36-724 Spring 2006: Metropolis-Hastings Example

Brian Junker

February 22, 2006

e The Hierarchical Beta-Binomial
e An MCMC solution

e Example: Rat Tumors
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The Hierarchical Beta-Binomial

A simple model for multiple-choice testing: examineesl, .. ..N, each getting
y; of nj questions right.

1. Level 1.y;|6, ~ Bin(6;, n;);

2. Level 2:6a, B ~ Beta(a, 5)

We are interested in inference ab@éytthe probability that examinaeyets a
guestion right — a measure of “proficiency” for examinee

Full model is

['a+B)
[(a)l'(8)

Using our “key observation” for eaah, we see that

N
p(y. Ola,B) = l_[ (9:)9?" (1 - @)WY
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=1

PGy, @, B) o« 67 THL— 6PNV = aily; ~ Beta(er + Yi, B+ Ny — Vi)

If we fix a, 8, we know how to analyz8eta(a + Vy;,8 + nj — V;)!
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In this model, the “population” of;’s has aBeta(a, 8) distribution.

What if we want to estimate, S (estimate the shape of the populatidatent
distribution)? l.e. what is the distribution of “proficiggicamong students who

took this test?

Add a third modeling assumption:

3. Level 3:a,8 ~ p(a,B)

Now the full model is
N

N (e +B)
p(y, 6, @, B) = v 8L - )y (1 -6 p(a.p)
D( ]_1[ [(@)I'(B)

Again using the “key observation” far, 3, we see

p(ilyi, a.8) = Beta(e.la + Y, B+ N — Vi)
I(a+p) INa+y)I'(B+n -
pa.Bly) «  pla.p) ]_[ R E Tl i

Gelman et al. (pp. 12B) suggest computing(a, 8ly)—or actually
p(log(a/RB), log(a + B)ly)—on a grid, using trial and error to place the grid over the

“Interesting” part of the density.
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An MCMC solution

From the full model
N N

N o INa+pB) _
oy, 6. .8) = [ [()e"(1- @) 6 1(1 - 6L p(a. B)
l_l[ (y) l_l[ [(@)T(B)

the “key observation” gives the complete conditionals

p(di rest) = Beta(file +Yi,8+ N — Vi)

- 4N N
N+ BT 4 plos)
i=1

pP(al rest) (@)

Ta+p)|" 1~
p(B| rest) (1- 6 p(a,B)
e | |

This suggests:

e Gibbs step fop;'s: samples; ~ Beta(- - -) directly
e Metropolis steps for andg using Normal proposal draws (“random
walk M-H"). Normal variances are “tuning parameters”.
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Choosing p(a, 8)

We note that fop ~ B(a,3), the “prior mean” isu = E[6] = a/B and
2 =Var(¥) = u(1 - ) /(a + B + 1). Itis generally easier to think about priors for

u andr? thanitis
Imitating what we did in the hierarchical normal case we rhigke

pu) <1, = pla/B) 1l
p(r)=p(rlu) « 1, = pl/ya+p)«l

Transforming back tod, 5) we get
pa.B) o« (a+p)~*
One could imagine other schemes also, e.g.:

e Taking (@ + B) ¥ for higher values ok.
¢ Inventing some reasonable proper priorsd@ndg, e.g.
p(@) = Exp(alk) P(B) = Exp(BI¢)

(and further levels fok and¢. .. ?)
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Example: Rat Tumors

The data are from Gelman pp. 1ff9In this case the binomial
experiment is to observe the numlyeof a group ofn; rats that develop
tumors when exposed to some risk factor. Each group @&ts is from a
different experiment and so the= P[tumor in groupi] will vary from
group to group.

We try the hierarchical beta-binomial model as above.

see R code for this lecture
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