y + cx)

�
. (45)

Recall that
�n

t=1 Xt−jZt is a martingale (see (22)). Then, simple application
of the above theorem, with x = nλnλn,j/2, leads to

I11 ≤ p exp

�
−

n2λ2
nλ

2
min

8(y + cnλnλmax/2)

�
.

Lemma 6.8 now follows by collecting the bounds of I11, I12, and I2, and
by symmetry.

The proof of Theorem 3.3 is now complete by virtue of Lemma 6.3, Lemma
6.4, Lemma 6.5, and Lemma 6.8.

Proof of Theorem 3.5. Under the conditions of the model selection consis-
tency theorem, and as implied by the optimality conditions (see the proof of
Theorem 3.1) we can write:

n1/2
�
φ̂n,S − φ∗

S + (XSS/n)
−1λnλn,Ssgn(φ

∗
S)
�
= (XSS/n)

−1n−1/2
n�

t=1

ZtX
S
t .

The rest of the proof follows easily from the fact that n−1/2
�n

t=1 ZtXS
t ⇒

N(0, σ2ΓSS). This can be verified by repeating, word by word, the arguments
given in [2, p. 263], where each instance of p there is replaced by s.
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