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Abstract

We consider the problem of identifying a small sub-matrix of activation in a large noisy
matrix. We establish the minimax rate for the problem by showing tight (up to con-
stants) upper and lower bounds on the signal strength needed to identify the sub-matrix.
We consider several natural computationally tractable procedures and show that under
most parameter scalings they are unable to identify the sub-matrix at the minimax sig-
nal strength. While we are unable to directly establish the computational hardness of the
problem at the minimax signal strength we discuss connections to some known NP-hard
problems and their approximation algorithms.

1 Introduction

We are given an (n×n) matrix M , which is a sparse (k× k) matrix of activation, of strength at least µmin,
drowned in a large noisy matrix. More formally let,

Θ(µmin, n, k) := {(µ,K1,K2) : µ ≥ µmin, |K1| = k,K1 ⊂ [n], |K2| = k,K2 ⊂ [n]} (1)

be a set of parameters. For a parameter θ ∈ Θ, let Pθ denote the joint distribution of the entries of M =
{mij}i∈[n],j∈[n], whose density with respect to the Lebesgue measure is∏

ij

N (mij ;µ 1I{i ∈ K1, j ∈ K2}, σ2), (2)

where the notation N (z;µ, σ2) denotes the distribution p(z) ∼ N (µ, σ2) of a Gaussian random variable
with mean µ and variance σ2, and 1I denotes the indicator function. We assume that µ is positive, and that
k and σ are known. Without loss of generality σ can be taken to be 1 (by appropriate rescaling).

Given the matrix M , the problem is to identify the rows and columns which together constitute the
sub-matrix of activation. We are interested in identifying tuples of (n, k, µmin) for which this problem is
both statistically feasible and computationally tractable.

2 Related work

In many real world applications it is necessary to identify small sub-matrices in a large noisy matrix. A
prototypical example is bi-clustering, which is the problem of identifying a (typically) sparse set of relevant
columns and rows in a large, noisy data matrix. These columns and rows define a sub-matrix that needs to be
identified. Due to its practical importance and difficulty bi-clustering has attracted considerable attention
[5, 9, 10, 12]. Many of the proposed algorithms for identifying relevant clusters are based on heuristic
searches whose goal is to identify large average sub-matrices or sub-matrices that are well fit by a two-way
ANOVA model. Sun et. al. [11] provide some statistical backing for these exhaustive search procedures.
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The problem setup introduced in [8] is also related to the framework of structured normal means
multiple hypothesis testing problems, where for each entry in the matrix the hypotheses are that the entry
has mean 0 versus an elevated mean. The presence of a sub-matrix however imposes structure on which
elements are elevated concurrently. Several other recent papers [1, 2, 3] have investigated the structured
normal means setting for different ordered domains.

3 Known results

We have addressed the bi-clustering problem in recent work [8]. We summarize the relevant results of
that paper here. Define an estimator Ψ as any function that takes M as input and outputs its estimate of
the coordinates of the matrix which are active (these may or may not form a sub-matrix). We analyze the
probability that these coordinates are exactly the true active sub-matrix. This is a 0/1 loss and while many
of our results can be transferred to other losses (like the Hamming loss) we will focus only on the 0/1 loss
in this paper.

We are interested in a minimax analysis of the bi-clustering problem. To compute the minimax prob-
ability of error we consider the supremum over all matrices M drawn according to θ ∈ Θ and the infimum
over all estimators Ψ. First, we have an information theoretic lower bound on the signal strength needed for
any procedure to succeed.

Theorem 1. There exists a constant c (small) such that if µmin ≤ c
√

log(n−k)
k then for any estimator Ψ(M)

of the bicluster, the minimax probability of error remains bounded away from 0.

To establish this as the minimax rate we need to establish a complementing (upto constants) upper
bound. This can be achieved by a procedure that looks over all possible sub-matrices of size k and outputs
the one with the largest sum. For two subsets, K̃1 ⊂ [n] and K̃2 ⊂ [n], we define the score S(K̃1, K̃2) :=∑
i∈K̃1

∑
j∈K̃2

mij . Furthermore, define

Ψmax(M) := argmax
(K̃1,K̃2)

S(K̃1, K̃2) subject to |K̃1| = k, |K̃2| = k, (3)

for which we have the following result.

Theorem 2. If the signal strength µmin ≥ 4
√

log(n−k)
k then P[Ψmax(M) 6= (K1,K2)] ≤ 4[(n− k)−1].

This upper bound establishes the minimax signal strength (upto constants). Unfortunately directly
solving the combinatorial optimization problem in (3) is intractable. Therefore, we analyze a few computa-
tionally tractable procedures.

The simplest procedure is based on element-wise thresholding. The sub-matrix is estimated as

Ψthr(M, τ) := {(i, j) ∈ [n]× [n] : mij ≥ τ} (4)

where τ > 0 is a parameter.

Theorem 3. Set the threshold τ = C
2

√
log(n− k)) If

µmin ≥ C
√

log(n− k)

then P[Ψthr(M, τ) 6= K1 ×K2] = o(k−2) for C large enough.

From this result, we observe that the signal strength µ needs to be O(
√
k) larger than the lowest pos-

sible signal strength. This is not surprising, since element-wise thresholding is not exploiting the structure
of the bicluster, but is assuming that the large elements of the matrix M are positioned randomly. We will
refer to the µmin from this theorem as the thresholding signal strength.

We also consider a procedure based on row and column averaging, that is, we find a sub-matrix defined
by the k rows and k columns with the largest average. Denote this estimator Ψavg(M). We have the
following result.

Theorem 4. If k = Ω(n1/2+α), where α ∈ [0, 1/2] is a constant and,

µmin ≥ 4

√
log(n− k)

nα

then P[Ψavg(M) 6= (K1,K2)] ≤ [2n−1].
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Comparing to Theorem 3, we observe that the averaging requires lower signal strength than the
element-wise thresholding whenever the bicluster is large, that is, k = Ω(

√
n). Unless k = O(n), the

procedure does not achieve the lower bound of Theorem 1, however, the procedure is computationally
efficient.

Finally, when the submatrix is all constant, the noiseless matrix is low-rank and has sparse singular
vectors that pick out the bicluster. We investigate sparse singular value decomposition on the noisy matrix
M . Inspired by [7], we investigate the following convex problem:

max
X∈R(2n)×(2n)

trMX21 − λ1′|X21|1 subject to X � 0, trX11 = 1, trX22 = 1, (5)

where X is the block matrix [
X11 X12

X21 X22

]
.

The solution X21 is sparse and recovers the position of the sub-matrix.
Theorem 5. If

µmin ≥ 2
√

log(n− k) (6)

then with λ = µ
2 the recovered submatrix (K̂1, K̂2) = (K1,K2) with probability 1−O(k−1).

We have further shown in [8] that the result of Theorem 5 cannot be improved. This is somewhat
surprising, since the signal strength needed for the success of the procedure is of the same order as for
the element-wise thresholding, where from the formulation of the optimization problem it seems that the
procedure uses the structure of the problem.

Tradeoffs: The computational and statistical tradeoffs in the above theorems are clear. Below the min-
imax signal strength threshold the problem is statistically infeasible. Just above this threshold the problem
is statistically feasible but appears to be computationally hard for small biclusters. Well above this signal
strength (at the thresholding signal strength) the problem is both statistically feasible and computationally
tractable. For large biclusters however, the picture is a bit different. As the size of the bicluster grows we
are able to approach the minimax threshold with a computationally efficient procedure.

4 New connections and results

In this section we discuss connections between the biclustering problem and certain structured (and random)
instances of known NP-hard problems. The combinatorial procedure described above is equivalent to the
following `0 constrained optimization problem.

maximizeu,v uTMv

subject to u, v ∈ {0, 1}n

||u||0 ≤ k
||v||0 ≤ k

The biclustering problem is also a special case of the Quadratic Assignment Problem (QAP), where the
objective is given two matricesA andB (typically of weights and distances between facilities and locations)
to maximize their Frobenius inner product. In the biclustering problem, the matrix A is just M and B is a
(k × k) matrix of 1s padded appropriately with 0s.

Biclustering is also related to finding the densest-2k subgraph in a bi-partite graph, where we view the
matrix M as defining a weighted bi-partite graph with 2n nodes and edge weights given by the entries of
M . The density of a subgraph is the ratio of the sum of the weights of edges between nodes of the subgraph
to the total number of vertices in the subgraph. It is straightforward to show that even at the minimax signal
strength the densest 2k-subgraph is the bicluster of interest. The QAP and densest k-subgraph problems are
both however NP-hard in general.

The closely related densest subgraph problem is tractable. It can be cast as an ILP [6], whose relaxation
can be rounded to get the exact optimal integral solution. It is then interesting to ask at what scalings are
the solutions to the densest subgraph and densest 2k-subgraph problems identical. This is also related to the
question: what is the size and density of the densest subgraph in a random Gaussian matrix of size (n×n)?
We have recently analyzed this question and can show that the solution to densest subgraph problem on
the graph induced by M is the true submatrix of activation at signal strengths similar to those at which
row/column averaging succeeds with high probability. At the minimax signal strength the bicluster needs
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to be of size O(n) and at the thresholding scaling the bicluster needs to be of size at least O(
√
n) for it to

be the (size unrestricted) densest subgraph of M .
Approximation algorithms
There is a vast literature on approximation algorithms for NP-hard problems. In the cases of interest

to us however the best approximation guarantees available are too weak and are of a different flavor from
results we would ideally like to have. Consider for instance the densest k- subgraph problem. This problem
is NP-hard and does not admit a constant factor approximation algorithm unless NP has sub-exponential
time algorithms. The best known approximation guarantee was recently obtained in [4]. They show that
given any graph on n vertices there is an algorithm that runs in timeO(nO(1/ε)) which will find a k-subgraph
of density Ω(dmax/n

1/4+ε), where dmax is the density of the densest k-subgraph, i.e. for any constant ε
there is a polynomial time algorithm that achieves an approximation ratio of O(n1/4+ε).

The result however is not good enough for us to make a meaningful statistical guarantee. We would
like a guarantee that says that we recover the true bicluster (or something that is close to it in Hamming
distance) with high probability. At the minimax scaling, we know that the densest 2k-subgraph is the
bicluster we are interested in. However, it can be shown that at this scaling there are several other (k × k)
submatrices whose density is within a constant factor of the density of the true bicluster. This means that
for any approximation ratio worse than O(1), the approximation algorithm could find a (k × k) submatrix
that might not overlap at all with the true submatrix. For the biclustering problem we are not interested in
good approximation guarantees on the objective function, which we use only as a proxy. Rather, we are
interested in guaranteeing that with high probability the submatrix we find is close to the true submatrix of
activation.

5 Conclusions

The biclustering problem highlights the tradeoff between computational complexity and statistical effi-
ciency. The most significant open question with respect to our work is: “Is there a computationally efficient
algorithm that achieves the minimax rate for all tuples (n, k, µ)?.”

While we conjecture that the biclustering problem is computationally hard, the structure and random-
ness pose significant obstacles to the direct application of reductions to show hardness. In the biclustering
problem we are given a particular structured, random (and not arbitrary, worst-case) instance of a known
NP-hard problem. Showing that even these seemingly benign instances are not significantly easier than the
worst-case instances is an important direction for future work.

Our work also highlights an important shortcoming of minimax analysis with regards to computational
tractability. Ideally rather than being defined as an infimum over all estimators we would like to be able to
define the minimax rate over a smaller class of all efficiently computable estimators, and develop tools to
study this restricted minimax rate. Formalizing this notion is also an important direction of future work.
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