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SUMMARY

We present a modification of the spring-embedder model of Eades [ Congresses Numerantium, 42,
149–160, (1984)] for drawing undirected graphs with straight edges. Our heuristic strives for uniform
edge lengths, and we develop it in analogy to forces in natural systems, for a simple, elegant, conceptually-
intuitive, and efficient algorithm.
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THE GRAPH-DRAWING PROBLEM

A graph G = (V,E) is a set V of vertices and a set E of edges, in which an edge
joins a pair of vertices. 1 Normally, graphs are depicted with their vertices as points
in a plane and their edges as line or curve segments connecting those points. There
are different styles of representation, suited to different types of graphs or different
purposes of presentation. We concentrate on the most general class of graphs:
undirected graphs, drawn with straight edges. In this paper, we introduce an algor-
ithm that attempts to produce aesthetically-pleasing, two-dimensional pictures of
graphs by doing simplified simulations of physical systems.

We are concerned with drawing undirected graphs according to some generally
accepted aesthetic criteria: 2

1. Distribute the vertices evenly in the frame.
2. Minimize edge crossings.
3. Make edge lengths uniform.
4. Reflect inherent symmetry.
5. Conform to the frame.

Our algorithm does not explicitly strive for these goals, but does well at distributing
vertices evenly, making edge lengths uniform, and reflecting symmetry. Our goals
for the implementation are speed and simplicity.

PREVIOUS WORK

Our algorithm for drawing undirected graphs is based on the work of Eades 3 which,
in turn, evolved from a VLSI technique called force-directed placement. 4 We begin
by quoting Eades’ explanation of his-‘metaphor’:
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The basic idea is as follows. To embed [lay out] a graph we replace the
vertices by steel rings and replace each edge with a spring to form a
mechanical system . . . The vertices are placed in some initial layout and
let go so that the spring forces on the rings move the system to a minimal
energy state.

Eades modelled a graph as a physical system of rings and springs, but his implemen-
tation did not reflect Hooke’s law;* rather, he chose his own formula for the forces
exerted by the springs. Another important deviation from the physical reality is the
application of the forces: repulsive forces are calculated between every pair of
vertices, but attractive forces are calculated only between neighbours. This reduces
the time complexity because calculating the attractive forces between neighbours is
thus Θ (|E|), although the repulsive force calculation is still Θ (| V|2), a great weakness
of these n -body algorithms 6 (however, see Greengard 7 ).

Kamada and Kawai 8,9 have their own variant on Eades’ algorithm. They also
modelled a graph as a system of springs, but whereas Eades abandoned Hooke’s
law, Kamada and Kawai solved partial differential equations based on it to optimize
layout. Eades decided that it was important only for a vertex to be near its immediate
neighbors and so calculated attractive forces only between neighbours, but Kamada
and Kawai’s algorithm adds the concept of an ideal distance between vertices that
are not neighbours: the ideal distance between two vertices is proportional to the
length of the shortest path between them.

Kamada and Kawai saw the graph-drawing problem as a process of reducing the
total energy of a system of springs connecting steel rings; by minimizing the sum of
compression or tension on all the springs, the rings or vertices would be most nearly
at their ideal distances from one another. They formulated the total energy of a
graph as

where p i is the position of the ring corresponding to vertex v i, kij is the spring
constant for the spring between pi and pj, and lij is the optimum distance between
vertices vi and vj. This energy is reduced by solving a partial differential equation
for each vertex to find a new location and then moving the ring whose new location
minimizes the energy of the new state. The repositioning of vertices is repeated until
the energy goes below a preset threshold. An important difference from Eades’s
approach is that only one vertex moves at each iteration, so the inner loop only

* Hooke’s law is a macroscopic approximation of the behaviour of springs. We quote from an introductory physics
textbook. 5

If the spring is compressed or extended and released, it returns to its original, or natural, length,
provided the displacement is not too great We see that for small ∆ x the force exerted by the
spring is approximately proportional to ∆ x. This result, known as Hooke’s Law, can be written

F x = –k(x – x 0) = –k x

where the empirically determined constant k is called the force constant of the spring.
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needs to recalculate the contribution of that vertex to the energy of the system,
taking Θ (| V |) time.

Davidson and Harel1 10 also lay out graphs by reducing the energy of a system, but
use a method having older roots in VLSI placement and other optimization problems:
simulated annealing. 11,12 Simulated annealing is a powerful, general, optimization
technique, but it is computationally costly. The problem of drawing a graph is
restated as a problem in minimizing energy and therefore one of optimization.
Applying simulated annealing requires choosing an energy function—Davidson and
Hare] picked a flexible function combining terms for vertex distribution, nearness
to borders, edge-lengths, and edge-crossings. The weights on these terms can be
varied to emphasize different aesthetic standards.

Davidson and Harel tried to be flexible in meeting different aesthetic standards
and in producing the highest quality figures; they have a ‘fine-tuning’ option that,
after the basic configuration is found using simulated annealing, makes adjustments
a few pixels at a time, forbidding ‘up-hill’ moves. We will pick up the threads of
this idea later in this paper. Despite using updates of only Θ (| V |) time complexity
in its inner loop, simulated annealing is extremely slow and impractical for interactive
display of graphs.

A NEW METHOD

We have only two principles for graph drawing:

1. Vertices connected by an edge should be drawn near each other.
2. Vertices should not be drawn too close to each other.

How close vertices should be placed depends on how many there are and how much
space is available. Some graphs are too complicated to draw attractively at all. Our
vague guidelines recall a result from particle physics: 5

At a distance of about 1 fm [femto-meter] the strong nuclear force is
attractive and about 10 times the electric force between two protons. The
force decreases rapidly with increasing distance, becoming completely
negligible at about 15 times this separation. When two nucleons are within
about 0·4 fm of each other, the strong nuclear forces become repulsive.
Thus nuclei do not collapse.

Consider the following analogy: the vertices behave as atomic particles or celestial
bodies, exerting attractive and repulsive forces on one another; the forces induce
movement. Our algorithm will resemble molecular or planetary simulations, some-
times called n -body problems. Following Eades, however, we know that we need
not have a faithful simulation; we can apply unrealistic forces in an unrealistic
manner. So, like Eades, we make only vertices that are neighbours attract each
other, but all vertices repel each other. This is consistent with the asymmetry of our
two guidelines above.

We were inspired by natural systems such as springs and macro-cosmic gravity,
but must point out that the ‘forces’ are not correctly named. We use forces to
calculate velocity for every time quantum (and thus displacement, since the time of
a quantum is unity), whereas true forces induce acceleration. The distinction is
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extremely important, because the real definition leads to dynamic equilibria
(pendulums, orbits), and we seek static equilibria.

Pseudo-code for the algorithm is given in Figure 1. We have not said anything
about the initial configuration, the input, or the output. The initial configuration
could be all or partly specified, but normally vertices are placed randomly in the
frame. Different functions might have been chosen for fa. and fr.

There are three steps to each iteration: calculate the effect of attractive forces on
each vertex, then calculate the effect of repulsive forces, and finally limit the total
displacement by the temperature. A special case occurs when vertices are in the
same position: our implementation acts as though the two vertices are a small
distance apart in a randomly chosen orientation: this leads to a violent repulsive
effect separating them.

Figure 1 omits an explanation of ‘temperature’ and ‘cooling’. The idea is that the
displacement of a vertex is limited to some maximum value, and this maximum value
decreases over time; so, as the layout becomes better, the amount of adjustment
becomes finer and finer. For example, the temperature could start at an initial value

area := W * L; { W and L are the width and length of the frame }
G := (V, E); { the vertices are assigned random initial positions }
k :=      
funct ion  fa(z) := begin return x 2/k e n d ;
funct ion  f r(z) := begin return k 2/z e n d ;

for i := 1 to iterations do begin
{ calculate repulsive forces}
for v in V do begin

{ each vertex has two vectors: .pos and .disp }
v.disp := 0;
for u in V d o

if (u # v) then begin
{ ∆ is short hand for the difference}
{ vector between the positions of the two vertices )
∆ := v.pos - u.pos;
v.disp := v.disp + ( ∆ /| ∆ |) * fr (| ∆ |)

end
e n d

{ calculate attractive forces }
for e in E do begin

{ each edge is an ordered pair of vertices .v and .u }
∆ := e.v.pos – e.u.pos
e.v.disp := e.v.disp – ( ∆/| ∆ |) * fa (| ∆ |);
e.u. disp := e.u.disp + ( ∆ /| ∆ |) * fa (| ∆ |)

end

{ limit the maximum displacement to the temperature t }
{ and then prevent from being displaced outside frame}
for v in V do begin

v.pos := v.pos + ( v. disp/ |v.disp|) * min ( v.disp, t );
v.pos.x := min(W/2, max(-W/2, v.pos.x));
v.pos.y := min(L/2, max(–L/2, v.pos.y))

end
{ reduce the temperature as the layout approaches a better configuration }
t := cool(t)

end

Figure 1. Force-directed placement
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(say one tenth the width of the frame) and decay to 0 in an inverse linear fashion.
We discuss more efficient cooling functions later.

Modelling the forces

We calculate k, the optimal distance between vertices as

where the constant C is found experimentally. We would like the vertices to be
uniformly distributed in the frame, and k is the radius of the empty area around a
vertex. Intuitively, the further apart two vertices are, or the closer together, the
more overpoweringly intolerable the current layout should be considered and the
more violent the correction. If fa and fr are the attractive and repulsive forces,
respectively, with d the distance between the two vertices, then

fa(d) = d2/ k

f r(d) = -k2/ d

Figure 2 illustrates these forces and their sum versus distance. The point where the
sum of the attractive and repulsive force crosses the x -axis is where the two forces
would exactly cancel each other out, and this is at k, the ideal distance between
vertices.

Figure 2. Forces versus distance
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We chose the two functions fa and fr. after some experimentation; they naturally
suggested themselves as implementing our objectives, and they resembled Hooke’s
law. We experimented with several other functions that seemed to meet our guide-
lines, for example

fa(d) = d/k

f,(d) = -k/d

This latter pair of functions, however, worked poorly for more complex graphs
because it seemed unable to overcome local minima; a vertex was less likely to move
past another vertex that a bad initial placement had put in its way. Overcoming a
bad configuration by moving through a yet worse configuration before reaching a
better one is known in simulated annealing as hill climbing. Simulated annealing
decides probabilistically whether to accept a transition to an inferior configuration,
but our force-directed placement always seeks the lowest ground. This would lead
to getting stuck in local minima or ‘valleys’ more often, except that our simulation
is discrete, and a vertex can shoot past another in a single time step without having
to face its repulsive effects at short range, where they would be inexorable. Force
laws that use higher order powers tend to give results similar to those of the quadratic
functions, but are more costly to compute.

Eades’ equations were

fa(d) = kalog d

fr(d) = k/d2

We achieved results similar to those of Eades, as we will show, but we rejected his
formula for fa since it was inefficient to compute.

The frame

We have to confine the graph to the frame specified by the user. Originally, we
placed dummy vertices around the perimeter of the graph that exerted repulsive
forces but could not move themselves. Exactly the same strategy occurred at first
to Davidson and Harel. They then modelled the walls as a sloping potential barrier,
by putting a term in their energy function causing the cost for a vertex being near
a border to increase inverse-quadratically. We chose to consider the frame an
immovable object, modelling it as four walls, each of which exerts a normal force
exactly equal to the force pushing any vertex beyond it, thus stopping it like a real
wall.

We have yet to implement satisfactorily an extension of this concept to borders
constructed of arbitrary line segments. For example one might try to draw a tree
inside a wedge-shaped area by fixing the root of the tree at the apex of the wedge.
In drawing a graph within a concave region, we must prevent edges as well as
vertices from crossing borders. This adds a term of Θ ( | V||E|) to the time complexity
of our algorithm, but such arbitrary regions would be useful for reserving an island
for text in the middle of a graph.
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There are several approaches for modelling the frame after physical walls. The
easiest is the ‘sticky’ vertex that adheres to the spot on the wall where it first strikes
(an inelastic collision) and stays there until the force vector on it has only components
moving away from the wall (see Figure 3 ). Another approach is to model striking
the wall as an elastic collision but then we must determine the order in which the walls
are struck—and perhaps a vertex would ‘bounce’ many times, entailing extensive
computation (see Figure 4 ). This approach is reminiscent of ray tracing, 13 a realistic
but computation-intensive method used for shading in computer graphics.

We chose to have a wall stop that component of displacement normal to it. This
was easy and efficient to implement for a box around the graph because all the walls
are orthogonal to the co-ordinate system. Figure  5 shows a vertex stopped in its
proposed trajectory outside the frame by the top border, but in Figure 6 the vertex
is allowed to slide along to the left until it reaches the left border and lodges in the
upper left corner. (For borders made of arbitrary lines, we would have to compute
dot products to find the component of the trajectory normal to the border. ) In
practice, we often choose the strength of the forces so that the resulting graph is
small enough that it never nears the borders, then apply a filter to enlarge the graph
to fill the frame.

Speeding up the algorithm

An important technique in n -body simulations is to approximate the effect of
distant bodies as a single pole. 14 Doing this reduces the n -body simulation from
Θ ( n2) complexity to Θ ( n log n). We need not faithfully imitate a celestial, chemical,
or atomic system—we desire only that the results be pleasing. This allowed us to

Figure 3. Inelastic collision Figure 4. Elastic collision
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Figure 5. Halted in upward direction Figure 6. Stopped altogether

make one time-saving adjustment already described: vertices are only attracted to
their neighbours—this has Θ (| E | ) complexity. Still, we have to compute the repulsion
of every vertex from every other; this has Θ ( | V | 2) complexity. The repulsive force
decreases as the inverse square of the distance. Can we neglect the contribution of
the more distant vertices?

To speed up our algorithm we used a variation that we call the grid-variant
algorithm. In this variant we divide the screen into a grid of squares, and at each
iteration, each vertex is placed in its grid square and repulsive forces are computed
only between it and the vertices in nearby squares of the grid; we compute the
attractive forces as usual. This is nearly equivalent (in the resulting output, if not
the time complexity) to applying the repulsive force to all vertices, but computing
it as

where

In practice, we found that the square shape of the grid boxes caused distortion, and
it was necessary to make the fall-off distance the same in all directions (the repulsive
force is applied from all vertices within the circular area of radius 2 k centred at the
centre of the vertex in question). In Figure  7, vertex v is repelled from vertex q,
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Figure 7. Calculating repulsive forces using the grid-square algorithm

but not from r, which is outside the immediately neighbouring squares of the grid,
or s, which is considered but then rejected for being too far away anyway.

If the frame has width Wand length L, then the area perverted is

and again

Because we ignore the repulsion of vertices beyond a distance of 2k, 2k is the length
of a side of a grid box.

Number of grid boxes =

When the distribution of vertices is approximately uniform, then the calculation of
the repulsive force becomes Θ (| V |).

An important consideration of simulated annealing is choosing a cooling schedule
for the temperature T, balancing the ability to escape local minima and find the best
layout with the desire for quick termination. Our analogue to simulated annealing’s
temperature is limiting the maximum displacement of every vertex during an iter-
ation, and changing that maximum displacement from iteration to iteration.

Much research in simulated annealing is devoted to speeding it up, much of the
effort goes into developing better and more general cooling schedules. Simulated
sintering is a variant on simulated annealing that is based on the hypothesis that
simulated annealing wastes effort in moving from a random placement to a reasonable
one, and that it would be better to generate a good initial placement by applying a
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more computationally efficient method and then apply simulated annealing at a low
temperature to make more subtle adjustments. 12’ 15 Indeed, this resembles what
Davidson and Harel have done, with their computation-intensive final adjustment
phase. Grover 15 suggests rein-cut placement 16 for initial VLSI layout. Another
alternative for quickly generating an initial layout is quenching, simulated annealing
rapidly cooling over a few iterations. To keep our system conceptually simple, we
do something analogous to simulated sintering, but we will use the force-directed
analogy to quenching to avoid introducing another algorithm.

We conducted some subjective experiments in which we compared the results of
drawing different graphs under different cooling schedules and using different num-
bers of iterations. Primarily, we compared a steady decrease in temperature with a
combination of quenching and simmering: the first phase starts at a high temperature
and cools steadily and rapidly, and the second is at a constant low temperature. The
results from the latter schedule were better and required fewer iterations.

Time complexity

Each iteration of our algorithm takes time Θ (| V |2 + | E |) for the basic algorithm
and Θ (| V |) + | E |) for the grid variant, assuming that vertices are uniformly distrib-
uted over the grid boxes; but exactly how many iterations are necessary to lay out
a graph attractively? There is much ad hoc argument in the literature when the
authors try to explain when the algorithm terminates. Eades simply asserted that
‘Almost all graphs reach a minimal energy state after the simulation step is run 100
times’. Davidson and Harel, and Kamada and Kawai, based conditions for termin-
ation on their explicit representations of state energy but they offered little analysis
how soon those conditions would be met; indeed, Kamada and Kawai did not include
the number of iterations in their outermost loop in doing their time complexity
analysis ! We too can offer little justification for the number of iterations, although
we experimented with making it a function of | V | or | E |. We did suspect, as did
Davidson and Harel, that choosing a better cooling schedule could make a dramatic
difference.

The algorithms that attempt to minimize energy terminate when an energy thresh-
old is reached. In contrast, our algorithm’s termination is guesswork, as was Eades’.
However, the intermediate output of the program can be saved and used as an initial
configuration if the layout comes out ‘half-baked’, and then more simmering can be
used to fix the layout for less cost than starting from scratch. Also, saving the
intermediate layout facilitates other forms of incremental layout, such as adding
edges or vertices to a graph already laid out.

IMPLEMENTATION

We wanted to have a simple, coherent method, not a bag-of-tricks. For example,
we rejected planarity testing and planarization even though they are efficient. We
avoided slow, complicated techniques such as simulated annealing, and we tried to
make our implementation fast enough to be interactive for graphs of moderate size.

We constructed a flexible experimental framework, to let us easily test many
different models of forces. We could specify arbitrarily complex functions using
addition, subtraction, multiplication, division, modulus, logarithm, square root,
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exponentiation, and the unit step function in an AWK- like syntex 17 on the command
line.

We implemented our algorithm in C+ +. l8,19 We used integer arithmetic for speed;
this often required that expressions be carefully crafted to preserve significance, but
it proved worth while. Following the advice of Bentley, 6 we kept expensive operations
such as square roots to a minimum; often a square will do in the place of a square
root. Experimentation was aided by the ‘little language’ used to specify the forces
and other parameters. Many an idea was evaluated this way, and then hard-coded
if it proved its worth (such as the grid approximation and sintering).

There are several variants of the lay-out program. The basic version is called
Nature because of the analogy between our layout algorithm and the forces of
nature. We have a variant that lays out in three dimensions, called Nature3d, and
the one that implements the grid variant called Naturev. All three take text input
and produce text output. The input file format is the same as that of the output,
except that the input will not necessarily have co-ordinates for the points. If it does,
those specify the initial configuration, otherwise vertices are placed randomly. So,
if one pass through Nature fails to result in a pleasing layout, one can resubmit the
graph, but now some computation is saved because one can reuse the output of the
first attempt. The difference between the variants is a matter of linking to different
object files.

AN EXTENDED EXAMPLE—THE PENTAGONAL PRISM

To demonstrate our algorithm in action, we show in Figures 8 and 9 every step in
laying out a pentagonal prism. The first frame shows all the vertices in their
random initial positions. The first twelve frames show quenching; the second twelve,
simmering.

In general throughout this paper, if a figure has a box around it, that box is the
border that is part of our algorithm. Most figures have no box, which means they
have been scaled by a filter. We identify all graphs in figure captions by giving the
figure number in the original paper and the citation. Some are specially identified
with ‘as drawn by’ or ‘as proposed by’; these are reproductions of those figures
exactly as they appeared in the cited paper. ‘As drawn by’ identifies those represen-
tations produced by the algorithm discussed in the cited paper, whereas ‘as proposed
by’ identifies those that were merely proposed by the authors, but not generated by
their algorithm.

SYMMETRIC GRAPHS

The most natural and pleasing results from our algorithm are
symmetric graphs in which the underlying force-law paradigm is
such symmetric graph, ubiquitous in papers on graph layout, is

K5 and the other complete graphs K4 ( Figure 11 ), K6 ( Figures

those from highly
most evident. One
K5 ( Figure 10 ).
12 and 13 ), and K8

( Figure 14 ), illustrate the balance of attractive and repulsive forces in equilibrium.
Note that K 4 is planar but has not been represented so. The layouts of complete
graphs get smaller as the degree gets higher: the higher the density of edges, the
shorter the distances at which equilibrium is reached. Our calculation of the ideal
distance between vertices works as we ideally described it only in the simple case of
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Figure 8. Quenching
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Figure 9. Simmering



Figure 11. K4

Figure 13. K6

Figure 14. K8 Figure 15. K2
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Kz ( Figure 15 ), but since all our figures have been through the enlarger filter, they
are all of about the same size.

Some more examples of simple, planar or nearly planar, symmetric graphs are the
three in Figure 16 and the one in Figure 17, which first appeared in Kamada and
Kawai, 8 and Figure 18, which appears in Davidson and Harel. 10 The graphs presented
by Kamada and Kawai are especially easy to draw and our renderings are essentially
the same as theirs.

Another highly symmetric graph is K3,3 ( Figures 19 and 20 ). The first represen-
tation, although acceptable, is arguably not as good as the other ones because one
dimension of symmetry is missing. The Heywood graph ( Figure 21 ) was taken from
Davidson and Harel, but they did not achieve this drawing with their algorithm:
their layout is Figure 22. Still, it is probably preferable to our Figure 23.

Figure 16. Graphs in Figures 6(a), 4, and 3, respectively, from Kamada and Kawai8

Figure 17. Triangulated triangle (graph in Figure Figure 18. Graph in Figure 16 from Davidson
6(c) from Kamada and Kawai 8 ) and Harel 10
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Figure 19. K3,3

Figure 21. Figure 18(a) from Davidson and
Harel 10 ) as proposed by Davidson and Harel

Figure 20. K3,3

Figure 22. Figure 18(b) from Davidson and
Harel 10 as drawn by Davidson and Harel

Figure 23. Heywood graph (graph in Figure 18 from Davidson and Harel 10 )
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Other difficulties that our algorithm encounters, even with symmetric graphs, are
illustrated by Figure 24, which was the first figure of Davidson and Harel. 10 The
original, Figure 25, makes the problem a bit clearer. The graph is planar and
Davidson and Harel generated a planar representation, but the repulsive forces from
the inner vertices prevent us from achieving the more attractive, yet equally stable,
configuration.

The centrepiece of Davidson and Harel’s paper was Figure 26. Our rendition,
Figure 27, is faulty in one respect: Davidson and Harel drew the outermost vertices
p, q, n and o between their two neighbors to make the graph perfectly planar. As
a comparison, using the time complexity formula Davidson and Harel provide, they
would require 10 minutes to generate the figure, but our algorithm takes 30 seconds
on a comparable machine.

Figure 28 displays two different layouts of an icosahedron missing one vertex
and its incident edges; the upper layout looks something like the traditional solid
representation of the icosahedron (but with a vertex missing) and the lower layout
is planar but some edges are hard to distinguish. Of all the methods we have
discussed, only the simulated annealing of Davidson and Harel explicitly attempts
to avoid occluding vertices with edges.

Figure 29 is the icosahedron. The layout is extremely attractive, although not
planar (the icosahedron is planar).

PLANAR GRAPHS

In this section we reproduce, with little comment, some of the asymmetrical figures
from other papers that we found easy to draw; almost all these graphs are planar.
The layout we produce for each figure is nearly identical to the layout from the
paper we cite as the source of the graph.

Figure 24. Graph in Figure 1 from Davidson
and Harel 

10
 )

Figure 25. Figure I from Davidson and Harel 
10

as drawn by Davidson and Harel
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Figure 26. Figure 20 from Davidson and Harel 10 as drawn by Davidson and Harel

Figure 27. Graph in Figure 20 from Davidson and Harel 10
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Figure 28. Two layouts of an icosahedron variant

Figure 29. Icosahedron

Figure 30. Graphs in Figures 7(c), 7(a) and 7(d) from Kamada and Kawai 8

Figure 31. Graph in Figure 2(b) from Eades 3
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Figure 32. Graph in Figure 5(c) from Eades 3

Figure 34. Graph in Figure 5(a) from Eades 3

Figure 33. Graph in Figure 5(b) from Eades 3

Figure 35. Graph in Figure 6(c) from Eades 3

Kamada and Kawai observed that isomorphic graphs, such as those in Figures 36
and 37, will have identical layouts, up to rotation and reflection, whereas similar
but not isomorphic graphs, such as in Figures 38 and 39 will have similar but distinct
layouts. Our results confirm with this observation.

A simple binary tree is represented in Figure  40. Our algorithm draws trees as
expanding radially from the root, as do many other algorithms. Some of the problems
with our algorithm, which does not directly penalize edge crossings, are illustrated
by Figure 41. Here, the children of the second level cross each other because that
placement packs the vertices in the frame. A similar problem that occurred in an
early implementation of our algorithm, but to a more serious degree, was the
blocking affect illustrated in Figure 42. Vertices aaab, aaaba and aaabb are attracted
to ancestor aaa, but cannot overcome the potential barrier posed by vertices ab and
aba. We tried to find an analogy in nature that would suggest a way that such a
blocking force could be overcome. Quantum jumps by electrons came to mind, but
the heuristic we used to solve this problem was to turn off the repulsive force every
fifth iteration. This heuristic is helpful, but it cannot overcome a problem that
involves many vertices such as in Figure 41. We suspect that if we apply a multi-
grid technique that allows whole portions of the graph to be moved, it might be of
some help, but such a technique would be more suitable for an optimization algorithm
such as simulated annealing.
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Figure 36. Graph in Figure 8(c) from Kamada
and Kawai 8

Figure 38. Graph in Figure 9(a) from Kamada
and Kawai 8

Four more examples of trees,

Figure 37. Graph in Figure 8(d) from Kamada
and Kawai 8

Figure 39. Graph in Figure 9(b) from Kamada
and Kawai 8

some of which are not binary, are shown in Figures
43, 44, 45 and 46. For the latter two, it is not clear where the root is, and indeed,
because our current implementation gives no indication of the direction of edges,
these are not really trees but undirected, acyclic, planar graphs, and in the other
examples we were deceived into believing we knew which vertex was the root.

LAYOUTS THAT APPEAR TO BE THREE-DIMENSIONAL

Three-dimensional objects must often be represented by two-dimensional projec-
tions, and the appearance of three-dimensionality is a product of human perception.
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Figure 40. Binary tree Figure 41. Tangled binary tree (graph in Figure
14(a) from Davidson and Harel 10 )

Figure 42. Example of a potential barrier

An example of a graph that looks three-dimensional when drawn by our algorithm,
and by the other algorithms we have discussed here, is the cube of Figure 47.
Although it can be drawn as a planar graph (the planar representation can also be
viewed as the head-on perspective projection of an opaque cube), a human being
would rarely want to do so. We take a further step and attempt to draw a hypercube,
which is shown in Figure  48. The layout is good, but it is difficult to picture the
original four-space object.

Davidson and Harel tuned their algorithm by changing the weighting of various
components. In an attempt to produce a planar rendition of the cube, they exper-
imented with more heavily weighting the term penalizing edge-crossings and were
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Figure 43. Tree (graph in Figure 4(a) from Eades 3 ) Figure 44. Tree (graph from Figure 14(b) from
Davidson and Harel 10 )

Figure 45. Graph in Figure 7(b) from Kamada
and Kawai 8

Figure 46. Unbalanced tree (graph in Figure 4(b)
from Eades  3 )

able to draw the cube as two squares, one inside the other, but with the inner square
rotated with respect to the outer one because that made the edge lengths more
uniform. Two other graphs that are planar but are usually drawn as three-dimensional
are the pentagonal prism ( Figure 49 ) and the twin cubes ( Figure 50 ). Davidson and
Harel also tried to make these graphs planar, but they failed in the latter case.
Figure 51 is the planar layout they sought. Figure 52 was the result of weighting the
edge crossing component more favorably, but it has just as many crossings as Figure
53, the layout produced by their default settings. However, Figure 52 does give the
effect of being a perspective projection.

Davidson and Harel did an extended example on Figure 54, except that in their
paper it appeared planar and like a closing shutter ( Figure 55 ). Once again, our



Figure 47. Cube

1152 T. M. J. FRUCHTERMAN AND E. M. REINGOLD

Figure 48. Four-dimensional hypercube

representation appears to be an oblique parallel projection of an object, whereas
Davidson and Harel have something like a perspective projection (their algorithm
adds a twisted effect to keep edge lengths nearer uniform).

Kamada and Kawai, and Davidson and Harel, discussed how their algorithms
draw isomorphic graphs in the same way, though perhaps rotated and reflected.
Apparently, both papers were referring to rotation and reflection in the plane, but
we were struck by how our algorithm appears to rotate graphs that are three-
dimensional-looking graphs in three space. Examples are the dodecahedra of Figures
56 and 57. The algorithm produced different results because of different initial
configurations. The layout in Figure 56 is not nearly as acceptable in appearance as
the two in Figure 57.

THREE-DIMENSIONAL LAYOUT

Our layouts that appeared three-dimensional led us to experiment with doing the
layout in three dimensions and projecting the result obtained onto two dimensions;
in this way we hoped to obtain more control over the final image. As we saw with
the dodecahedron, the algorithm can generate different ‘projections’ of the same
object, depending on initial placement and the cooling schedule, and the projection
might be ‘bad’ because it occludes edges and vertices and hides planes that are being
viewed with a view normal vector that is parallel, or nearly so, to those planes. We
created another filter to do projections of vertices laid out in three dimensions onto
two, with options to choose the view reference point, view normal vector, and view
up vector, with choice of parallel or perspective projection (see Hearn and Baker 13

for definitions of these terms).
We now show some examples repeated from previous sections, but now laid out

in three dimensions. Each example is a triplet of projections from the x, y and z
axes.
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Figure 49. Pentagonal prism

Figure 50. Twin cubes (graph in Figure
Davidson and Harel 10 )

11 from Figure 51. Figure 11(a) from Davidson and Harel 10

as proposed by Davidson and Harel

Figure 52. Figure 11(b) from Davidson and
Harel 10 as drawn by Davidson and Harel

Figure 53. Figure 11(c) from Davidson and
Harel 10 as drawn by Davidson and Harel
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Figure 55. Figure 2 from Davidson and Harel 10 )
Figure 54. Mesh (graph in Figure 2 from as drawn by Davidson and Harel

Davidson and Harel 10 )

Figure 56. Poor dodecahedron

Figure 57. Good dodecahedron
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The first examples are the cube ( Figure 58 ), the mesh ( Figure 59 ), and the
pentagonal prism ( Figure 60 ). Examining the dodecahedron ( Figure 61 ), the icosa-
hedron ( Figure 62 ), and the twin cubes ( Figure 63 ), we see the possibility for a good
projection, but there is no guarantee that any projection will necessarily be better
than the one we can get from laying out the graph in two dimensions. Calculating
a projection from the layout has little cost, but currently requires intervention by
the user to choose a projection. A better interface would allow the user interactively
to manipulate the object in three dimensions. Kamada and Kawai 20 discuss the
problem of selecting the ‘general position’ for viewing a three-dimensional object so
that the maximum shape information is obtained, and presents an algorithm for
doing so.

When Davidson and Harel tried to find a planar layout for the icosahedron, they
also tried Figure 64, the icosahedron missing one vertex and its incident edges. This
modification of the icosahedron is clear from our three-dimensional layout.

If a graph appeared to be three-dimensional when laid out by the two-dimensional
version of our algorithm, it laid out well in three dimensions; but in general, if it
did not look three-dimensional originally, it did not benefit from being laid out in
three dimensions, and in fact, the z -orientation of vertices often appeared random
and unpleasant. The triangulated triangle of Figure 65, appears to be nearly flat.
The graph in Figure 66, which we saw earlier in Figure 18, might be described as

Figure 58. Three-dimensional layouts of a cube

Figure 59. Three-dimensional layouts of a mesh
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Figure 60. Three-dimensional layouts of a pentagonal prism

Figure 61. Three-dimensional layouts of a dodecahedron

Figure 62. Three-dimensional layouts of an icosahedron

an ‘iterated K4’: K4 with copies of K4 attached to each vertex. Here it looks like a
monstrosity. K6 ( Figure  67 ) is rendered as an octahedron with internal edges; it
compares unfavorably with the icosahedron and the other graphs that had no lines
‘under’ the surface. The third projection, along the z -axis, does not appear three-
dimensional. K8 ( Figure 68 ) is a mess.

We have already seen the mesh and the twin cubes rendered in three dimensions.
Davidson and Harel attempted to make the twin cubes planar by increasing the cost
of edge crossings in their energy function. They failed, but they did produce a
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Figure 63. Three-dimensional layouts of twin cubes

Figure 64. Three-dimensional layouts of an icosahedron variant

Figure 65. Three-dimensional layouts of a triangulated triangle

drawing that resembled a perspective projection. Given the three-dimensional layout
of both the mesh and the twin boxes, we can choose a view normal vector that gives
us a perspective projection that appears planar. These are shown in Figure 69 and
Figure 70. It required human intervention to choose the view normal vector.

In summary, a three-dimensional layout stands or falls according to the preference
and expectations of the user. A graph that is ‘really’ three-dimensional ought to be
laid out in three dimensions, and the user ought to be able to manipulate this three-
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Figure 66. Three-dimensional layouts of ‘iterated K4’

Figure 67. Three-dimensional layouts of K6

Figure 68. Three-dimensional layouts of K8

dimensional layout with natural operations, such as choosing the viewpoint, direction
of the view and projection.

GRID VARIANT

We must deal with a problem faced by Kamada and Kawai (and presumably Eades):
disconnected graphs have nothing to hold them together; the connected components
fly apart and flatten themselves against the walls—an example is Figure 71. The
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Figure 69. Planar appearing perspective projection
of mesh

Figure 71. Disconnected graph (graph in Figure
3(b) from Davidson and Harel 10 )

Figure 70. Planar appearing perspective projection
of twin cubes

Figure 72. Twin K5

obvious solution is mentioned in Kamada and Kawai: partition the graph into its
connected components (this is easily done in linear time 21 ) and give each component
a region of area proportional to its size, with each component laid out independently;
Kamada and Kawai did not implement this. Without explicitly testing for connec-
tedness or finding the connected components, we achieve this ‘regional’ effect as an
added benefit of using the grid-square variant of our algorithm. We will also benefit
when drawing nearly disconnected graphs such as the twin copies of K5 connected
by a single strand in Figure 72. Each clique acts as a repulsive centre that pushes
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all the vertices in the other clique far away and stretches the solitary connection.
This rendering is acceptable, but the separation is perhaps a bit exaggerated.

The advantage of the grid variant of our algorithm is that distant vertices do not
repel. We get almost the same effect as we would by separating the components
(see Figures 73 and 74 ). At first, the connected components drift apart from one
another, but eventually they get out of each other’s range and settle down. The
connected graph improves in similar ways: the two cliques are not as distant as
before and each is less distorted by the influence of the other.

There is considerable overhead involved in placing each vertex in a grid square
each iteration and so we expect that the algorithm is more useful for larger graphs.
In general, we found to our annoyance that the grid variant was neither distinctly
better nor distinctly worse than the basic algorithm, which is why we have presented
both.

The grid variant ( Figure 76 ) appears ‘fluffier’ than either Figure 75, produced by
the basic algorithm, or than the original from Eades, sketched in Figure 77, although
it has unnecessary edge crossings unlike the other two. A similar triplet is Figures
78, 79, and 80. We are not sure why Eades has a kink in his drawing; this could
depend on initial placement.

The remaining figures show the layout produced by the basic algorithm on the
left and that of the grid variant on the right. The symmetry of a large graph can be
marred, as in Figure 81. The symmetry on the large scale requires that each vertex
be placed with respect to every other vertex, or every vertex must be calculated into
the forces acting on every other. The tree in Figure 82 has more uniform edge
lengths and better use of space when laid out by the grid algorithm. The grid
algorithm is in general faster for the larger graphs, but requires more iterations.
Fifty iterations and 8 seconds produced the layout on the left in Figure 83, and 70
iterations and 6 seconds produced the one on the right.

Figure 73. Grid-variant layout of twin K5 Figure 74. Grid-variant layout of disconnected
graph (graph in Figure 3(b) from Davidson and

Harel 10 )
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Figure 75. Graph in Figure 6(a) from Eades 3 Figure 76 Grid-variant layout of graph in Figure
6(a) from Eades 3

Figure 77. Figure 6(a) from Eades 3 as drawn by Eades

CONCLUSIONS

The primary advantage of our algorithm is speed. Many of the graphs were drawn
in less than a second, and all were drawn in under 10 seconds on a SPARC station
1. We consider this to be ‘interactive’ speed.

Davidson and Harel’s algorithm appears to be able to attain a slightly higher level
of aesthetics and flexibility for the more complex graphs. Probably they could also
lay out graphs using a three-dimensional variant and use a grid, or multi-level
approach, but then again, they face more complexities of implementation and pay
a higher penalty in running time.
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Figure 78. Graph in Figure 6(b) from Eades 3 Figure 79. Grid-variant layout of graph in Figure
6(b) from Eades 3

Figure 80. Figure 6(b) from Eades 8 as drawn by Eades

A major goal was that the algorithm should work reasonably well almost always,
without the user having to fiddle with options, change the force laws, increase the
number of iterations, or switch to three-dimensional variants. Because we had no
explicit concept of energy, and hence could not detect a stopping condition, we
simply used 50 iterations every time; this was excessive on the simpler graphs, but
that did not matter since the smaller graphs take less time per iteration in any case
and the algorithm is so fast.
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Figure 81. Graph in Figure 1 from Davidson and Harel 10)

Figure 82. Graph in Figure 14(a) from Davidson and Harel 10)

Figure 83. Square grid (graph in Figure 13 from Davidson and Harel 10)
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