model { # DATA for (i in 1:N) { for (j in 1:J) { y[i,j] <- yy[i + (j-1)*N] } } # LIKELIHOOD AND LATENT CLASS INDICATORS for (i in 1:N) { for (j in 1:J) { y[i,j] ~ dbern( py[i,j] ) py[i,j] <- p[j,1]*z[i] + p[j,2]*(1-z[i]) } } for (i in 1:N) { z[i] ~ dbern( lambda ) } # PRIORS lambda ~ dunif(0,1) p[1,1] ~ dunif(0,1) p[1,2] ~ dbeta(1,1)I(0,p[1,1]) # or equivalently p[1,2] ~ dunif(0,p[1,1]) for (j in 2:J) { p[j,1] ~ dunif(0,1) p[j,2] ~ dunif(0,1) } } }