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Quick Review of K-Fold Cross-Validation

• Divide up the data intoK roughly-equal-sized parts.

• Let f̂ (x)−k be the fitted value (classification, prediction, etc.) forx

with thekth part of the data removed, and letk(i) be the part of the

data containingxi.

• Then theK-fold cross-validation criterion is

CV =
1
N

N∑

i=1

L(y, f̂ −k(i)(xi))

whereL(y, ŷ) is some appropriate loss function [e.g.

L(y, ŷ) = (y − ŷ)2, if we are interested in (E)MSE].

• Bias-variance tradeoff in estimating error with CV:

– K large: lower bias (large training sets), higher variance (training

sets similar)

– K small: higher bias (small training sets), lower variance (training

sets less similar)
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Simple Bootstrap Cross-Validation

A simple bootstrap prediction error could be constructed asfollows:

• Let the original data set be

S =



y1 x11 · · · x1p
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• Draw bootstrap samplesSb, b = 1, . . . , B, where

Sb =



y∗b1 x∗b11 · · · x∗b1p
.
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• From each bootstrap sampleSb train our modelf̂ ∗b(x).
• Compute

Êrrboot =
1
B

1
N

B∑

b=1

N∑

i=1

L(yi, f̂ ∗b(xi))
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Problem: The “full data set” act like the test set (generatesyi’s), and the

“bootstrap samples” act like training sets (generatef̂ ∗b(xi)’s).

• When (yi, xi) < Sb , the term
∑N

i=1 L(yi, f̂ ∗b(xi)) looks like

cross-validation error;

• When (yi, xi) ∈ Sb, the term
∑N

i=1 L(yi, f̂ ∗b(xi)) looks like training-set

error.

SinceSb’s are created by sampling with replacement fromS

P[(yi, xi) ∈ Sb] = 1− (1−
1
N

)N ≈ 1− e−1 ≈ 0.632 ,

Êrrboot can be considerably biased downward.
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Leave-one-out Bootstrap Cross-Validation

A bootstrap error estimate that tries to fix the problem is the

“leave-one-out” bootstrap,

Êrr
(1)
=

1
N

N∑

i=1

1
|C−i|

∑

b∈C−i

L(yi, f̂ ∗b(xi))

whereC−i = {b : (yi, xi) < Sb}. Note that

• The average number ofdistinct elements in theSb’s retained inÊrr
(1)

is about 0.632· N

• So,Êrr
(1)

tends to have low-variance/high-bias for estimating

Err= E[L(Y, f̂ (X)] like 2-fold cross-validation.
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The .632 Bootstrap

A compromise bootstrap error estimate is

Êrr
(0.632)

= (0.368)· err+ (0.632)· Êrr
(1)

• HTF observe that

– Derivation is complicated but basically it tries to reduce the bias

of Êrr
(1)

by pulling it toward the training-set errorerr.

– Êrr
(0.632)

works well in light (under-) fitting situations, but can

break down with overfit.

– Êrr
(0.632)

can be improved by adjusting the coefficients 0.368 and

0.632 for the “no-information” error rate obtained by training on

a data sets in which all possible combinations (yi, xi′) are

considered.
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Here is a comparison of these various prediction error estimates. . .
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Cross−Validation Err (Min = 0.114 )
Training Set Err = 0.112
Simple Bootstrap Err = 0.112
Split−Half Err = 0.117
Leave−one−out Bootstrap Err = 0.218
.632 Bootstrap Err = 0.179

K−Fold CV and Several Approximations, for a Simple Linear Classifier
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