
Review: Generalized Linear Models (GLM’s)

The Basic Idea

Supposeyi follows an exponential family distribution of the form

f (yi; ηi, τ) = g(y; τ) exp

(

b(ηi) + k(y)γ(ηi)
h(τ)

)

≡ g(yi; τ) exp

(

b(ηi) + yiηi

h(τ)

)

with τ known, so thatηi is thenatural parameter andyi is thesufficient

statistic. You showed in homework, by differentiating 1=
∫

f (y; η, τ)dy,

that

µi = E[yi] = − b′(ηi) ≡ ℓ−1(ηi) (∗)

and, by similar methods, you can show

Var (yi) = − b′′(ηi)h(τ) ≡ h(τ)/ℓ′(µi) (∗∗)

Rewriting the natural parameterηi as a linear function of covariatesXi,

we get

ℓ(µi) = ℓ(E[yi]) = ηi = Xiβ
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Examples:

• Normal linear regression. The Normal density is,

f (yi; µi, σ
2) =

1
√

2πσ
e

1
2

( yi−µi
σ

)2

=

(

1
√

2πσ
e−y2/2σ2

)

exp













− 1
2µ

2
i + yµi

σ2













soµi is the natural parameter,ℓ(µi) = µi is the natural link function, andσ2 is

the dispersion parameter. So the GLM isµi = Xiβ.

• Poisson regression. The Poisson density isf (y; µ) = µye−µ/y! =

(1/y!) exp(−µ + y logµ); theover-dispersed Poisson family has the form

f (yi; µi, τ) = g(yi; τ) exp

(

−µi + yi logµi

τ

)

In this family, logµi is the natural parameter,τ is the dispersion parameter,

and we build GLM’s of the form

logµi = Xiβ

We have also encountered this as thelog-linear model for Poisson sampling.
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Plugging this back into the density, and considering the likelihood ofn

independentyi’s, we get

f (y1, . . . , yn|β, τ) =
n

∏

i=1

g(yi; τ) exp

(∑

i b(Xiβ) +
∑

i yiXiβ

h(τ)

)

Setting∂ log f (· · ·)/∂β j = 0 we obtain the normal equations

0 =
(∑

ib
′(Xiβ)Xi j +

∑

iyiXi j

)/

h(τ) =
∑

i

(yi − µi)Xi j

h(τ)

or, cancellingh(τ) and collecting terms,

(y − µ)T X = 0 (∗ ∗ ∗)

These are “exactly” the same normal equations that we get from setting
∂
∂β j

∑

(yi − Xiβ)2 = 0 in OLS, except that hereµi = ℓ
−1(Xiβ).

• From (∗), ℓ(E[yi]) = Xiβ; ℓ(·) is called thenatural link function;

• From (∗∗), Var (yi) = h(τ)/ℓ′(Xiβ); τ is called adispersion parameter.

This is the basis ofgenerlized linear models (GLM’s).

3 36-720 October 10, 2007



Generalized Linear Mixed Models (GLMM’s)

The basic idea is to take a GLM

ℓ(µi) = Xiβ

and add random effects by analogy with the LMM:

ℓ(µi) = Xiβ + Ziu

Once again we generally takeu ∼ N(0,Ψ), but because the error structure

in a GLM is usually non-additive (it is handled by the underlying

exponential family model), we do not addεi.

The prototypical case is logistic regression (Stiratelli,Laird & Ware,

1984):

log
pi

1− pi
= Xiβ + Ziu
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• Logistic regression. The binomial density isf (y; p) =
(

n
y

)

py(1− p)n−y =
(

n
y

)

en log(1−p)+y log p
1−p ; theoverdispersed binomial has the form

f (yi; pi, τ) = g(yi; τ) exp















n log(1− pi) + yi log pi
1−pi

τ















The natural parameter is logpi
1−pi

, τ is the dispersion parameter, and we build

GLM’s of the form

log
pi

1− pi
= Xiβ

This is of course the form of thelogistic regression model.

Further examples are possible. . .

• Other location-scale members of the exponential family;

• Other link functions (the basic challenge of numerically solving the normal

equations (∗ ∗ ∗) is about the same);

. . . but Normal regression, Poisson regression, and logistic regression are quite

common.
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• Discrete outcomes in clustered survey sampling. After taking a

survey we will analyze a cross-classified table of counts forthe

discrete variables Sex (i = 1, 2), Income (j = 1, 2, 3), and Education

(k = 1, 2, 3). Normally this would lead to a log-linear model

logmi jk = β0 + βi + β j + βk + βi j + · · ·

However, in many national surveys, sampling is done in stages: first

we sample a census block (say), and then we sample individuals

within the census block. Because they live close together, people in

the same census block will be more alike than people in different

census blocks. A standard way to model this cluster-level

dependence is by adding random effects to the model:

logmi jkc = (β0+u(0)
c )+(βi+u(1)

ic )+(β j+u(2)
jc )+(βk+u(3)

kc )+(βi j+u(4)
i jc)+· · ·

(note that theβ’s play the role ofu-terms in our earlier log-linear

work, and theu’s are the random effects here).
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Examples

• Growth curves for binary outcomes. With practice, people generally

get better at problem solving. Letyi j be the outcome (0= incorrect, 1

= correct) for performing a task by personi on thetth attempt. One

version of thepower law of learning says that the odds of performing

the task correctly should increase like a power oft,

p
1− p

= a · tb, b < 0

This leads to a logistic regression model (GLM) of the form

log
pit

1− pit
= β0 + β1 log t

but, since there may be small individual differences in the rate of

learning, we may wish to build a GLMM instead:

log
pit

1− pit
= (β0+u0i)+(β1+u1i) log t = (β0+β1 log t)+(u0i+u1i log t)
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Penalized Quasi-Likelihood (PQL)

Replace the GLM

ℓ(µi j) = x′i jβ + z′i ju

with the nonlinear least-squares model

yi j = h(x′i jβ + z′i ju) + εi j

Taylor expansion ofh(·) yields (in vector notation)

V̂−1
i (Yi − µ̂i) + Xiβ̂ + Ziûi ≈ Xiβ + Ziui + ε

∗
i

which gives a straightforward updating scheme, considering the LHS as

pseudo data.

This is known aspenalized quasi-likelihood because it obtains from

optimizing a quasi-likelihood (involving only 1st and 2nd derivatives)

with a penalty term on the random effects.
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Computational Notes

For LMM’s we could handle the random effects by computing a general

error varianceV(ω) = Var (ε) + ZΨ(ω)ZT , sidestepping an ugly integral.

For GLMM’s, the random effects introduce an integral into the likelihood,

of the form
∫

fi j(yi j|ui, β,Ψ) f (ui|Data)dui

(Molenberghs & Verbeke, 2005, Springer). There is no REML shortcut,

and the full MLE’s are usually computed using one of three

approximations:

• Approximating the data: penalized quasi-likelihood (PQL);

• Approximating the integrand: Laplace’s method;

• Approximating the integral: adaptive Gaussian quadrature(AGQ).

(EM is used bynlme; but apparently it is not very fast. . . )
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Adaptive Gaussian Quadrature (AGQ)

Quadrature is another name for numerical integration using a weighted

sum of the form
∫

f (x)dx =
∑

i

wi f (xi)

When f (x) is a normal density, or has a log-quadratic factor, it can be

expanded in Hermite polynomials, and then thewi can beGaussian

quadrature weights, which are efficient for the problem.

Adaptive quadrature optimizes over the placement and number of thexi,

and the choice ofwi.

PROC MIXED / PROC NLMIXED in SAS use AGQ; and AGQ is the

method of choice in Rabe-Hesketh, Skrondal & Pickles (2004,

Psychometrika) GGLAMM package forStata.
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Laplace’s Method

The integral amounts to a posterior mean, which can be approximated by

careful Taylor expansion of the log-integrand. The usual approach is:

Eui [ fi j(yi j|ui, β,Ψ)|Data] =

∫

fi j(yi j|ui, β,Ψ) f (Data|ui) f (ui)dui
∫

f (Data|ui) f (ui)dui

=

∫

e−nh∗(ui)dui
∫

e−nh(ui)dui

=

√

1/h∗′′(u∗i )e
−nh∗(u∗i )

√
1/h′′(ûi)e−nh(ûi)

[1 + O(n−2)]

(Tierney & Kadane, 1986,JASA).

The Hessiansh′′(u), h∗′′(u) and maximizers ˆu, u∗ come automatically

from optimization routines; andn is an appropriate sample size.

Thus integration is replaced with differentiation, which is faster and more

stable (as long as the Taylor expansion holds).
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Examples

• A meta analysis of published studies of the use of beta-blockers to prevent

death after heart attack; random effects are used since the size of the effect of

beta-blockers varies moderately from study to study.

• Analysis of five cognitive items in a section of the LSAT exam.There are

1000 examinees and 5 items, so an additive fixed-effects model would require

at least 1005 parameter estimates, very slow (after 4 hours Istopped trying!),

and inconsistent (Neyman-Scott problem; see also Andersenand Haberman

on the Rasch model). If we treat the student effects as random, then we have

only 6 parameters (5 fixed effects for the items, plus a variance component

for student effects), and estimates are consistent as number of students grows.

[See R notes in class]

Once again, these examples only scratch the surface. For more details, see

Dalgaard’s or Ripley’s notes. Also, there are many similar examples in the

“Examples” manuals of WinBUGS (http://www.mrc-bsu.cam.ac.uk/bugs/)

software for doing applied Bayes via MCMC.
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Facilities in R
R (and Splus) provide one “default” package for GLMM analysis, and other

packages exist:

• library(lme4) is a rewrite ofnlme that provideslmer(), for bothLMM’s

and GLMM’s.

lmer() has amethod= argument which can take the value"Laplace",

"PQL", or "AGQ". PQL is the default, and AGQ is not yet implemented.

• library(MASS) (for R or Splus) providesglmmPQL() (uses PQL).

• Other installable packages fromhttp://cran.r-project.org/ (R only)

includeglmmML (uses Laplace or AGQ) andglmmAK (extends to multinomial

logit models; seeVGAM for the fixed-effects-only case).

As with all things, R is great for “breadboarding”, and for analyses of problems of

moderate size.

For larger problems, SAS provides PROC MIXED and PROC NLMIXED, that

provide approximately the same functionality aslme, nlme andlmer.
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