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The Hierarchical Beta-Binomial

A simple model for multiple-choice testing: examineesi = 1, . . . .N, each getting

yi of ni questions right.

1. Level 1:yi|θi ∼ Bin(θi, ni);

2. Level 2:θi|α, β ∼ Beta(α, β)

We are interested in inference aboutθi, the probability that examineei gets a

question right — a measure of “proficiency” for examineei.

Full model is

p(y, θ|α, β) =
N
∏

i=1

(

ni
yi

)

θ
yi
i (1− θi)

ni−yi

N
∏

i=1

Γ(α + β)
Γ(α)Γ(β)

θα−1
i (1− θi)

β−1

Using our “key observation” for eachθi, we see that

p(θi|yi, α, β) ∝ θ
α+yi−1
i (1− θi)

β+ni−yi−1 ≡ θi|yi ∼ Beta(α + yi, β + ni − yi)

If we fix α, β, we know how to analyzeBeta(α + yi, β + ni − yi)!
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In this model, the “population” ofθi’s has aBeta(α, β) distribution.

What if we want to estimateα, β (estimate the shape of the population/ latent
distribution)? I.e. what is the distribution of “proficiency” among students who
took this test?

Add a third modeling assumption:

3. Level 3:α, β ∼ p(α, β)

Now the full model is

p(y, θ, α, β) =
N
∏

i=1

(ni
yi

)

θ
yi
i (1− θi)

ni−yi

N
∏

i=1

Γ(α + β)
Γ(α)Γ(β)

θα−1
i (1− θi)

β−1p(α, β)

Again using the “key observation” forα, β, we see

p(θi|yi, α, β) = Beta(θi|α + yi, β + ni − yi)

p(α, β|y) ∝ p(α, β)
N
∏

i=1

Γ(α + β)
Γ(α)Γ(β)

Γ(α + yi)Γ(β + ni − yi)
Γ(α + β + ni)

Gelman et al. (pp. 128ff.) suggest computingp(α, β|y)—or actually
p(log(α/β), log(α+ β)|y)—on a grid, using trial and error to place the grid over the
“interesting” part of the density.
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An MCMC solution
From the full model

p(y, θ, α, β) =
N
∏

i=1

(

ni
yi

)

θ
yi
i (1− θi)

ni−yi

N
∏

i=1

Γ(α + β)
Γ(α)Γ(β)

θα−1
i (1− θi)

β−1p(α, β)

the “key observation” gives the complete conditionals

p(θi| rest ) = Beta(θi|α + yi, β + ni − yi)

p(α| rest ) ∝

[

Γ(α + β)
Γ(α)

]N N
∏

i=1

θαi p(α, β)

p(β| rest ) ∝

[

Γ(α + β)
Γ(β)

]N N
∏

i=1

(1− θi)
βp(α, β)

This suggests:

• Gibbs step forθi’s: sampleθi ∼ Beta(· · ·) directly

• Metropolis steps forα andβ using Normal proposal draws (“random

walk M-H”). Normal variances are “tuning parameters”.
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Choosing p(α, β)

We note that forθ ∼ B(α, β), the “prior mean” isµ = E[θ] = α/β and
τ2 = Var (θ) = µ(1− µ)/(α + β + 1). It is generally easier to think about priors for
µ andτ2 than it is

Imitating what we did in the hierarchical normal case we might take

p(µ) ∝ 1 , ⇒ p(α/β) ∝ 1

p(τ) ≡ p(τ|µ) ∝ 1 , ⇒ p(1/
√

α + β) ∝ 1

Transforming back to (α, β) we get

p(α, β) ∝ (α + β)−5/2

One could imagine other schemes also, e.g.:

• Taking (α + β)−k for higher values ofk.

• Inventing some reasonable proper priors forα andβ, e.g.

p(α) = Exp(α|k) p(β) = Exp(β|ℓ)

(and further levels fork andℓ. . . ?)
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Example: Rat Tumors

The data are from Gelman pp. 119ff. In this case the binomial

experiment is to observe the numberyi of a group ofni rats that develop

tumors when exposed to some risk factor. Each group ofni rats is from a

different experiment and so theθi = P[tumor in groupi] will vary from

group to group.

We try the hierarchical beta-binomial model as above.

see R code for this lecture
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