36-720: Generalized Linear Mixed Models
Brian Junker

October 10, 2007

e Review: Generalized Linear Models (GLM’s)
e Generalized Linear Mixed Models (GLMM's)
e Computational Notes

e FacilitiesinR

e Examples

[Related to Christensen Chapter 13; Borrows from: Peteg&eat’s short
course ahttp://staff.pubhealth.ku.dk/ "pd/mixed-jan.2006/;
Brian Ripley’'slme4 notes ahttp://www.stats.ox.ac.uk/ "ripley/]

1 36-720 October 10, 2007

Review: Generalized Linear Models (GLM’s)

The Basic |dea

Supposgy; follows an exponential family distribution of the form

fi s 7) = 9(Y: 7) exp( ) J;]g )y(ni)) = gy 7) e><|0(—b(mr)](i)yi 1 )

with 7 known, so that; is thenatural parameter andy; is thesufficient
gtatistic. You showed in homework, by fierentiating 1= f f(y; n, T)dy,
that

pi = Elyi]l = —b(@m) = ) (*)
and, by similar methods, you can show
Var(y) = —b"(m)h(r) = h()/¢ () ()

Rewriting the natural parametgras a linear function of covariates,
we get
Ci) = C(EV]) = m = XB
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Plugging this back into the density, and considering theliflood ofn
independeny;’s, we get

: i b(X; i YiN
f(yl,...,an,B,T) = l_[g(yl,T) eXp(ZI (Xﬁz(:)z YX5)
i=1

Settingdlog f(---)/9B; = 0 we obtain the normal equations

P — )X
0= (00X + Ly ) ) = Zi%

or, cancellingh(r) and collecting terms,
(y-#)'X=0 (s 5 %)

These are “exactly” the same normal equations that we get $etting
% S(yi — Xi8)? = 0in OLS, except that herg = ¢-1(X;3).

e From (), ¢(E[yi]) = XB; (") is called thenatural link function;
e From (=), Var (y;) = h(r) /€' (X8); 7 is called adispersion parameter.

This is the basis aflenerlized linear models (GLM’s).
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Examples:

e Normal linear regressiormhe Normal density is,

1 1(YiHi\2 1 2 _l'ui2 + Yui
f(y”u’o-z) = ei(T) = ( e—y2/20' )eXp(- 2
. \2no 2o o?
soy; is the natural parametéi(i;) = y; is the natural link function, anet? is
the dispersion parameter. So the GLMis= XB.
e Poisson regressiohe Poisson density iB(y; u) = e /y! =
(2/yY) exp(=u + ylog u); the over-dispersed Poisson family has the form

—ui + iIO i
f(yispi, 7) = g(yi;r)exp(%Q#)

In this family, logy; is the natural parameter,s the dispersion parameter,
and we build GLM'’s of the form

logui = Xi8

We have also encountered this aslibgelinear model for Poisson sampling.
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» Logistic regressionThe binomial density i$ (y; p) = (})p(1 - p)" =

(7)gnoati-pryion 5 ; the overdispersed binomial has the form

nlog(1- p) +yilog 12

T

f(yi: pi. 7) = 9(yi; 7) €xp

The natural parameter is Iq@'—l 7 is the dispersion parameter, and we build
GLM’s of the form

Pi
=X
1-p i

This is of course the form of thegistic regression model.

log

Further examples are possible. ..

e Other location-scale members of the exponential family;
e Other link functions (the basic challenge of numericallivsg the normal
equations« * x) is about the same);

... but Normal regression, Poisson regression, and logigjression are quite
common.
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Generalized Linear Mixed Models (GLMM’s)

The basic idea is to take a GLM
(i) = X
and add randomfkects by analogy with the LMM:
C(ui) = X+ Zu

Once again we generally take~ N(O, ¥), but because the error structure
in a GLM is usually non-additive (it is handled by the underty
exponential family model), we do not add

The prototypical case is logistic regression (Stiratebiird & Ware,
1984):

b _ :Xiﬂ+Ziu

lo
gl_ pl

6 36-720 October 10, 2007



Examples

e Growth curves for binary outcomes. With practice, people generally
get better at problem solving. Lg{ be the outcome (& incorrect, 1
= correct) for performing a task by persban thet™" attempt. One
version of thepower law of learning says that the odds of performing
the task correctly should increase like a powet, of

_P_
1-p
This leads to a logistic regression model (GLM) of the form

1 E)Itpit = Bo + B1logt

but, since there may be small individuattérences in the rate of

learning, we may wish to build a GLMM instead:

Pit

1- pit

—a-t®, b<0

log

log = (Bo+Uoi) +(B1+Uy) logt = (Bo+p1 l0gt) + (Ui + Uy logt)
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e Discrete outcomesin clustered survey sampling. After taking a
survey we will analyze a cross-classified table of countster
discrete variables Sex € 1, 2), Income { = 1, 2, 3), and Education
(k =1,2,3). Normally this would lead to a log-linear model

logMiji = Bo +Bi + Bj + B+ Bij + -+

However, in many national surveys, sampling is done in stafyjest
we sample a census block (say), and then we sample indigidual
within the census block. Because they live close togetleapie in
the same census block will be more alike than peoplefiiedint
census blocks. A standard way to model this cluster-level
dependence is by adding randoffeets to the model:

logMijic = (Bo+UP)+(Bi+U)+ (B +UD)+ B+ Ud) + (Bij +ul) +- -

(note that thgg’s play the role ofu-terms in our earlier log-linear
work, and theu's are the randomfiects here).
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Computational Notes

For LMM'’s we could handle the randontfects by computing a general
error variance/(w) = Var (€) + Z¥(w)Z", sidestepping an ugly integral.

For GLMM'’s, the random fects introduce an integral into the likelihood}
of the form

ffij(YijIUi,ﬁ, ¥) f (ui|Data)du;

(Molenberghs & Verbeke, 2005, Springer). There is no REMarsiut,
and the full MLE’s are usually computed using one of three
approximations:

e Approximating the data: penalized quasi-likelihood (PQL)
e Approximating the integrand: Laplace’s method;

e Approximating the integral: adaptive Gaussian quadraifieQ).

(EM is used bynlme; but apparently it is not very fast. . .)

9 36-720 October 10, 2007

Penalized Quasi-Likelihood (PQL)
Replace the GLM

Euij) = X8+ Z;u
with the nonlinear least-squares model
Yij = h(xi,j:B"' Zi/ju) + &ij
Taylor expansion offi(:) yields (in vector notation)
Vit (Y — ) + XiB + Zili ~ XiB + Ziti + &

which gives a straightforward updating scheme, considdhe LHS as
pseudo data.

This is known agenalized quasi-likelihood because it obtains from
optimizing a quasi-likelihood (involving only 1st and 2ndrivatives)
with a penalty term on the randonffects.
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Laplace's Method

The integral amounts to a posterior mean, which can be appabed by
careful Taylor expansion of the log-integrand. The usugreach is:

fii(yijlui, B, P) f (Datalu;) f (u)du
Eulfij(vijlui, 8, ¥)|Data] = J fij(ijlui, 8, ¥) f (Datau) f (u)du

[ f(Datalu;) f (u;)du;
e (W) du. 1/h” (uf)e"h ()
J L EM W o7y
[ enhduy, /R’ () "h(@)

(Tierney & Kadane, 1986JASA).

The Hessiang” (u), h*”(u) and maximizers,"u* come automatically
from optimization routines; andis an appropriate sample size.

Thus integration is replaced withfterentiation, which is faster and more
stable (as long as the Taylor expansion holds).
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Adaptive Gaussian Quadrature (AGQ)

Quadrature is another name for numerical integration using a weighted

sum of the form
| foax= 3wt
i

When f(x) is a normal density, or has a log-quadratic factor, it can be
expanded in Hermite polynomials, and then thean beGaussian
guadrature weights, which are #icient for the problem.

Adaptive quadrature optimizes over the placement and number ofsthe
and the choice ofv.

PROC MIXED/ PROC NLMIXED in SAS use AGQ; and AGQ is the
method of choice in Rabe-Hesketh, Skrondal & Pickles (2004,
Psychometrika) GGLAMM package foStata.
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Facilitiesin R
R (and Splus) provide one “default” package for GLMM anaysind other
packages exist:
e library(lme4) is a rewrite ofnlme that provideslmer (), for bothLMM’s
and GLMM'’s.
lmer () has amethod= argument which can take the vallieaplace",
"PQL", or "AGQ". PQL is the default, and AGQ is not yet implemented.
e library(MASS) (for R or Splus) provideglmmPQL () (uses PQL).

e Other installable packages framtp://cran.r-project.org/ (R only)
includeglmmML (uses Laplace or AGQ) arglmmAK (extends to multinomial
logit models; se&GAM for the fixed-dfects-only case).

As with all things, R is great for “breadboarding”, and foraiyrses of problems of
moderate size.

For larger problems, SAS provides PROC MIXED and PROC NLMDXEhat
provide approximately the same functionalityla®&, nlme andlmer.
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Examples

¢ A meta analysis of published studies of the use of beta-blacto prevent
death after heart attack; randoiffieets are used since the size of tlfieet of
beta-blockers varies moderately from study to study.

e Analysis of five cognitive items in a section of the LSAT exarhere are
1000 examinees and 5 items, so an additive fix@elees model would require
at least 1005 parameter estimates, very slow (after 4 haiopped trying!),
and inconsistent (Neyman-Scott problem; see also Andenséidaberman
on the Rasch model). If we treat the studeffieets as random, then we have
only 6 parameters (5 fixedtects for the items, plus a variance component
for student &ects), and estimates are consistent as number of studemts.gr

[See Rnotesin class]

Once again, these examples only scratch the surface. Feradetails, see
Dalgaard’s or Ripley’s notes. Also, there are many simikamaples in the
“Examples” manuals of WinBUGSh¢tp: //www.mrc-bsu. cam. ac.uk/bugs/)
software for doing applied Bayes via MCMC.
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