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The Hierarchical Beta-Binomial

A simple model for multiple-choice testing: examineesl,....N, each getting
yi of nj questions right.

1. Level 1:y|6, ~ Bin(6;, n;);
2. Level 2:6;|a,B ~ Beta(a, B)

We are interested in inference ab@éytthe probability that examingegets a
guestion right — a measure of “proficiency” for examinee

Full model is

D@ +pB) o1q st
e’

Using our “key observation” for eaah, we see that

N
p(y, O, B) = “(9:)9?“(1—&)“““ |
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i=1 i=1

p(Bily;, @, B) o 67 HL - gL = gly; ~ Betaa + i, B+ N — Vi)

If we fix a, 8, we know how to analyz8eta(a + y;,8 + nj — Y;)!
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In this model, the “population” of;’s has aBeta(a, 8) distribution.

What if we want to estimate, 8 (estimate the shape of the populatidatent
distribution)? l.e. what is the distribution of “proficigficamong students who
took this test?

Add a third modeling assumption:
3. Level 3:a,8 ~ p(a,B)

Now the full model is

— r]| i ni-y; . F(“"'ﬁ) a-171 _ p\B8-1
Py, 6, @, B) = 1_[( aa-a)r| | 0 (1 - 6 (. B)

i=1 i=1 r(a)r(ﬂ)
Again using the “key observation” far, 8, we see
p(Gilyi, @) = Beta(file +Yi,B+n —VYi)

N T(@ + ) T(@ + y)T(B + ni — vi)
) peh | | Form ™ Taeprn

Gelman et al. (pp. 12B) suggest computing(a, Bly)—or actually
p(log(a/B), log(e + B)ly)—on a grid, using trial and error to place the grid over the
“interesting” part of the density.
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An MCM C solution

From the full model

o) = [ (5o [ ] iy amor o

the “key observation” gives the complete conditionals

p(eil rest) = Beta(Gila + V.5 + N - Vi)
T(a+8) " 1

plo] rest) [ Mo | L1Pes
Te+8) "

p(glrest) o [ %) ]i;[(l—ei)ﬂp(a,ﬁ)

This suggests:

e Gibbs step fop;’s: sampleg; ~ Beta(: - -) directly
e Metropolis steps forr andg using Normal proposal draws (“random
walk M-H"). Normal variances are “tuning parameters”.
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Choosing p(a, B)

We note that fov ~ B(a,8), the “prior mean” isu = E[6] = /B and
72 = Var (6) = u(1 - p)/(e + 8 + 1). Itis generally easier to think about priors for
u andr? than it is

Imitating what we did in the hierarchical normal case we rhigke

p(w) <1, = pla/B)ecl
p(r) = p(r) 1, = pl/Ve+p)e«l
Transforming back tod, 8) we get

p(@.B) o« (a+p)>"?
One could imagine other schemes also, e.g.:
e Taking @ + g8) for higher values ok.

¢ Inventing some reasonable proper priorsdandg, e.g.

p(e) = Explalk)  p(B) = Exp(BI{)
(and further levels fok and?.. . ?)
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Example: Rat Tumors

The data are from Gelman pp. 1ff9In this case the binomial
experiment is to observe the numlyeof a group ofn; rats that develop
tumors when exposed to some risk factor. Each group wts is from a
different experiment and so the= P[tumor in groupi] will vary from
group to group.

We try the hierarchical beta-binomial model as above.

see R code for this lecture
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